Recent Advances in Non-Conventional Antimicrobial Approaches for Chronic Wound Biofilms: Have We Found the 'Chink in the Armor'?

Snehal Kadam, Saptarsi Shai, Aditi Shahane, Karishma S Kaushik, Snehal Kadam, Saptarsi Shai, Aditi Shahane, Karishma S Kaushik

Abstract

Chronic wounds are a major healthcare burden, with huge public health and economic impact. Microbial infections are the single most important cause of chronic, non-healing wounds. Chronic wound infections typically form biofilms, which are notoriously recalcitrant to conventional antibiotics. This prompts the need for alternative or adjunct 'anti-biofilm' approaches, notably those that account for the unique chronic wound biofilm microenvironment. In this review, we discuss the recent advances in non-conventional antimicrobial approaches for chronic wound biofilms, looking beyond standard antibiotic therapies. These non-conventional strategies are discussed under three groups. The first group focuses on treatment approaches that directly kill or inhibit microbes in chronic wound biofilms, using mechanisms or delivery strategies distinct from antibiotics. The second group discusses antimicrobial approaches that modify the biological, chemical or biophysical parameters in the chronic wound microenvironment, which in turn enables the disruption and removal of biofilms. Finally, therapeutic approaches that affect both, biofilm bacteria and microenvironment factors, are discussed. Understanding the advantages and limitations of these recent approaches, their stage of development and role in biofilm management, could lead to new treatment paradigms for chronic wound infections. Towards this end, we discuss the possibility that non-conventional antimicrobial therapeutics and targets could expose the 'chink in the armor' of chronic wound biofilms, thereby providing much-needed alternative or adjunct strategies for wound infection management.

Keywords: antimicrobials; biofilm; chronic wounds; nanoparticles; pH; phages; probiotics.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

    1. Mustoe T. Understanding chronic wounds: A unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg. 2004;187:S65–S70. doi: 10.1016/S0002-9610(03)00306-4.
    1. Gurtner G.C., Werner S., Barrandon Y., Longaker M.T. Wound repair and regeneration. Nature. 2008;453:314–321. doi: 10.1038/nature07039.
    1. Attinger C., Wolcott R. Clinically Addressing Biofilm in Chronic Wounds. Adv. Wound Care. 2012;1:127–132. doi: 10.1089/wound.2011.0333.
    1. Siddiqui A.R., Bernstein J.M. Chronic wound infection: Facts and controversies. Clin. Dermatol. 2010;28:519–526. doi: 10.1016/j.clindermatol.2010.03.009.
    1. MacLeod A.S., Mansbridge J.N. The Innate Immune System in Acute and Chronic Wounds. Adv. Wound Care. 2016;5:65–78. doi: 10.1089/wound.2014.0608.
    1. James G.A., Swogger E., Wolcott R., Pulcini E.d.L., Secor P., Sestrich J., Costerton J.W., Stewart P.S. Biofilms in chronic wounds. Wound Repair Regen. 2008;16:37–44. doi: 10.1111/j.1524-475X.2007.00321.x.
    1. Malone M., Bjarnsholt T., McBain A.J., James G.A., Stoodley P., Leaper D., Tachi M., Schultz G., Swanson T., Wolcott R.D. The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of published data. J. Wound Care. 2017;26:20–25. doi: 10.12968/jowc.2017.26.1.20.
    1. Bowler P.G., Duerden B.I., Armstrong D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001;14:244–269. doi: 10.1128/CMR.14.2.244-269.2001.
    1. Kalan L., Loesche M., Hodkinson B.P., Heilmann K., Ruthel G., Gardner S.E., Grice E.A. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing. MBio. 2016;7:e01058-16. doi: 10.1128/mBio.01058-16.
    1. Kalan L., Grice E.A. Fungi in the Wound Microbiome. Adv. Wound Care. 2018;7:247–255. doi: 10.1089/wound.2017.0756.
    1. Zhao G., Hochwalt P.C., Usui M.L., Underwood R.A., Singh P.K., James G.A., Stewart P.S., Fleckman P., Olerud J.E. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: A model for the study of chronic wounds. Wound Repair Regen. 2010;18:467–477. doi: 10.1111/j.1524-475X.2010.00608.x.
    1. Kirketerp-Møller K., Jensen P.Ø., Fazli M., Madsen K.G., Pedersen J., Moser C., Tolker-Nielsen T., Høiby N., Givskov M., Bjarnsholt T. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 2008;46:2717–2722. doi: 10.1128/JCM.00501-08.
    1. Metcalf D., Bowler P. Biofilm delays wound healing: A review of the evidence. Burn. Trauma. 2013;1:5. doi: 10.4103/2321-3868.113329.
    1. Demidova-Rice T.N., Hamblin M.R., Herman I.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: biology, causes, and approaches to care. Adv. Skin Wound Care. 2012;25:304–314. doi: 10.1097/01.ASW.0000416006.55218.d0.
    1. Grice E.A., Segre J.A. Interaction of the microbiome with the innate immune response in chronic wounds. Adv. Exp. Med. Biol. 2012;946:55–68. doi: 10.1007/978-1-4614-0106-3_4.
    1. Zhao G., Usui M.L., Lippman S.I., James G.A., Stewart P.S., Fleckman P., Olerud J.E. Biofilms and Inflammation in Chronic Wounds. Adv. Wound Care. 2013;2:389–399. doi: 10.1089/wound.2012.0381.
    1. Dhall S., Do D., Garcia M., Wijesinghe D.S., Brandon A., Kim J., Sanchez A., Lyubovitsky J., Gallagher S., Nothnagel E.A., et al. A Novel Model of Chronic Wounds: Importance of Redox Imbalance and Biofilm-Forming Bacteria for Establishment of Chronicity. PLoS ONE. 2014;9:e109848. doi: 10.1371/journal.pone.0109848.
    1. Vatansever F., de Melo W.C.M.A., Avci P., Vecchio D., Sadasivam M., Gupta A., Chandran R., Karimi M., Parizotto N.A., Yin R., et al. Antimicrobial strategies centered around reactive oxygen species—Bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013;37:955–989. doi: 10.1111/1574-6976.12026.
    1. André-Lévigne D., Modarressi A., Pepper M.S., Pittet-Cuénod B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. Int. J. Mol. Sci. 2017;18:2149. doi: 10.3390/ijms18102149.
    1. James G.A., Ge Zhao A., Usui M., Underwood R.A., Nguyen H., Beyenal H., deLancey Pulcini E., Agostinho Hunt A., Bernstein H.C., Fleckman P., et al. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds. Wound Repair Regen. 2016;24:373–383. doi: 10.1111/wrr.12401.
    1. Castilla D.M., Liu Z.-J., Velazquez O.C. Oxygen: Implications for Wound Healing. Adv. Wound Care. 2012;1:225–230. doi: 10.1089/wound.2011.0319.
    1. Mashruwala A.A., van de Guchte A., Boyd J.M. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. eLife. 2017;6 doi: 10.7554/eLife.23845.
    1. Hall C.W., Mah T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017;41:276–301. doi: 10.1093/femsre/fux010.
    1. Jones E.M., Cochrane C.A., Percival S.L. The Effect of pH on the Extracellular Matrix and Biofilms. Adv. Wound Care. 2015;4:431–439. doi: 10.1089/wound.2014.0538.
    1. Widgerow A.D. Chronic wound fluid-thinking outside the box. Wound Repair Regen. 2011;19:287–291. doi: 10.1111/j.1524-475X.2011.00683.x.
    1. Wolcott R.D., Rhoads D.D., Dowd S.E. Biofilms and chronic wound inflammation. J. Wound Care. 2008;17:333–341. doi: 10.12968/jowc.2008.17.8.30796.
    1. Hernandez R. The use of systemic antibiotics in the treatment of chronic wounds. Dermatol. Ther. 2006;19:326–337. doi: 10.1111/j.1529-8019.2006.00091.x.
    1. Lipsky B.A., Hoey C. Topical Antimicrobial Therapy for Treating Chronic Wounds. Clin. Infect. Dis. 2009;49:1541–1549. doi: 10.1086/644732.
    1. Omar A., Wright J., Schultz G., Burrell R., Nadworny P. Microbial Biofilms and Chronic Wounds. Microorganisms. 2017;5:9. doi: 10.3390/microorganisms5010009.
    1. Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. 2010;35:322–332. doi: 10.1016/j.ijantimicag.2009.12.011.
    1. Stewart P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 2002;292:107–113. doi: 10.1078/1438-4221-00196.
    1. Percival S.L., McCarty S., Hunt J.A., Woods E.J. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 2014;22:174–186. doi: 10.1111/wrr.12125.
    1. Gupta S., Laskar N., Kadouri D.E. Evaluating the Effect of Oxygen Concentrations on Antibiotic Sensitivity, Growth, and Biofilm Formation of Human Pathogens. Microbiol. Insights. 2016;9:MBI.S40767. doi: 10.4137/MBI.S40767.
    1. Ansaldi M. Cell biology perspectives in phage biology. Front. Biosci. (Elite Ed.) 2012;4:1823–1829. doi: 10.2741/e503.
    1. Sulakvelidze A., Alavidze Z., Morris J.G. Bacteriophage therapy. Antimicrob. Agents Chemother. 2001;45:649–659. doi: 10.1128/AAC.45.3.649-659.2001.
    1. Alisky J., Iczkowski K., Rapoport A., Troitsky N. Bacteriophages show promise as antimicrobial agents. J. Infect. 1998;36:5–15. doi: 10.1016/S0163-4453(98)92874-2.
    1. Pires D.P., Melo L.D.R., Vilas Boas D., Sillankorva S., Azeredo J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol. 2017;39:48–56. doi: 10.1016/j.mib.2017.09.004.
    1. Donlan R.M. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 2009;17:66–72. doi: 10.1016/j.tim.2008.11.002.
    1. Rose T., Verbeken G., De Vos D., Merabishvili M., Vaneechoutte M., Lavigne R., Jennes S., Zizi M., Pirnay J.-P. Experimental phage therapy of burn wound infection: Difficult first steps. Int. J. Burns Trauma. 2014;4:66–73.
    1. Kumari S., Harjai K., Chhibber S. Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J. Med. Microbiol. 2011;60:205–210. doi: 10.1099/jmm.0.018580-0.
    1. Jault P., Leclerc T., Jennes S., Pirnay J.P., Que Y.-A., Resch G., Rousseau A.F., Ravat F., Carsin H., Le Floch R., et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019;19:35–45. doi: 10.1016/S1473-3099(18)30482-1.
    1. Merabishvili M., Monserez R., Van Belleghem J., Rose T., Jennes S., De Vos D., Verbeken G., Vaneechoutte M., Pirnay J.P. Stability of bacteriophages in burn wound care products. PLoS ONE. 2017;12:e0182121. doi: 10.1371/journal.pone.0182121.
    1. Furfaro L.L., Payne M.S., Chang B.J. Bacteriophage Therapy: Clinical Trials and Regulatory Hurdles. Front. Cell. Infect. Microbiol. 2017;12:e0182121. doi: 10.3389/fcimb.2018.00376.
    1. Morozova V.V., Vlassov V.V., Tikunova N.V. Applications of Bacteriophages in the Treatment of Localized Infections in Humans. Front. Microbiol. 2018;9:1696. doi: 10.3389/fmicb.2018.01696.
    1. Seth A.K., Geringer M.R., Nguyen K.T., Agnew S.P., Dumanian Z., Galiano R.D., Leung K.P., Mustoe T.A., Hong S.J. Bacteriophage therapy for staphylococcus aureus biofilm-infected wounds: A new approach to chronic wound care. Plast. Reconstr. Surg. 2013;131:225–234. doi: 10.1097/PRS.0b013e31827e47cd.
    1. Bertozzi Silva J., Storms Z., Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016;363 doi: 10.1093/femsle/fnw002.
    1. Moye Z., Woolston J., Sulakvelidze A., Moye Z.D., Woolston J., Sulakvelidze A. Bacteriophage Applications for Food Production and Processing. Viruses. 2018;10:205. doi: 10.3390/v10040205.
    1. Harper D., Parracho H., Walker J., Sharp R., Hughes G., Werthén M., Lehman S., Morales S., Harper D.R., Parracho H.M.R.T., et al. Bacteriophages and Biofilms. Antibiotics. 2014;3:270–284. doi: 10.3390/antibiotics3030270.
    1. Chan B.K., Abedon S.T. Bacteriophages and their enzymes in biofilm control. Curr. Pharm. Des. 2015;21:85–99. doi: 10.2174/1381612820666140905112311.
    1. Alves D.R., Booth S.P., Scavone P., Schellenberger P., Salvage J., Dedi C., Thet N.-T., Jenkins A.T.A., Waters R., Ng K.W., et al. Development of a High-Throughput ex-Vivo Burn Wound Model Using Porcine Skin, and Its Application to Evaluate New Approaches to Control Wound Infection. Front. Cell. Infect. Microbiol. 2018;8 doi: 10.3389/fcimb.2018.00196.
    1. Mendes J.J., Leandro C., Mottola C., Barbosa R., Silva F.A., Oliveira M., Vilela C.L., Melo-Cristino J., Górski A., Pimentel M., et al. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J. Med. Microbiol. 2014;63:1055–1065. doi: 10.1099/jmm.0.071753-0.
    1. Mendes J.J., Leandro C., Corte-Real S., Barbosa R., Cavaco-Silva P., Melo-Cristino J., Górski A., Garcia M. Wound healing potential of topical bacteriophage therapy on diabetic cutaneous wounds. Wound Repair Regen. 2013;21:595–603. doi: 10.1111/wrr.12056.
    1. Oliveira A., Sousa J.C., Silva A.C., Melo L.D.R., Sillankorva S. Chestnut Honey and Bacteriophage Application to Control Pseudomonas aeruginosa and Escherichia coli Biofilms: Evaluation in an ex vivo Wound Model. Front. Microbiol. 2018;9:1–13. doi: 10.3389/fmicb.2018.01725.
    1. Reindel R., Fiore C.R. Phage Therapy: Considerations and Challenges for Development. Clin. Infect. Dis. 2017;64:1589–1590. doi: 10.1093/cid/cix188.
    1. Negut I., Grumezescu V., Grumezescu A.M. Treatment strategies for infected wounds. Molecules. 2018;23:2392. doi: 10.3390/molecules23092392.
    1. Hamdan S., Pastar I., Drakulich S., Dikici E., Tomic-Canic M., Deo S., Daunert S. Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications. ACS Cent. Sci. 2017;3:163–175. doi: 10.1021/acscentsci.6b00371.
    1. Paladini F., Pollini M., Sannino A., Ambrosio L. Wound Healing—New Insights into Ancient Challenges. IntechOpen; London, UK: 2016. Progress and Perspectives in the Management of Wound Infections.
    1. Chaw K.C., Manimaran M., Tay F.E.H. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 2005;49:4853–4859. doi: 10.1128/AAC.49.12.4853-4859.2005.
    1. Kostenko V., Lyczak J., Turner K., Martinuzzi R.J. Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob. Agents Chemother. 2010;54:5120–5131. doi: 10.1128/AAC.00825-10.
    1. Kalishwaralal K., BarathManiKanth S., Pandian S.R.K., Deepak V., Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surfa. B Biointerfaces. 2010;79:340–344. doi: 10.1016/j.colsurfb.2010.04.014.
    1. Habash M.B., Park A.J., Vis E.C., Harris R.J., Khursigara C.M. Synergy of Silver nanoparticles and aztreonam against pseudomonas aeruginosa PAO1 Biofilms. Antimicrob. Agents Chemother. 2014;58:5818–5830. doi: 10.1128/AAC.03170-14.
    1. Mekkawy A.I., El-Mokhtar M.A., Nafady N.A., Yousef N., Hamad M., El-Shanawany S.M., Ibrahim E.H., Elsabahy M. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: Effect of surface coating and loading into hydrogels. Int. J. Nanomed. 2017;12:759–777. doi: 10.2147/IJN.S124294.
    1. You C., Li Q., Wang X., Wu P., Ho J.K., Jin R., Zhang L., Shao H., Han C. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci. Rep. 2017;7:10489. doi: 10.1038/s41598-017-10481-0.
    1. Daghdari S.G., Ahmadi M., Saei H.D., Tehrani A.A. The effect of ZnO nanoparticles on bacterial load of experimental infectious wounds contaminated with Staphylococcus aureus in mice. Nanomed. J. 2017;4:232–236. doi: 10.7508/nmj.2017.04.005.
    1. Babushkina I.V., Mamontova I.A., Gladkova E.V. Metal Nanoparticles Reduce Bacterial Contamination of Experimental Purulent Wounds. Bull. Exp. Biol. Med. 2015;158:692–694. doi: 10.1007/s10517-015-2837-5.
    1. Loh J.V., Percival S.L., Woods E.J., Williams N.J., Cochrane C.A. Silver resistance in MRSA isolated from wound and nasal sources in humans and animals. Int. Wound J. 2009;6:32–38. doi: 10.1111/j.1742-481X.2008.00563.x.
    1. Panáček A., Kvítek L., Smékalová M., Večeřová R., Kolář M., Röderová M., Dyčka F., Šebela M., Prucek R., Tomanec O., et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 2018;13:65–71. doi: 10.1038/s41565-017-0013-y.
    1. Park H., Park H.J., Kim J.A., Lee S.H., Kim J.H., Yoon J., Park T.H. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J. Microbiol. Methods. 2011;84:41–45. doi: 10.1016/j.mimet.2010.10.010.
    1. Kim M.H., Yamayoshi I., Mathew S., Lin H., Nayfach J., Simon S.I. Magnetic nanoparticle targeted hyperthermia of cutaneous staphylococcus aureus infection. Ann. Biomed. Eng. 2013;41:598–609. doi: 10.1007/s10439-012-0698-x.
    1. Rodrigues D., Bañobre-López M., Espiña B., Rivas J., Azeredo J. Effect of magnetic hyperthermia on the structure of biofilm and cellular viability of a food spoilage bacterium. Biofouling. 2013;29:1225–1232. doi: 10.1080/08927014.2013.834893.
    1. Nguyen T.K., Duong H.T.T., Selvanayagam R., Boyer C., Barraud N. Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci. Rep. 2015;5:18385. doi: 10.1038/srep18385.
    1. Abenojar E.C., Wickramasinghe S., Ju M., Uppaluri S., Klika A., George J., Barsoum W., Frangiamore S.J., Higuera-rueda C.A., Samia A.C.S. Magnetic Glycol Chitin-Based Hydrogel Nanocomposite for Combined Thermal and d-Amino-Acid-Assisted Biofilm Disruption. ACS Infect. Dis. 2018;4:1246–1256. doi: 10.1021/acsinfecdis.8b00076.
    1. Wang Z., Dong K., Liu Z., Zhang Y., Chen Z., Sun H., Ren J., Qu X. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials. 2017;113:145–157. doi: 10.1016/j.biomaterials.2016.10.041.
    1. Memar M.Y., Ghotaslou R., Samiei M., Adibkia K. Antimicrobial use of reactive oxygen therapy: Current insights. Infect. Drug Resist. 2018;11:567–576. doi: 10.2147/IDR.S142397.
    1. Villa F., Villa S., Gelain A., Cappitelli F. Sub-lethal Activity of Small Molecules from Natural Sources and their Synthetic Derivatives Against Biofilm Forming Nosocomial Pathogens. Curr. Top. Med. Chem. 2013;13:3184–3204. doi: 10.2174/15680266113136660225.
    1. Cattò C., Villa F., Cappitelli F. Recent progress in bio-inspired biofilm-resistant polymeric surfaces. Crit. Rev. Microbiol. 2018;44:633–652. doi: 10.1080/1040841X.2018.1489369.
    1. Panwar R., Pemmaraju S.C., Sharma A.K., Pruthi V. Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm. Microb. Pathog. 2016;95:21–31. doi: 10.1016/j.micpath.2016.02.007.
    1. Alavarce R.A.S., Saldanha L.L., Almeida N.L.M., Porto V.C., Dokkedal A.L., Lara V.S. The Beneficial Effect of Equisetum giganteum L. against Candida Biofilm Formation: New Approaches to Denture Stomatitis. Evidence-Based Complement. Altern. Med. 2015;2015:1–9. doi: 10.1155/2015/939625.
    1. Adamskaya N., Dungel P., Mittermayr R., Hartinger J., Feichtinger G., Wassermann K., Redl H., van Griensven M. Light therapy by blue LED improves wound healing in an excision model in rats. Injury. 2011;42:917–921. doi: 10.1016/j.injury.2010.03.023.
    1. Chaves M.E.d.A., Araújo A.R.d., Piancastelli A.C.C., Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. An. Bras. Dermatol. 2014;89:616–623. doi: 10.1590/abd1806-4841.20142519.
    1. Percival S.L., Francolini I., Donelli G. Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing. Future Microbiol. 2015;10:255–272. doi: 10.2217/fmb.14.109.
    1. Enwemeka C.S. Antimicrobial Blue Light: An Emerging Alternative to Antibiotics. Photomed. Laser Surg. 2013;31:509–511. doi: 10.1089/pho.2013.9871.
    1. Hughes G., Webber M.A. Novel approaches to the treatment of bacterial biofilm infections. Br. J. Pharmacol. 2017;174:2237–2246. doi: 10.1111/bph.13706.
    1. Halstead F.D., Thwaite J.E., Burt R., Laws T.R., Raguse M., Moeller R., Webber M.A., Oppenheim B.A., Besser T.E. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms. Appl. Environ. Microbiol. 2016;82:4006–4016. doi: 10.1128/AEM.00756-16.
    1. Hu X., Huang Y.-Y., Wang Y., Wang X., Hamblin M.R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018;9:1299. doi: 10.3389/fmicb.2018.01299.
    1. Marinic K., Manoil D., Filieri A., Wataha J.C., Schrenzel J., Lange N., Bouillaguet S. Repeated exposures to blue light-activated eosin Y enhance inactivation of E. faecalis biofilms, in vitro. Photodiagnosis Photodyn. Ther. 2015;12:393–400. doi: 10.1016/j.pdpdt.2015.06.004.
    1. De Melo W.C.M.A., Avci P., De Oliveira M.N., Gupta A., Vecchio D., Sadasivam M., Chandran R., Huang Y.Y., Yin R., Perussi L.R., et al. Photodynamic inactivation of biofilm: Taking a lightly colored approach to stubborn infection. Expert Rev. Anti. Infect. Ther. 2013;11:669–693. doi: 10.1586/14787210.2013.811861.
    1. Wang C., Yang Z., Peng Y., Guo Y., Yao M., Dong J. Application of 460 nm visible light for the elimination of Candida albicans in vitro and in vivo. Mol. Med. Rep. 2018;18:2017–2026. doi: 10.3892/mmr.2018.9196.
    1. Dai T., Gupta A., Huang Y.-Y., Yin R., Murray C.K., Vrahas M.S., Sherwood M.E., Tegos G.P., Hamblin M.R. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: Efficacy, safety, and mechanism of action. Antimicrob. Agents Chemother. 2013;57:1238–1245. doi: 10.1128/AAC.01652-12.
    1. Wang Y., Wu X., Chen J., Amin R., Lu M., Bhayana B., Zhao J., Murray C.K., Hamblin M.R., Hooper D.C., et al. Antimicrobial Blue Light Inactivation of Gram-Negative Pathogens in Biofilms: In Vitro and in Vivo Studies. J. Infect. Dis. 2016;213:1380–1387. doi: 10.1093/infdis/jiw070.
    1. Amin R.M., Bhayana B., Hamblin M.R., Dai T. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies. Lasers Surg. Med. 2016 doi: 10.1002/lsm.22474.
    1. Tomb R.M., Maclean M., Coia J.E., MacGregor S.J., Anderson J.G. Assessment of the potential for resistance to antimicrobial violet-blue light in Staphylococcus aureus. Antimicrob. Resist. Infect. Control. 2017;6:100. doi: 10.1186/s13756-017-0261-5.
    1. Lins de Sousa D., Araújo Lima R., Zanin I.C., Klein M.I., Janal M.N., Duarte S. Effect of Twice-Daily Blue Light Treatment on Matrix-Rich Biofilm Development. PLoS ONE. 2015;10:e0131941. doi: 10.1371/journal.pone.0131941.
    1. Parsek M.R., Greenberg E.P. Sociomicrobiology: The connections between quorum sensing and biofilms. Trends Microbiol. 2005;13:27–33. doi: 10.1016/j.tim.2004.11.007.
    1. Whiteley M., Diggle S.P., Greenberg E.P. Progress in and promise of bacterial quorum sensing research. Nature. 2017;48:562–568. doi: 10.1038/nature24624.
    1. Bjarnsholt T., Tolker-Nielsen T., Høiby N., Givskov M. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev. Mol. Med. 2010;12:e11. doi: 10.1017/S1462399410001420.
    1. Le K.Y., Otto M. Quorum-sensing regulation in staphylococci-an overview. Front. Microbiol. 2015;6:1174. doi: 10.3389/fmicb.2015.01174.
    1. Asfour H.Z. Anti-Quorum Sensing Natural Compounds. J. Microsc. Ultrastruct. 2018;6:1–10. doi: 10.4103/JMAU.JMAU_10_18.
    1. Manner S., Fallarero A. Screening of Natural Product Derivatives Identifies Two Structurally Related Flavonoids as Potent Quorum Sensing Inhibitors against Gram-Negative Bacteria. Int. J. Mol. Sci. 2018;19:1346. doi: 10.3390/ijms19051346.
    1. Borlee B.R., Geske G.D., Blackwell H.E., Handelsman J. Identification of synthetic inducers and inhibitors of the quorum-sensing regulator LasR in Pseudomonas aeruginosa by high-throughput screening. Appl. Environ. Microbiol. 2010;76:8255–8258. doi: 10.1128/AEM.00499-10.
    1. Vermote A., Brackman G., Risseeuw M.D.P., Coenye T., Van Calenbergh S. Novel hamamelitannin analogues for the treatment of biofilm related MRSA infections–A scaffold hopping approach. Eur. J. Med. Chem. 2017;127:757–770. doi: 10.1016/j.ejmech.2016.10.056.
    1. Brackman G., Coenye T. Inhibition of Quorum Sensing in Staphylococcus spp. Curr. Pharm. Des. 2015;21:2101–2108. doi: 10.2174/1381612821666150310101014.
    1. Reuter K., Steinbach A., Helms V. Interfering with bacterial quorum sensing. Perspect. Medicin. Chem. 2016;8:1–15. doi: 10.4137/PMC.S13209.
    1. Rémy B., Mion S., Plener L., Elias M., Chabrière E., Daudé D. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Front. Pharmacol. 2018;9:203. doi: 10.3389/fphar.2018.00203.
    1. Wang H., Chu W., Ye C., Gaeta B., Tao H., Wang M., Qiu Z., Wang M. Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing. Appl. Microbiol. Biotechnol. 2018;103:903–915. doi: 10.1007/s00253-018-9482-7.
    1. Dell’Acqua G., Giacometti A., Cirioni O., Ghiselli R., Saba V., Scalise G., Gov Y., Balaban N. Suppression of Drug-Resistant Staphylococcal Infections by the Quorum-Sensing Inhibitor RNAIII-Inhibiting Peptide. J. Infect. Dis. 2004;190:318–320. doi: 10.1086/386546.
    1. Gov Y., Bitler A., Dell’Acqua G., Torres J.V., Balaban N. RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: Structure and function analysis. Peptides. 2001;22:1609–1620. doi: 10.1016/S0196-9781(01)00496-X.
    1. Baldassarre L., Fornasari E., Cornacchia C., Cirioni O., Silvestri C., Castelli P., Giocometti A., Cacciatore I. Discovery of novel RIP derivatives by alanine scanning for the treatment of S. aureus infections. Med. Chem. Commun. 2013;4:1114. doi: 10.1039/c3md00122a.
    1. Simonetti O., Cirioni O., Cacciatore I., Baldassarre L., Orlando F., Pierpaoli E., Lucarini G., Orsetti E., Provinciali M., Fornasari E., et al. Efficacy of the Quorum Sensing Inhibitor FS10 Alone and in Combination with Tigecycline in an Animal Model of Staphylococcal Infected Wound. PLoS ONE. 2016;11:e0151956. doi: 10.1371/journal.pone.0151956.
    1. Brackman G., Cos P., Maes L., Nelis H.J., Coenye T. Quorum Sensing Inhibitors Increase the Susceptibility of Bacterial Biofilms to Antibiotics In Vitro and In Vivo. Antimicrob. Agents Chemother. 2011;55:2655–2661. doi: 10.1128/AAC.00045-11.
    1. Fong J., Mortensen K.T., Nørskov A., Qvortrup K., Yang L., Tan C.H., Nielsen T.E., Givskov M. Itaconimides as Novel Quorum Sensing Inhibitors of Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 2019;8:443. doi: 10.3389/fcimb.2018.00443.
    1. Paes C., Nakagami G., Minematsu T., Nagase T., Huang L., Sari Y., Sanada H. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro. Biochem. Biophys. Res. Commun. 2012;427:273–279. doi: 10.1016/j.bbrc.2012.09.037.
    1. Nakagami G., Minematsu T., Morohoshi T., Yamane T., Kanazawa T., Huang L., Asada M., Nagase T., Ikeda S.I., Ikeda T., et al. Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts. Biosci. Biotechnol. Biochem. 2015;79:1–5. doi: 10.1080/09168451.2015.1056509.
    1. Zhang Y., Sass A., Van Acker H., Wille J., Verhasselt B., Van Nieuwerburgh F., Kaever V., Crabbé A., Coenye T. Coumarin reduces virulence and biofilm formation in Pseudomonas aeruginosa by affecting quorum sensing, type III secretion and C-di-GMP levels. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.01952.
    1. Gethin G. The significance of surface pH in chronic wounds. Wounds UK. 2007;3:52.
    1. Rumbaugh K., Watters C., Yuan T. Beneficial and deleterious bacterial-host interactions in chronic wound pathophysiology. Chronic Wound Care Manag. Res. 2015;2:53. doi: 10.2147/CWCMR.S60317.
    1. Percival S.L., Hill K.E., Williams D.W., Hooper S.J., Thomas D.W., Costerton J.W. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20:647–657. doi: 10.1111/j.1524-475X.2012.00836.x.
    1. Gethin G.T., Cowman S., Conroy R.M. The impact of Manuka honey dressings on the surface pH of chronic wounds. Int. Wound J. 2008;5:185–194. doi: 10.1111/j.1742-481X.2007.00424.x.
    1. Madhusudhan V.L. Efficacy of 1% acetic acid in the treatment of chronic wounds infected with Pseudomonas aeruginosa: Prospective randomised controlled clinical trial. Int. Wound J. 2016;13:1129–1136. doi: 10.1111/iwj.12428.
    1. Agrawal K., Sarda A., Shrotriya R., Bachhav M., Puri V., Nataraj G. Acetic acid dressings: Finding the Holy Grail for infected wound management. Indian J. Plast. Surg. 2017;50:273–280.
    1. Nagoba B.S., Selkar S.P., Wadher B.J., Gandhi R.C. Acetic acid treatment of pseudomonal wound infections—A review. J. Infect. Public Health. 2013;6:410–415. doi: 10.1016/j.jiph.2013.05.005.
    1. Nagoba B.S., Suryawanshi N.M., Wadher B., Selkar S. Acidic Environment and Wound Healing: A Review. Wounds. 2015;27:5–11. doi: 10.1002/wnan.100.
    1. Kaushik K.S., Ratnayeke N., Katira P., Gordon V.D. The spatial profiles and metabolic capabilities of microbial populations impact the growth of antibiotic-resistant mutants. J. R. Soc. Interface. 2015;12 doi: 10.1098/rsif.2015.0018.
    1. Sandoz H. Negative pressure wound therapy: Clinical utility. Chronic Wound Care Manag. Res. 2015;71 doi: 10.2147/CWCMR.S48885.
    1. Matiasek J., Assadian O., Domig K.J., Djedovic G., Babeluk R. The spatial profiles and metabolic capabilities of microbial populations impact the growth of antibiotic-resistant mutants. J. Wound Care. 2017 doi: 10.12968/jowc.2017.26.5.236.
    1. Wang G., Li Z., Li T., Wang S., Zheng L., Zhang L., Tang P. Negative-Pressure Wound Therapy in a Pseudomonas aeruginosa Infection Model. Biomed Res. Int. 2018;2018:1–11. doi: 10.1155/2018/9496183.
    1. Ludolph I., Fried F.W., Kneppe K., Arkudas A., Schmitz M., Horch R.E. Negative pressure wound treatment with computer-controlled irrigation/instillation decreases bacterial load in contaminated wounds and facilitates wound closure. Int. Wound J. 2018;15:978–984. doi: 10.1111/iwj.12958.
    1. Bjarnsholt T., Alhede M., Jensen P.Ø., Nielsen A.K., Johansen H.K., Homøe P., Høiby N., Givskov M., Kirketerp-Møller K. Antibiofilm Properties of Acetic Acid. Adv. Wound Care. 2014 doi: 10.1089/wound.2014.0554.
    1. Jeong H.S., Lee B.H., Lee H.K., Kim H.S., Moon M.S., Suh I.S. Negative pressure wound therapy of chronically infected wounds using 1% acetic acid irrigation. Arch. Plast. Surg. 2015 doi: 10.5999/aps.2015.42.1.59.
    1. Goldstein L.J. Hyperbaric oxygen for chronic wounds. Dermatol. Ther. 2013;26:207–214. doi: 10.1111/dth.12053.
    1. Dissemond J., Kröger K., Storck M., Risse A., Engels P. Topical oxygen wound therapies for chronic wounds: A review. J. Wound Care. 2015;24:53–63. doi: 10.12968/jowc.2015.24.2.53.
    1. Memar M.Y., Yekani M., Alizadeh N., Baghi H.B. Hyperbaric oxygen therapy: Antimicrobial mechanisms and clinical application for infections. Biomed. Pharmacother. 2019;109:440–447. doi: 10.1016/j.biopha.2018.10.142.
    1. Lam G., Fontaine R., Ross F.L., Chiu E.S. Hyperbaric Oxygen Therapy. Adv. Skin Wound Care. 2017;30:181–190. doi: 10.1097/01.ASW.0000513089.75457.22.
    1. Sanford N.E., Wilkinson J.E., Nguyen H., Diaz G., Wolcott R. Efficacy of hyperbaric oxygen therapy in bacterial biofilm eradication. J. Wound Care. 2018;27:S20–S28. doi: 10.12968/jowc.2018.27.Sup1.S20.
    1. Kolpen M., Lerche C.J., Kragh K.N., Sams T., Koren K., Jensen A.S., Line L., Bjarnsholt T., Ciofu O., Moser C., et al. Hyperbaric Oxygen Sensitizes Anoxic Pseudomonas aeruginosa Biofilm to Ciprofloxacin. Antimicrob. Agents Chemother. 2017;61:e01024-17. doi: 10.1128/AAC.01024-17.
    1. Gade P.A.V., Olsen T.B., Jensen P.Ø., Kolpen M., Høiby N., Henneberg K.-Å., Sams T. Modelling of ciprofloxacin killing enhanced by hyperbaric oxygen treatment in Pseudomonas aeruginosa PAO1 biofilms. PLoS ONE. 2018;13:e0198909. doi: 10.1371/journal.pone.0198909.
    1. Lerche C.J., Christophersen L.J., Kolpen M., Nielsen P.R., Trøstrup H., Thomsen K., Hyldegaard O., Bundgaard H., Jensen P.Ø., Høiby N., et al. Hyperbaric oxygen therapy augments tobramycin efficacy in experimental Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents. 2017;50:406–412. doi: 10.1016/j.ijantimicag.2017.04.025.
    1. Jørgensen N.P., Hansen K., Andreasen C.M., Pedersen M., Fuursted K., Meyer R.L., Petersen E. Hyperbaric Oxygen Therapy is Ineffective as an Adjuvant to Daptomycin with Rifampicin Treatment in a Murine Model of Staphylococcus aureus in Implant-Associated Osteomyelitis. Microorganisms. 2017;5:21. doi: 10.3390/microorganisms5020021.
    1. Percival S.L., Mayer D., Malone M., Swanson T., Gibson D., Schultz G. Surfactants and their role in wound cleansing and biofilm management. J. Wound Care. 2017;26:680–690. doi: 10.12968/jowc.2017.26.11.680.
    1. Das Ghatak P., Math S.S., Pandey P., Roy S. OPEN A surfactant polymer dressing potentiates antimicrobial efficacy in biofilm disruption. Sci. Rep. 2018;8:873. doi: 10.1038/s41598-018-19175-7.
    1. Yang Q., Larose C., Della Porta A.C., Schultz G.S., Gibson D.J. A surfactant-based wound dressing can reduce bacterial biofilms in a porcine skin explant model. Int. Wound J. 2016;14:408–413. doi: 10.1111/iwj.12619.
    1. Hunckler J., de Mel A. A current affair: Electrotherapy in wound healing. J. Multidiscip. Healthc. 2017;10:179–194. doi: 10.2147/JMDH.S127207.
    1. Thakral G., Lafontaine J., Najafi B., Talal T.K., Kim P., Lavery L.A. Electrical stimulation to accelerate wound healing. Diabet. Foot Ankle. 2013;4:660. doi: 10.3402/dfa.v4i0.22081.
    1. Banerjee J., Das Ghatak P., Roy S., Khanna S., Hemann C. Silver-Zinc Redox-Coupled Electroceutical Wound Dressing Disrupts Bacterial Biofilm. PLoS ONE. 2015;10:e0119531. doi: 10.1371/journal.pone.0119531.
    1. Barki K.G., Das A., Dixith S., Ghatak P.D., Mathew-Steiner S., Schwab E., Khanna S., Wozniak D.J., Roy S., Sen C.K. Electric Field Based Dressing Disrupts Mixed-Species Bacterial Biofilm Infection and Restores Functional Wound Healing. Ann. Surg. 2019;269:756–766. doi: 10.1097/SLA.0000000000002504.
    1. Sultana S.T., Atci E., Babauta J.T., Falghoush A.M., Snekvik K.R., Call D.R., Beyenal H. Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms. Nat. Publ. Gr. 2015;5:14908. doi: 10.1038/srep14908.
    1. Sultana S.T., Call D.R., Beyenal H. Maltodextrin enhances biofilm elimination by electrochemical scaffold. Nat. Publ. Gr. 2016;6:36003. doi: 10.1038/srep36003.
    1. Markowiak P., Śliżewska K., Markowiak P., Śliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;9:1021. doi: 10.3390/nu9091021.
    1. Vuotto C., Longo F., Donelli G. Probiotics to counteract biofilm-associated infections: Promising and conflicting data. Int. J. Oral Sci. 2014;6:189–194. doi: 10.1038/ijos.2014.52.
    1. Scales B.S., Huffnagle G.B. The microbiome in wound repair and tissue fibrosis. J. Pathol. 2013;229:323–331. doi: 10.1002/path.4118.
    1. Wong V.W., Martindale R.G., Longaker M.T., Gurtner G.C. From germ theory to germ therapy: Skin microbiota, chronic wounds, and probiotics. Plast. Reconstr. Surg. 2013;132:854–861. doi: 10.1097/PRS.0b013e3182a3c11e.
    1. Sikorska H., Smoragiewicz W. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int. J. Antimicrob. Agents. 2013;42:475–481. doi: 10.1016/j.ijantimicag.2013.08.003.
    1. Valdéz J.C., Peral M.C., Rachid M., Santana M., Perdigón G. Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: The potential use of probiotics in wound treatment. Clin. Microbiol. Infect. 2005;11:472–479. doi: 10.1111/j.1469-0691.2005.01142.x.
    1. Ramos A.N., Sesto Cabral M.E., Noseda D., Bosch A., Yantorno O.M., Valdez J.C. Antipathogenic properties of Lactobacillus plantarum on Pseudomonas aeruginosa: The potential use of its supernatants in the treatment of infected chronic wounds. Wound Repair Regen. 2012;20:552–562. doi: 10.1111/j.1524-475X.2012.00798.x.
    1. Ramos A.N., Sesto Cabral M.E., Arena M.E., Arrighi C.F., Arroyo Aguilar A.A., Valdéz J.C. Compounds from Lactobacillus plantarum culture supernatants with potential pro-healing and anti-pathogenic properties in skin chronic wounds. Pharm. Biol. 2015;53:350–358. doi: 10.3109/13880209.2014.920037.
    1. Gan B.S., Kim J., Reid G., Cadieux P., Howard J.C. Lactobacillus fermentum RC-14 Inhibits Staphylococcus aureus Infection of Surgical Implants in Rats. J. Infect. Dis. 2002;185:1369–1372. doi: 10.1086/340126.
    1. Vahedi Shahandashti R., Kasra Kermanshahi R., Ghadam P. The inhibitory effect of bacteriocin produced by Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014 on planktonic cells and biofilms of Serratia marcescens. Turkish J. Med. Sci. 2016;46:1188–1196. doi: 10.3906/sag-1505-51.
    1. Onbas T., Osmanagaoglu O., Kiran F. Potential Properties of Lactobacillus plantarum F-10 as a Bio-control Strategy for Wound Infections. Probiotics Antimicrob. Proteins. 2018 doi: 10.1007/s12602-018-9486-8.
    1. Lopes E.G., Moreira D.A., Gullón P., Gullón B., Cardelle-Cobas A., Tavaria F.K. Topical application of probiotics in skin: Adhesion, antimicrobial and antibiofilm in vitro assays. J. Appl. Microbiol. 2017;122:450–461. doi: 10.1111/jam.13349.
    1. Shokri D., Khorasgani M.R., Mohkam M., Fatemi S.M., Ghasemi Y., Taheri-Kafrani A. The Inhibition Effect of Lactobacilli Against Growth and Biofilm Formation of Pseudomonas aeruginosa. Probiotics Antimicrob. Proteins. 2018;10:34–42. doi: 10.1007/s12602-017-9267-9.
    1. Argenta A., Satish L., Gallo P., Liu F., Kathju S. Local application of probiotic bacteria prophylaxes against sepsis and death resulting from burn wound infection. PLoS ONE. 2016;11:e0165294. doi: 10.1371/journal.pone.0165294.
    1. Peral M.C., Huaman Martinez M.A., Valdez J.C. Bacteriotherapy with Lactobacillus plantarum in burns. Int. Wound J. 2009;6:73–81. doi: 10.1111/j.1742-481X.2008.00577.x.
    1. Brachkova M.I., Marques P., Rocha J., Sepodes B., Duarte M.A., Pinto J.F. Alginate films containing Lactobacillus plantarum as wound dressing for prevention of burn infection. J. Hosp. Infect. 2011;79:375–377. doi: 10.1016/j.jhin.2011.09.003.
    1. Satish L., Gallo P.H., Johnson S., Yates C.C., Kathju S. Local Probiotic Therapy with Lactobacillus plantarum Mitigates Scar Formation in Rabbits after Burn Injury and Infection. Surg. Infect. (Larchmt). 2017;18:119–127. doi: 10.1089/sur.2016.090.
    1. Mohammedsaeed W., Cruickshank S., McBain A.J., O’Neill C.A. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration. Sci. Rep. 2015;5:16147. doi: 10.1038/srep16147.
    1. Vågesjö E., Öhnstedt E., Mortier A., Lofton H., Huss F., Proost P., Roos S., Phillipson M. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proc. Natl. Acad. Sci. USA. 2018;115:1895–1900. doi: 10.1073/pnas.1716580115.
    1. Bianco P., Robey P.G., Simmons P.J. Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell. 2008;2:313–319. doi: 10.1016/j.stem.2008.03.002.
    1. Cortés-Araya Y., Amilon K., Rink B.E., Black G., Lisowski Z., Donadeu F.X., Esteves C.L. Comparison of Antibacterial and Immunological Properties of Mesenchymal Stem/Stromal Cells from Equine Bone Marrow, Endometrium, and Adipose Tissue. Stem Cells Dev. 2018;27:1518–1525. doi: 10.1089/scd.2017.0241.
    1. Wang M., Yuan Q., Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624. doi: 10.1155/2018/3057624.
    1. Glenn J.D., Whartenby K.A. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J. Stem Cells. 2014;6:526–539. doi: 10.4252/wjsc.v6.i5.526.
    1. Mezey É., Nemeth K. Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunol. Lett. 2015;168:208–214. doi: 10.1016/j.imlet.2015.05.020.
    1. Sutton M.T., Fletcher D., Ghosh S.K., Weinberg A., van Heeckeren R., Kaur S., Sadeghi Z., Hijaz A., Reese J., Lazarus H.M., et al. Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment. Stem Cells Int. 2016;2016:1–12. doi: 10.1155/2016/5303048.
    1. Alcayaga-Miranda F., Cuenca J., Khoury M. Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Front. Immunol. 2017;8:339. doi: 10.3389/fimmu.2017.00339.
    1. Krasnodembskaya A., Song Y., Fang X., Gupta N., Serikov V., Lee J.-W., Matthay M.A. Antibacterial Effect of Human Mesenchymal Stem Cells Is Mediated in Part from Secretion of the Antimicrobial Peptide LL-37. Stem Cells. 2010;28:2229–2238. doi: 10.1002/stem.544.
    1. Otero-Viñas M., Falanga V. Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy. Adv. Wound Care. 2016;5:149–163. doi: 10.1089/wound.2015.0627.
    1. Johnson V., Webb T., Norman A., Coy J., Kurihara J., Regan D., Dow S. Activated Mesenchymal Stem Cells Interact with Antibiotics and Host Innate Immune Responses to Control Chronic Bacterial Infections. Sci. Rep. 2017;7:1–18. doi: 10.1038/s41598-017-08311-4.
    1. Sung D.K., Chang Y.S., Sung S.I., Yoo H.S., Ahn S.Y., Park W.S. Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta-defensin-2 via toll-like receptor 4 signalling. Cell. Microbiol. 2016;18:424–436. doi: 10.1111/cmi.12522.
    1. Mei S.H.J., Haitsma J.J., Dos Santos C.C., Deng Y., Lai P.F.H., Slutsky A.S., Liles W.C., Stewart D.J. Mesenchymal Stem Cells Reduce Inflammation while Enhancing Bacterial Clearance and Improving Survival in Sepsis. Am. J. Respir. Crit. Care Med. 2010;182:1047–1057. doi: 10.1164/rccm.201001-0010OC.
    1. Gupta N., Krasnodembskaya A., Kapetanaki M., Mouded M., Tan X., Serikov V., Matthay M.A. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax. 2012;67:533–539. doi: 10.1136/thoraxjnl-2011-201176.
    1. Harman R.M., Yang S., He M.K., Van de Walle G.R. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res. Ther. 2017;8:157. doi: 10.1186/s13287-017-0610-6.
    1. Wood C.R., Al Dhahri D., Al Delfi I., Pickles N.A., Sammons R.L., Worthington T., Wright K.T., Johnson W.E.B. Human adipose tissue-derived mesenchymal stem/stromal cells adhere to and inhibit the growth of Staphylococcus aureus and Pseudomonas aeruginosa. J. Med. Microbiol. 2018;67:1789–1795. doi: 10.1099/jmm.0.000861.
    1. Saeedi P., Halabian R., Fooladi A.A.I. Antimicrobial effects of mesenchymal stem cells primed by modified LPS on bacterial clearance in sepsis. J. Cell. Physiol. 2019;234:4970–4986. doi: 10.1002/jcp.27298.
    1. Kaushik K.S., Stolhandske J., Shindell O., Smyth H.D., Gordon V.D. Tobramycin and bicarbonate synergise to kill planktonic Pseudomonas aeruginosa, but antagonise to promote biofilm survival. NPJ Biofilms Microbiomes. 2016;2:16006. doi: 10.1038/npjbiofilms.2016.6.

Source: PubMed

3
Abonnere