Plasma Medicine: Applications of Cold Atmospheric Pressure Plasma in Dermatology

Thoralf Bernhardt, Marie Luise Semmler, Mirijam Schäfer, Sander Bekeschus, Steffen Emmert, Lars Boeckmann, Thoralf Bernhardt, Marie Luise Semmler, Mirijam Schäfer, Sander Bekeschus, Steffen Emmert, Lars Boeckmann

Abstract

The ability to produce cold plasma at atmospheric pressure conditions was the basis for the rapid growth of plasma-related application areas in biomedicine. Plasma comprises a multitude of active components such as charged particles, electric current, UV radiation, and reactive gas species which can act synergistically. Anti-itch, antimicrobial, anti-inflammatory, tissue-stimulating, blood flow-enhancing, and proapoptotic effects were demonstrated in in vivo and in vitro experiments, and until now, no resistance of pathogens against plasma treatment was observed. The combination of the different active agents and their broad range of positive effects on various diseases, especially easily accessible skin diseases, renders plasma quite attractive for applications in medicine. For medical applications, two different types of cold plasma appear suitable: indirect (plasma jet) and direct (dielectric barrier discharge-DBD) plasma sources. The DBD device PlasmaDerm® VU-2010 (CINOGY Technologies GmbH), the atmospheric pressure plasma jet (APPJ) kINPen® MED (INP Greifswald/neoplas tools GmbH), and the SteriPlas (Adtec Ltd., London, United Kingdom) are CE-certified as a medical product to treat chronic wounds in humans and showed efficacy and a good tolerability. Recently, the use of plasma in cancer research and oncology is of particular interest. Plasma has been shown to induce proapoptotic effects more efficiently in tumor cells compared with the benign counterparts, leads to cellular senescence, and-as shown in vivo-reduces skin tumors. To this end, a world-wide first Leibniz professorship for plasmabiotechnology in dermatology has been introduced to establish a scientific network for the investigation of the efficacy and safety of cold atmospheric plasma in dermatooncology. Hence, plasma medicine especially in dermatology holds great promise.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Copyright © 2019 Thoralf Bernhardt et al.

Figures

Figure 1
Figure 1
Examples of CE-certified plasma sources: (a) kINPen MED and (b) PlasmaDerm VU-2010.
Figure 2
Figure 2
Treatment of chronic ulceration with cold atmospheric pressure plasma (CAP): (a) kINPen MED and (b) PlasmaDerm VU-2010.
Figure 3
Figure 3
Example of successful wound healing after treatment with cold atmospheric pressure plasma (CAP): (a) chronic ulceration before CAP treatment and (b) complete healing for the first time since 14 years after CAP treatment for about 5 months.

References

    1. Gerling T., Weltmann K.-D. Einfhrung in Atmosphrendruck-Plasmaquellen fr plasmamedizinische Anwendung. Berlin Heidelberg, Plasmamedizin: Springer-Verlag; 2016.
    1. Weltmann K.-D., Polak M., Masur K., von Woedtke T., Winter J., Reuter S. Plasma processes and plasma sources in medicine. Contributions to Plasma Physics. 2012;52(7):644–654. doi: 10.1002/ctpp.201210061.
    1. Weltmann K.-D., Winter J., Polak M., Ehlbeck J., Woedtke T. Plasma for Bio-Decontamination , Medicine and Food Security. Dordrecht: Springer; 2012.
    1. Morfill G. E., Zimmermann J. L. Plasma health care - old problems, new solutions. Contributions to Plasma Physics. 2012;52(7):655–663. doi: 10.1002/ctpp.201210062.
    1. Ehlbeck J., Schnabel U., Polak M., et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics. 2011;44(1):p. 013002. doi: 10.1088/0022-3727/44/1/013002.
    1. Woedtke T., Kramer A., Weltmann K.-D. Plasma sterilization: what are the conditions to meet this claim? Plasma Processes and Polymers. 2008;5(6):534–539. doi: 10.1002/ppap.200800013.
    1. Moreau M., Orange N., Feuilloley M. G. J. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnology Advances. 2008;26(6):610–617. doi: 10.1016/j.biotechadv.2008.08.001.
    1. Laroussi M. Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Processes and Polymers. 2005;2(5):391–400. doi: 10.1002/ppap.200400078.
    1. Moisan M., Barbeau J., Moreau S., Pelletier J., Tabrizian M., Yahia L.'. H. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics. 2001;226(1-2):1–21. doi: 10.1016/S0378-5173(01)00752-9.
    1. Woedtke T., Reuter S., Masur K., Weltmann K.-D. Plasmas for medicine. Physics Reports. 2013;530(4):291–320. doi: 10.1016/j.physrep.2013.05.005.
    1. Daeschlein G., Napp M., von Podewils S., et al. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD) Plasma Processes and Polymers. 2014;11(2):175–183. doi: 10.1002/ppap.201300070.
    1. Daeschlein G., Scholz S., Arnold A., et al. In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD) Plasma Processes and Polymers. 2012;9(4):380–389. doi: 10.1002/ppap.201100160.
    1. d'Agostino R., Favia P., Oehr C., Wertheimer M. R. Low-temperature plasma processing of materials: past, present, and future. Plasma Processes and Polymers. 2005;2(1):7–15. doi: 10.1002/ppap.200400074.
    1. Mann M., Tiede R., Ahmed R., et al. DIN SPEC 91315: General Requirements for Plasma Sources in Medicine. Beuth Verlag; 2014.
    1. Tiede R., Hirschberg J., Viöl W., Emmert S. A μs-pulsed dielectric barrier discharge source: physical characterization and biological effects on human skin fibroblasts. Plasma Processes and Polymers. 2016;13(8):775–787. doi: 10.1002/ppap.201500190.
    1. Mann M. S., Tiede R., Gavenis K., et al. Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen MED. Clinical Plasma Medicine. 2016;4(2):35–45. doi: 10.1016/j.cpme.2016.06.001.
    1. Maisch T., Bosserhoff A. K., Unger P., et al. Investigation of toxicity and mutagenicity of cold atmospheric argon plasma. Environmental and Molecular Mutagenesis. 2017;58(3):172–177. doi: 10.1002/em.22086.
    1. Wende K., Bekeschus S., Schmidt A., et al. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutation Research, Genetic Toxicology and Environmental Mutagenesis. 2016;798-799:48–54. doi: 10.1016/j.mrgentox.2016.02.003.
    1. Keidar M., Walk R., Shashurin A., et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer. 2011;105(9):1295–1301. doi: 10.1038/bjc.2011.386.
    1. Emmert S., Brehmer F., Hänßle H., et al. Atmospheric pressure plasma in dermatology: ulcus treatment and much more. Clinical Plasma Medicine. 2013;1(1):24–29. doi: 10.1016/j.cpme.2012.11.002.
    1. Heinlin J., Isbary G., Stolz W., et al. Plasma applications in medicine with a special focus on dermatology. Journal of the European Academy of Dermatology and Venereology. 2011;25(1):1–11. doi: 10.1111/j.1468-3083.2010.03702.x.
    1. Heinlin J., Morfill G., Landthaler M., et al. Plasma medicine: possible applications in dermatology. Journal der Deutschen Dermatologischen Gesellschaft. 2010;8(12):968–976. doi: 10.1111/j.1610-0387.2010.07495.x.
    1. Daeschlein G., von Woedtke T., Kindel E., Brandenburg R., Weltmann K. D., Jünger M. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Processes and Polymers. 2010;7(3-4):224–230. doi: 10.1002/ppap.200900059.
    1. Walk R. M., Snyder J. A., Srinivasan P., et al. Cold atmospheric plasma for the ablative treatment of neuroblastoma. Journal of Pediatric Surgery. 2013;48(1):67–73. doi: 10.1016/j.jpedsurg.2012.10.020.
    1. Vandamme M., Robert E., Lerondel S., et al. ROS implication in a new antitumor strategy based on non-thermal plasma. International Journal of Cancer. 2012;130(9):2185–2194. doi: 10.1002/ijc.26252.
    1. Hattori N., Yamada S., Torii K., et al. Effectiveness of plasma treatment on pancreatic cancer cells. International Journal of Oncology. 2015;47(5):1655–1662. doi: 10.3892/ijo.2015.3149.
    1. Brullé L., Vandamme M., Riès D., et al. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS One. 2012;7(12):p. e52653. doi: 10.1371/journal.pone.0052653.
    1. Mirpour S., Piroozmand S., Soleimani N., et al. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application. Scientific Reports. 2016;6(1) doi: 10.1038/srep29048.
    1. Mashayekh S., Rajaee H., Akhlaghi M., Shokri B., Hassan Z. M. Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10) Physics of Plasmas. 2015;22(9):p. 093508. doi: 10.1063/1.4930536.
    1. Daeschlein G., Scholz S., Lutze S., et al. Comparison between cold plasma, electrochemotherapy and combined therapy in a melanoma mouse model. Experimental Dermatology. 2013;22(9):582–586. doi: 10.1111/exd.12201.
    1. Fridman G., Shereshevsky A., Jost M. M., et al. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chemistry and Plasma Processing. 2007;27(2):163–176. doi: 10.1007/s11090-007-9048-4.
    1. Fridman G., Peddinghaus M., Balasubramanian M., et al. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chemistry and Plasma Processing. 2006;26(4):425–442. doi: 10.1007/s11090-006-9024-4.
    1. Fridman G., Shereshevsky A., Peddinghaus M., et al. 37th AIAA Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics; 2006. Bio-medical applications of non-thermal atmospheric pressure plasma.
    1. Mertens N., Goppold A., Emmert S., Vioel W. Dielectric Barrier Discharge Plasma-A Powerful Tool for Medical Applications. Vienna, Austria: 20th International Conference of the Society for Medical Innovation and Technology (SMIT); 2008.
    1. Heinlin J., Isbary G., Stolz W., et al. A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus. Journal of the European Academy of Dermatology and Venereology. 2013;27(3):324–331. doi: 10.1111/j.1468-3083.2011.04395.x.
    1. Isbary G., Shimizu T., Zimmermann J. L., Thomas H. M., Morfill G. E., Stolz W. Cold atmospheric plasma for local infection control and subsequent pain reduction in a patient with chronic post-operative ear infection. New Microbes and New Infections. 2013;1(3):41–43. doi: 10.1002/2052-2975.19.
    1. Daeschlein G., Scholz S., von Woedtke T., et al. In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. IEEE Transactions on Plasma Science. 2011;39(2):815–821. doi: 10.1109/TPS.2010.2063441.
    1. Xiong Z., Roe J., Grammer T. C., Graves D. B. Plasma treatment of onychomycosis. Plasma Processes and Polymers. 2016;13(6):588–597. doi: 10.1002/ppap.201600010.
    1. Lipner S. R., Friedman G., Scher R. K. Pilot study to evaluate a plasma device for the treatment of onychomycosis. Clinical and Experimental Dermatology. 2017;42(3):295–298. doi: 10.1111/ced.12973.
    1. Isbary G., Shimizu T., Zimmermann J. L., et al. Randomized placebo-controlled clinical trial showed cold atmospheric argon plasma relieved acute pain and accelerated healing in herpes zoster. Clinical Plasma Medicine. 2014;2(2):50–55. doi: 10.1016/j.cpme.2014.07.001.
    1. Bojar R. A., Holland K. T. Review: the human cutaneous microflora and factors controlling colonisation. World Journal of Microbiology and Biotechnology. 2002;18(9):889–903. doi: 10.1023/A:1021271028979.
    1. Schmid-Wendtner M. H., Korting H. C. The pH of the skin surface and its impact on the barrier function. Skin Pharmacology and Physiology. 2006;19(6):296–302. doi: 10.1159/000094670.
    1. Marchionini A., Schmidt R. Säuremantel der Haut und Bakterienabwehr. Klinische Wochenschrift. 1939;18(13):461–467. doi: 10.1007/BF01772238.
    1. Fredricks D. N. Microbial ecology of human skin in health and disease. The Journal of Investigative Dermatology. Symposium Proceedings. 2001;6(3):167–169. doi: 10.1046/j.0022-202x.2001.00039.x.
    1. Stewart C. M., Cole M. B., Legan J. D., Slade L., Vandeven M. H., Schaffner D. W. Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects. Applied and Environmental Microbiology. 2002;68(4):1864–1871. doi: 10.1128/AEM.68.4.1864-1871.2002.
    1. Glibbery A. B., Mani R. pH in leg ulcers. International Journal of Microcirculation, Clinical and Experimental. 1992;2:p. 109.
    1. Seidenari S., Giusti G. Objective assessment of the skin of children affected by atopic dermatitis: a study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. Acta Dermato-Venereologica. 1995;75:429–433.
    1. Öhman H., Vahlquist A. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis; a clue to the molecular origin of the “acid skin mantle”? Journal of Investigative Dermatology. 1998;111(4):674–677. doi: 10.1046/j.1523-1747.1998.00356.x.
    1. Jungersted J. M., Scheer H., Mempel M., et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65(7):911–918. doi: 10.1111/j.1398-9995.2010.02326.x.
    1. Helmke A., Hoffmeister D., Mertens N., Emmert S., Schuette J., Vioel W. The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New Journal of Physics. 2009;11(11) doi: 10.1088/1367-2630/11/11/115025.
    1. Brehmer F., Haenssle H. A., Daeschlein G., et al. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm®VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622) Journal of the European Academy of Dermatology and Venereology. 2015;29(1):148–155. doi: 10.1111/jdv.12490.
    1. Isbary G., Heinlin J., Shimizu T., et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. The British Journal of Dermatology. 2012;167(2):404–410. doi: 10.1111/j.1365-2133.2012.10923.x.
    1. Isbary G., Morfill G., Schmidt H. U., et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. The British Journal of Dermatology. 2010;163:78–82. doi: 10.1111/j.1365-2133.2010.09744.x.
    1. Chuangsuwanich A., Assadamongkol T., Boonyawan D. The healing effect of low-temperature atmospheric-pressure plasma in pressure ulcer: a randomized controlled trial. The International Journal of Lower Extremity Wounds. 2016;15(4):313–319. doi: 10.1177/1534734616665046.
    1. Ulrich C., Kluschke F., Patzelt A., et al. Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: a pilot study. Journal of wound care. 2015;24(5):196–203. doi: 10.12968/jowc.2015.24.5.196.
    1. Klebes M., Ulrich C., Kluschke F., et al. Combined antibacterial effects of tissue-tolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. Journal of Biophotonics. 2015;8(5):382–391. doi: 10.1002/jbio.201400007.
    1. Vandersee S., Richter H., Lademann J., et al. Laser scanning microscopy as a means to assess the augmentation of tissue repair by exposition of wounds to tissue tolerable plasma. Laser Physics Letters. 2014;11(11):p. 115701. doi: 10.1088/1612-2011/11/11/115701.
    1. Metelmann H.-R., Vu T. T., Do H. T., et al. Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: a clinical long term observation. Clinical Plasma Medicine. 2013;1(1):30–35. doi: 10.1016/j.cpme.2012.12.001.
    1. Heinlin J., Zimmermann J. L., Zeman F., et al. Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2013;21(6):800–807. doi: 10.1111/wrr.12078.
    1. Metelmann H.-R., von Woedtke T., Bussiahn R., et al. Experimental recovery of CO 2 -laser skin lesions by plasma stimulation. American Journal of Cosmetic Surgery. 2012;29(1):52–56. doi: 10.5992/AJCS-D-11-00042.1.
    1. Schmidt A., Bekeschus S., Wende K., Vollmar B., Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Experimental Dermatology. 2017;26(2):156–162. doi: 10.1111/exd.13156.
    1. Plasmamedizin N. Risikopotenzial und zu Anwendungsperspektiven von kaltem Atmosphrendruckplasma in der Medizin. Positionspaper des Nationalen Zentrums fr Plasmamedizin. Plasmakurier. 2014;1:43–52.
    1. Fridman G., Friedman G., Gutsol A., Shekhter A. B., Vasilets V. N., Fridman A. Applied plasma medicine. Plasma Processes and Polymers. 2008;5(6):503–533. doi: 10.1002/ppap.200700154.
    1. Helmke A., Hoffmeister D., Berge F., et al. Physical and microbiological characterisation of Staphylococcus epidermidis inactivation by dielectric barrier discharge plasma. Plasma Processes and Polymers. 2011;8(4):278–286. doi: 10.1002/ppap.201000168.
    1. Valacchi G., Fortino V., Bocci V. The dual action of ozone on the skin. The British Journal of Dermatology. 2005;153(6):1096–1100. doi: 10.1111/j.1365-2133.2005.06939.x.
    1. Chutsirimongkol C., Boonyawan D., Polnikorn N., Techawatthanawisan W., Kundilokchai T. Non-thermal plasma for acne and aesthetic skin improvement. Plasma Medicine. 2014;4(1-4):79–88. doi: 10.1615/PlasmaMed.2014011952.
    1. Metelmann H.-R., Seebauer C., Miller V., et al. Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clinical Plasma Medicine. 2018;9:6–13. doi: 10.1016/j.cpme.2017.09.001.
    1. Lin A., Chernets N., Han J., et al. Non-equilibrium dielectric barrier discharge treatment of mesenchymal stem cells: charges and reactive oxygen species play the major role in cell death. Plasma Processes and Polymers. 2015;12(10):1117–1127. doi: 10.1002/ppap.201400232.
    1. Quaedvlieg P. J., Tirsi E., Thissen M. R., Krekels G. A. Actinic keratosis: how to differentiate the good from the bad ones? European Journal of Dermatology. 2006;16(4):335–339.
    1. Freedberg I. M., Fritzpatrick T. B. Fritzpatrick’s Dermatology in General Medicine. New York: McGraw-Hill, Health Professions Division; 2003.
    1. Prajapati V., Barankin B. Dermacase. Actinic keratosis. Canadian family physician Medecin de famille canadien. 2008;54(5):691–699.
    1. Rosen R. H., Gupta A. K., Tyring S. K. Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: rapid lesion necrosis followed by lesion-specific immune response. Journal of the American Academy of Dermatology. 2012;66(3):486–493. doi: 10.1016/j.jaad.2010.12.038.
    1. Challacombe J. M., Suhrbier A., Parsons P. G., et al. Neutrophils are a key component of the antitumor efficacy of topical chemotherapy with ingenol-3-angelate. The Journal of Immunology. 2006;177(11):8123–8132. doi: 10.4049/jimmunol.177.11.8123.
    1. Wirtz M., Stoffels I., Dissemond J., Schadendorf D., Roesch A. Actinic keratoses treated with cold atmospheric plasma. Journal of the European Academy of Dermatology and Venereology. 2018;32(1):e37–e39. doi: 10.1111/jdv.14465.
    1. Metelmann H.-R., Nedrelow D. S., Seebauer C., et al. Head and neck cancer treatment and physical plasma. Clinical Plasma Medicine. 2015;3(1):17–23. doi: 10.1016/j.cpme.2015.02.001.
    1. Daeschlein G., Arnold A., Lutze S., et al. Treatment of recalcitrant actinic keratosis (AK) of the scalp by cold atmospheric plasma. Cogent Medicine. 2017;4(1) doi: 10.1080/2331205X.2017.1412903.
    1. Weishaupt C., Emmert S. Connecting basic cold plasma technology to dermato-oncology. Clinical Plasma Medicine. 2018;10:16–19. doi: 10.1016/j.cpme.2018.03.002.
    1. Isbary G., Stolz W., Shimizu T., et al. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: results of an open retrospective randomized controlled study in vivo. Clinical Plasma Medicine. 2013;1(2):25–30. doi: 10.1016/j.cpme.2013.06.001.

Source: PubMed

3
Abonnere