Applications of Plasma-Liquid Systems: A Review

Fatemeh Rezaei, Patrick Vanraes, Anton Nikiforov, Rino Morent, Nathalie De Geyter, Fatemeh Rezaei, Patrick Vanraes, Anton Nikiforov, Rino Morent, Nathalie De Geyter

Abstract

Plasma-liquid systems have attracted increasing attention in recent years, owing to their high potential in material processing and nanoscience, environmental remediation, sterilization, biomedicine, and food applications. Due to the multidisciplinary character of this scientific field and due to its broad range of established and promising applications, an updated overview is required, addressing the various applications of plasma-liquid systems till now. In the present review, after a brief historical introduction on this important research field, the authors aimed to bring together a wide range of applications of plasma-liquid systems, including nanomaterial processing, water analytical chemistry, water purification, plasma sterilization, plasma medicine, food preservation and agricultural processing, power transformers for high voltage switching, and polymer solution treatment. Although the general understanding of plasma-liquid interactions and their applications has grown significantly in recent decades, it is aimed here to give an updated overview on the possible applications of plasma-liquid systems. This review can be used as a guide for researchers from different fields to gain insight in the history and state-of-the-art of plasma-liquid interactions and to obtain an overview on the acquired knowledge in this field up to now.

Keywords: agriculture and food safety; analytical chemistry; cancer therapy; nanomaterial processing; oil treatment; plasma-liquid interactions; polymeric solution treatment; sterilization and biomedicine; water treatment.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Set-up of the reproduced Gubkin’s experiment: Silver is dissolved at the anode placed in the liquid electrolyte and reduced at the plasma-electrolyte interface. Reprinted with permission from [3].
Figure 2
Figure 2
Plasma classification based on electron temperature and plasma density, adapted from [60].
Figure 3
Figure 3
Transmission electron microscopy (TEM) images of gold NPs synthesized in (a) the ion irradiation mode and (b) the electron irradiation mode; (c) UV-vis absorption spectra of gold NPs. Reprinted from [76].
Figure 4
Figure 4
Liquid acts as (a) cathode and (b) anode. Reprinted with permission from [56].
Figure 5
Figure 5
A typical inductively coupled plasma (ICP) system. Reprinted with permission from [116].
Figure 6
Figure 6
A schematic representation of the electrospray ionization ion source. Reprinted from [119].
Figure 7
Figure 7
An intensified charge-coupled device (ICCD) camera picture of a typical ELCAD plasma operating between an electrolyte cathode and a tungsten anode. Reprinted with permission from [135].
Figure 8
Figure 8
Proposed decomposition kinetics of Atrazine, Lindane, Chlorfenvinfos and 2,4-dibromophenol by Hijosa-Valsero et al. (reprinted with permission from [144]) (a) and proposed electro-oxidation degradation pathway of Diclofenac by Zhao et al. (reprinted with permission from [152]) (b).
Figure 8
Figure 8
Proposed decomposition kinetics of Atrazine, Lindane, Chlorfenvinfos and 2,4-dibromophenol by Hijosa-Valsero et al. (reprinted with permission from [144]) (a) and proposed electro-oxidation degradation pathway of Diclofenac by Zhao et al. (reprinted with permission from [152]) (b).
Figure 9
Figure 9
(a) DBD batch reactor (Reactor 1) and (b) coaxial thin film DBD reactor (Reactor 2) used by Hijosa-Valsero et al. [154] to remove cyanide from distilled water; (c) removal of cyanide from water in both reactors (initial concentration of cyanide: 1 mg/L). Reprinted with permission from [154].
Figure 10
Figure 10
(a) Post-discharge evolution of three main plasma-generated chemical species in aqueous solution (pH = 3.3) and (b) comparison of inactivation of E. coli in three different solutions: HNO2 (nitrites only), HNO2/H2O2 (mixture of nitrites and H2O2), and PAW (plasma-activated water). Reprinted with permission from [190].
Figure 11
Figure 11
(a) VUV emission profile of an Ar plasma jet in a phosphorescing film used by Jablonowski et al., (b) VUV emission of an Ar discharge in ambient air, (c) VUV absorption of various test liquids at 0.2 mm sheath thickness and (d) wavelength at which 50% absorption of plasma-radiated VUV occurs of various test liquids as a function of their film thickness. Reprinted with permission from [208].
Figure 12
Figure 12
(a) The portable plasma spray designed by Kuo [218], (b) cutting an artery and leaving the bleeding to stop normally (top row); with plasma treatment the bleeding stops in half time (lower row) and (c) comparing the recovery progress of untreated (row 1) and plasma-treated (rows 2 and 3) cross cuts. Reprinted from [218].
Figure 13
Figure 13
(a) Two plasma devices used by Maisch et al. for decolonization of microorganisms on large skin areas, (b) decolonization of S. aureus using the two devices and (c) histological evaluation of ex vivo porcine skin after plasma treatment: (A) positive control, (B) negative control, (C) immediately after 15 min treatment, (D) 24 h after 15 min treatment, (E) 48 h after 15 min treatment and (F) 48 h of an untreated skin sample. Reprinted from [223].
Figure 14
Figure 14
(A) Schematic of the plasma device and the tooth bleaching process performed by Lee et al. [234], (B) the external bleaching effect of plasma treatment, (C) configuration of the tooth bleaching experiment and (D) concentration of hydroxyl radicals in the solutions containing tooth before and after plasma treatment. Reprinted with permission from [234].
Figure 15
Figure 15
H2O2 and NO2− concentration in plasma discharge generated in deionized water by Keidar et al. [249]; (a,b) correspond to plasma submerged in deionized water, while (c,d) correspond to plasma generated outside the water (water volume is 200 mL). Reprinted with permission from [249].
Figure 16
Figure 16
(a) The atmospheric radiofrequency (RF) atmospheric pressure He glow discharge used by Wang et al. [277], (b) schematic presentation of their mutation breeding protocol, (c) variation of the lethality rate with plasma exposure time and (d) images of the colonies before and after mutation; (left) a cultivated plate of the strains from plasma-treated spores, (W) a colony from the untreated wild strain, (Gm-1 (where m = 1–8)) the selected mutants from plasma-treated spores. Reprinted with permission from [277].
Figure 17
Figure 17
Long term effect of seed treatment by plasma and PAW on (a) tomato and (b) pepper plant growth. Reprinted from [286].
Figure 18
Figure 18
Typical Schlieren images of the pre-breakdown disturbances between point-plane electrodes in pure transformer oil; (a) negative point: 60 kV and 2 µs pulse duration, (b) positive point: 45 kV and 2 µs pulse duration, (c) negative point: 45 kV and 9–6 µs pulse duration and (d) positive point: 45 kV and 2–7 µs pulse duration. Reproduced by permission of the Institution of Engineering & Technology [30].
Figure 19
Figure 19
Average velocity of (a) positive and (b) negative streamers versus applied voltage [RP: reduced pressure]. Reprinted with permission from [334].
Figure 20
Figure 20
(a) Schematic representation of the atmospheric pressure argon plasma jet directly submerged into the liquid phase for PEPT used by Rezaei et al. [345,346], (b) 3D image of the physical properties and SEM images of PLA nanofibers produced from plasma-treated solutions. Reprinted from [345].

References

    1. Trasatti S. Water electrolysis: Who first? J. Electroanal. Chem. 1999;476:90–91. doi: 10.1016/S0022-0728(99)00364-2.
    1. Gubkin A. Reduced matrix interferences compared to flames. J. Ann. Phys. Chem. 1887;32:114–115. doi: 10.1002/andp.18872680909.
    1. Janek J., Rohnke M., Pölleth M., Meiss S.A. Electrodeposition from Ionic Liquids. Wiley Online Library; Hoboken, NJ, USA: 2008. Plasma Electrochemistry with Ionic Liquids; pp. 259–285.
    1. Langmuir I. Oscillations in ionized gases. Proc. Natl. Acad. Sci. USA. 1928;14:627–637. doi: 10.1073/pnas.14.8.627.
    1. Wuthrich R., Ziki J. Micromachining using Electrochemical Discharge Phenomenon: Fundamentals and Application of Spark Assisted Chemical Engraving. William Adrew; Norwich, NY, USA: 2014.
    1. Hickling A., Ingram M. Glow-discharge electrolysis. J. Electroanal. Chem. 1964;8:65–81. doi: 10.1016/0022-0728(64)80039-5.
    1. Hickling A., Ingram M. Contact glow-discharge electrolysis. Trans. Faraday Soc. 1964;60:783–793. doi: 10.1039/tf9646000783.
    1. Glasstone S., Hickling A. Studies in electrolytic oxidation. Part V. The formation of hydrogen peroxide by electrolysis with a glow-discharge anode. J. Chem. Soc. 1934;390:1772–1773. doi: 10.1039/jr9340001772.
    1. Hickling A. Electrochemical processes in glow discharge at the gas-solution interface. Mod. Asp. Electrochem. 1971;6:329–373.
    1. Klemenc A., Ofner G. Neue Wege in der Anwendung elektrischer Energie auf chemische Vorgänge Glimmlichtelektrolyse. Berichte Bunsenges. Phys. Chem. 1953;57:615–617.
    1. Klemenc A., Kohl W. Glimmlichtelektrolyse. XXV. Mon. Chem. Verwandte Teile And. Wiss. 1953;84:498–511. doi: 10.1007/BF00900780.
    1. Couch D., Brenner A. Glow discharge spectra of copper and indium above aqueous solutions. J. Electrochem. Soc. 1959;106:628–629. doi: 10.1149/1.2427450.
    1. Brenner A., Sligh J. Electrodeless Electrolysis. J. Electrochem. Soc. 1970;117:602–608. doi: 10.1149/1.2407586.
    1. Klüpfel K. Untersuchung des Überganges elektrischer Ströme zwischen Flüssigkeiten und Gasen. Ann. Phys. 1905;321:574–583. doi: 10.1002/andp.19053210310.
    1. Makowetsky A. The formation of hydrogen peroxide, nitric acid and ammonia in the glow discharge with water as one electrode. Z Elektrochem. 1911;17:217–235.
    1. Harada K. The Origin of Life and Evolutionary Biochemistry. Springer; Boston, MA, USA: 1974. Amino acid synthesis by glow discharge electrolysis: A possible route for prebiotic synthesis of amino acids; pp. 183–205.
    1. Harada K., Iwasaki T. Syntheses of amino acids from aliphatic carboxylic acid by glow discharge electrolysis. Nature. 1974;250:426–428. doi: 10.1038/250426a0.
    1. Harada K., Iwasaki T. Syntheses of amino acids from aliphatic amines by contact glow discharge electrolysis. Chem. Lett. 1975;4:185–188. doi: 10.1246/cl.1975.185.
    1. Harada K., Suzuki S. Formation of amino acids from elemental carbon by contact glow discharge electrolysis. Nature. 1977;266:275–276. doi: 10.1038/266275a0.
    1. Kareem T., Kaliani A. Glow discharge plasma electrolysis for nanoparticles synthesis. Ionics (Kiel) 2012;18:315–327. doi: 10.1007/s11581-011-0639-y.
    1. Miller S.L. A production of amino acids under possible primitive earth conditions. Science (80-) 1953;117:528–529. doi: 10.1126/science.117.3046.528.
    1. Komelkov V.S. Mechanisms of dielectric breakdown of liquids. Dokl. Akad. Nauk. SSSR. 1945;47:268–270.
    1. Skvortsov N.M., Komelkov Y.V., Kuznetsov V.S. Expansion of a spark channel in a liquid. Sov. Phys.-Tech. Phys. 1961;5:1100–1112.
    1. Kuzhekin I.P. Investigation of Breakdown by Rectangular Voltage Pulses of a Liquid in an Inhomogenous. Field. Sov. Phys. Tech. Phys. USSR. 1967;11:1585.
    1. Sharbaugh A.H., Devins J.C., Rzad N.E. Progress in the Field of Electric Breakdown in Dielectric Liquids. IEEE Trans. Electr. Insul. 1978;13:249–276. doi: 10.1109/TEI.1978.298076.
    1. Devins J., Rzad S., Schwabe R. Breakdown and prebreakdown phenomena in liquids. J. Appl. Phys. 1981;52:4531–4545. doi: 10.1063/1.329327.
    1. Singh B., Chadband W.G., Smith C.W., Calderwood J.H. Prebreakdown processes in electrically stressed insulating liquids. J. Phys. D Appl. Phys. 1972;5:1457. doi: 10.1088/0022-3727/5/8/314.
    1. McKenny P., McGrath P. Anomalous positive point prebreakdown behavior in dielectric liquids. IEEE Trans. Electr. Insul. 1984;2:93–100. doi: 10.1109/TEI.1984.298779.
    1. Forster E. Research in the dynamics of electrical breakdown in liquid dielectrics. Electr. Insul. IEEE Trans. 1980;3:182–185. doi: 10.1109/TEI.1980.298311.
    1. Allan R., Hizal E. Prebreakdown phenomena in transformer oil subjected to nonuniform fields. Electr. Eng. Proc. IEEE. 1974;121:227–231. doi: 10.1049/piee.1974.0041.
    1. Wong P., Forster E. High-speed schlieren studies of electrical breakdown in liquid hydrocarbons. Can. J. Chem. 1977;55:1890–1898. doi: 10.1139/v77-264.
    1. Takahashi Y., Ohtsuka K. Corona discharges and bubbling in liquid nitrogen. J. Phys. D Appl. Phys. 1975;8:165–169. doi: 10.1088/0022-3727/8/2/010.
    1. Gulyi G.A. Equipment and Industrial Processes Using the Electrohydraulic Effect. Mashinostroenie; Moscow, Russia: 1977. (In Russian)
    1. Frungel F.B.A. High Speed Pulse Technology. Volume I Academic Press; New York, NY, USA: 1965.
    1. Alkhimov A.P., Vorob’ev V.V., Klimkin V.F., Ponomarenko A.G., Soloukhin R.I. The development of electrical discharge in water. Sov. Phys. Dokl. 1971;15:959–961.
    1. Zhekul V.G., Rakovskii G.B. Theory of electrical discharge formation in a conducting liquid. Sov. Phys. Tech. Phys. 1983;28:4–8.
    1. Ben’kovskii V.G., Golubnichii P.I., Maslennikov S.I. Pulsed electrohydrodynamic sonoluminescence accompanying a high-voltage discharge in water. Sov. Phys. Acoust. 1974;20:14–15.
    1. Robinson J.W. Robinson, Finite-difference simulation of an electrical discharge in water. J. Appl. Phys. 1973;44:76–81. doi: 10.1063/1.1661944.
    1. Yanshin E.V., Ovchinnikov I.T., Vershinin Y.N. Optical study of manosecond prebreakdown phenomena in water. Sov. Phys. Tech. Phys. 1974;18:1303–1306.
    1. Kuskova N.I. Mechanism of leader propagation in water. Sov. Phys. Tech. Phys. 1983;28:591–592.
    1. Clements J., Sato M., Davis R. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in liquid water. IEEE Trans. Ind. Appl. 1987;23:224–235. doi: 10.1109/TIA.1987.4504897.
    1. Carter H.D., Campbell A.N. Electric discharges in liquids. I. Arc discharge in water. Trans. Faraday Soc. 1932;28:479–494. doi: 10.1039/TF9322800479.
    1. Martin E.A. Experimental Investigation of a High-Energy Density, High-Pressure Arc Plasma. J. Appl. Phys. 1960;31:255–267. doi: 10.1063/1.1735555.
    1. Yasuoka K. Progress on direct plasma water treatments. IEEE Trans. Fundam. Mater. 2009;129:15–22. doi: 10.1541/ieejfms.129.15.
    1. Locke B.R., Sato M., Sunka P., Hoffmann M.R., Chang J.S. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 2006;45:882–905. doi: 10.1021/ie050981u.
    1. Malik M., Ghaffar A., Malik S. Water purification by electrical discharges. Plasma Sources Sci. Technol. 2001;10:82–91. doi: 10.1088/0963-0252/10/1/311.
    1. Mok Y.S., Dors M., Mizeraczyk J. Phenol Oxidation in Aqueous Solution by Gas Phase Corona Discharge. J. Adv. Oxid. Technol. 2006;9:139–143.
    1. Mizeraczyk J., Dors M., Metel E. Phenol Degradation in Water by Pulsed Streamer Corona Discharge and Fenton Reaction. Int. J. Plasma Environ. Sci. Technol. 2007;1:76–81.
    1. Dors M., Metel E., Mizeraczyk J., Marotta E. Coli bacteria inactivation by pulsed corona discharge in water. Int. J. Plasma Environ. Sci. Technol. 2008;2:34–37.
    1. Sun B., Sato M., Clements J.S. Optical study of active species produced by a pulsed streamer corona discharge in water. J. Electrostat. 1997;39:189–202. doi: 10.1016/S0304-3886(97)00002-8.
    1. Sunka P., Babický V., Clupek M., Lukes P., Simek M., Schmidt J., Cernák M. Generation of chemically active species by electrical discharges in water. Plasma Sources Sci. Technol. 1999;8:258–265. doi: 10.1088/0963-0252/8/2/006.
    1. Joshi A.A., Locke B.R., Arce P., Finney W.C. Formation of hydroxyl radicals, hydrogen-peroxide, and aqueous electrons by pulsed streamer corona discharge in aqueous-solution. J. Hazard. Mater. 1995;41:3–30. doi: 10.1016/0304-3894(94)00099-3.
    1. Bruggeman P., Leys C. Non-thermal plasmas in and in contact with liquids. J. Phys. D Appl. Phys. 2009;42:53001. doi: 10.1088/0022-3727/42/5/053001.
    1. Bruggeman P.J., Kushner M.J., Locke B.R., Gardeniers J.G.E., Graham W.G., Graves D.B., Hofman-Caris R.C.H.M., Maric D., Reid J.P., Ceriani E., et al. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016;25:53002. doi: 10.1088/0963-0252/25/5/053002.
    1. Lesaint O. Prebreakdown phenomena in liquids: Propagation “modes” and basic physical properties. J. Phys. D Appl. Phys. 2016;49:144001. doi: 10.1088/0022-3727/49/14/144001.
    1. Chen Q., Chen Q., Li J., Li Y. A review of plasma–liquid interactions for nanomaterial synthesis. J. Phys. D Appl. Phys. 2015;48:424005. doi: 10.1088/0022-3727/48/42/424005.
    1. Locke B.R., Thagard S.M. Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water. Plasma Chem. Plasma Process. 2012;32:875–917. doi: 10.1007/s11090-012-9403-y.
    1. Locke B.R., Shih K.-Y. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci. Technol. 2011;20:34006. doi: 10.1088/0963-0252/20/3/034006.
    1. Fridman A. Plasma Chemistry. Cambridge University Press; Cambridge, UK: New York, NY, USA: Melbourne, Australia: Madrid, Spain: Cape Town, South Africa: Singapore: São Paulo, Brazil: Delhi, India: 2008.
    1. National Research Council and Plasma Science Committee . Plasma Processing of Materials: Scientific Opportunities and Technological Challenges. National Academies Press; Washington, DC, USA: 1991.
    1. Lieberman M.A., Lichtenberg A.J. Principles of Plasma Discharges and Materials Processing. Wiley; New York, NY, USA: 1994.
    1. Moreau M., Orange N., Feuilloley M. Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 2008;26:610–617. doi: 10.1016/j.biotechadv.2008.08.001.
    1. Koo I.G., Lee M.S., Shim J.H., Ahn J.H., Lee W.M. Platinum nanoparticles prepared by a plasma-chemical reduction method. J. Mater. Chem. 2005;15:4125. doi: 10.1039/b508420b.
    1. Hieda J., Saito N., Takai O. Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2008;26:854. doi: 10.1116/1.2919139.
    1. Sato S., Mori K., Ariyada O., Atsushi H., Yonezawa T. Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid. Surf. Coatings Technol. 2011;206:955–958. doi: 10.1016/j.surfcoat.2011.03.110.
    1. Chen L., Iwamoto C., Omurzak E. Synthesis of zirconium carbide (ZrC) nanoparticles covered with graphitic “windows” by pulsed plasma in liquid. RSC Adv. 2011;1:1083–1088. doi: 10.1039/c1ra00194a.
    1. Richmonds C., Sankaran R. Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett. 2008;93:131501. doi: 10.1063/1.2988283.
    1. Shirafuji T., Himeno Y. Generation of Three-Dimensionally Integrated Micro-Solution Plasma and Its Application to Decomposition of Methylene Blue Molecules in Water. Jpn. J. Appl. Phys. 2013;52:11NE03. doi: 10.7567/JJAP.52.11NE03.
    1. Shirafuji T., Ueda J., Nakamura A., Cho S.P., Saito N., Takai O. Gold nanoparticle synthesis using three-dimensionally integrated micro-solution plasmas. Jpn. J. Appl. Phys. 2013;52:126202. doi: 10.7567/JJAP.52.126202.
    1. Shirafuji T., Noguchi Y., Yamamoto T., Hieda J., Saito N., Takai O., Tsuchimoto A., Nojima K., Okabe Y. Functionalization of multiwalled carbon nanotubes by solution plasma processing in ammonia aqueous solution and preparation of composite material with polyamide. Jpn. J. Appl. Phys. 2013;52:125101. doi: 10.7567/JJAP.52.125101.
    1. Toriyabe Y., Watanabe S., Yatsu S., Shibayama T., Mizuno T. Controlled formation of metallic nanoballs during plasma electrolysis. Appl. Phys. Lett. 2007;91 doi: 10.1063/1.2760042.
    1. Yu-Tao Z., Ying G., Teng-Cai M. Plasma catalytic synthesis of silver nanoparticles. Chin. Phys. Lett. 2011;28:105201.
    1. Kim S.C., Kim B.H., Chung M., Ahn H.G., Park Y.K., Lee H., Jung S.C. Preparation of Aluminum Nanoparticles Using Bipolar Pulsed Electrical Discharge in Water. J. Nanosci. Nanotechnol. 2015;15:5350–5353. doi: 10.1166/jnn.2015.10397.
    1. Cho C., Choi Y.W., Kang C., Lee G.W. Effects of the medium on synthesis of nanopowders by wire explosion process. Appl. Phys. Lett. 2007;91 doi: 10.1063/1.2794724.
    1. Huang X., Li Y., Zhong X. Effect of experimental conditions on size control of Au nanoparticles synthesized by atmospheric microplasma electrochemistry. Nanoscale Res. Lett. 2014;9:572. doi: 10.1186/1556-276X-9-572.
    1. Kaneko T., Hatakeyama R., Takahashi S. Ionic Liquids–New Aspects for the Future. IntechOpen; London, UK: 2013. Plasma process on ionic liquid substrate for morphology controlled nanoparticles.
    1. Seddon K.R. Ionic Liquids-A taste of the future. Nat. Mater. 2003;2:363–365. doi: 10.1038/nmat907.
    1. Rogers R.D., Seddon K.R. Ionic liquids—Solvents of the future? Science. 2003;302:792–793. doi: 10.1126/science.1090313.
    1. Kaneko T., Baba K., Harada T., Hatakeyama R. Novel Gas-Liquid Interfacial Plasmas for Synthesis of Metal Nanoparticles. Plasma Process. Polym. 2009;6:713–718. doi: 10.1002/ppap.200900029.
    1. Kaneko T., Chen Q., Harada T., Hatakeyama R. Structural and reactive kinetics in gas–liquid interfacial plasmas. Plasma Sources Sci. Technol. 2011;20:34014. doi: 10.1088/0963-0252/20/3/034014.
    1. Torimoto T., Okazaki K.I., Kiyama T., Hirahara K., Tanaka N., Kuwabata S. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett. 2006;89 doi: 10.1063/1.2404975.
    1. Xie Y., Liu C. Stability of ionic liquids under the influence of glow discharge plasmas. Plasma Process. Polym. 2008;5:239–245. doi: 10.1002/ppap.200700094.
    1. Kuwabata S., Tsuda T., Torimoto T. Room-temperature ionic liquid. A new medium for material production and analyses under vacuum conditions. J. Phys. Chem. Lett. 2010;1:3177–3188. doi: 10.1021/jz100876m.
    1. Wei Z., Liu C. Synthesis of monodisperse gold nanoparticles in ionic liquid by applying room temperature plasma. Mater. Lett. 2011;65:353–355. doi: 10.1016/j.matlet.2010.10.030.
    1. Kareem T., Kaliani A. IV characteristics and the synthesis of ZnS nanoparticles by glow discharge at the metal–ionic liquid interface. J. Plasma Phys. 2012;78:189–197. doi: 10.1017/S0022377811000560.
    1. Meiss S.A., Rohnke M., Kienle L., Zein El Abedin S., Endres F., Janek J. Employing plasmas as gaseous electrodes at the free surface of ionic liquids: Deposition of nanocrystalline silver particles. Chem. Phys. Chem. 2007;8:50–53. doi: 10.1002/cphc.200600582.
    1. Baba K., Kaneko T., Hatakeyama R. Efficient Synthesis of Gold Nanoparticles Using Ion Irradiation in Gas-Liquid Interfacial Plasmas. Appl. Phys. Express. 2009;2:35006. doi: 10.1143/APEX.2.035006.
    1. Kawamura H., Moritani K., Lto Y. Discharge electrolysis in molten chloride: Formation of fine silver particles. Plasmas Ions. 1998;1:29–36. doi: 10.1016/S1288-3255(99)80004-5.
    1. Von Brisinski N.S., Höfft O., Endres F. Plasma electrochemistry in ionic liquids: From silver to silicon nanoparticles. J. Mol. Liq. 2014;192:59–66. doi: 10.1016/j.molliq.2013.09.017.
    1. Kulbe N., Höfft O., Ulbrich A., el Abedin S.Z., Krischok S., Janek J., Pölleth M., Endres F. Plasma Electrochemistry in 1-Butyl-3-methylimidazolium dicyanamide: Copper Nanoparticles from CuCl and CuCl2. Plasma Process. Polym. 2011;8:32–37. doi: 10.1002/ppap.201000067.
    1. Mariotti D., Patel J., Švrček V., Maguire P. Plasma-Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering. Plasma Process. Polym. 2012;9:1074–1085. doi: 10.1002/ppap.201200007.
    1. Cho S., Bratescu M., Saito N., Takai O. Microstructural characterization of gold nanoparticles synthesized by solution plasma processing. Nanotechnology. 2011;22:455701. doi: 10.1088/0957-4484/22/45/455701.
    1. Bratescu M.A., Cho S.P., Takai O., Saito N. Size-controlled gold nanoparticles synthesized in solution plasma. J. Phys. Chem. C. 2011;115:24569–24576. doi: 10.1021/jp207447c.
    1. Saito N., Hieda J., Takai O. Synthesis process of gold nanoparticles in solution plasma. Thin Solid Films. 2009;518:912–917. doi: 10.1016/j.tsf.2009.07.156.
    1. Lung J., Huang J., Tien D., Liao C. Preparation of gold nanoparticles by arc discharge in water. J. Alloys Compd. 2007;434:655–658. doi: 10.1016/j.jallcom.2006.08.213.
    1. Lee H., Park S.H., Jung S.-C., Yun J.-J., Kim S.-J., Kim D.-H. Preparation of nonaggregated silver nanoparticles by the liquid phase plasma reduction method. J. Mater. Res. 2013;28:1105–1110. doi: 10.1557/jmr.2013.59.
    1. Bisht A., Talebitaher A. Synthesis of Nanoparticles Using Atmospheric Microplasma Discharge; Proceedings of the FPPT5 Conference; Singapore. 18–22 April 2011.
    1. Brettholle M., Höfft O., Klarhöfer L., Mathes S., Maus-Friedrichs W., el Abedin S.Z., Krischok S., Janek J., Endres F. Plasma electrochemistry in ionic liquids: Deposition of copper nanoparticles. Phys. Chem. Chem. Phys. 2010;12:1750–1755. doi: 10.1039/B906567A.
    1. Lee H., Park S.H., Seo S., Kim S., Kim S., Park Y., Jung S. Preparation and Characterization of Copper Nanoparticles via the Liquid Phase Plasma Method. Curr. Nanosci. 2014;10:7–10. doi: 10.2174/1573413709666131111221741.
    1. Kim H., Lee H., Kim B.H., Kim S., Lee J., Ã S.J. Synthesis Process of Cobalt Nanoparticles in Liquid-Phase Plasma Synthesis Process of Cobalt Nanoparticles in Liquid-Phase Plasma. Jpn. J. Appl. Phys. 2013;52:01AN03. doi: 10.7567/JJAP.52.01AN03.
    1. Amaliyah N., Mukasa S., Nomura S., Toyota H. Plasma In-liquid Method for Reduction of Zinc Oxide in Zinc Nanoparticle Synthesis. Mater. Res. Express. 2015;2:25004. doi: 10.1088/2053-1591/2/2/025004.
    1. Sergiienko R., Shibata E., Akase Z., Suwa H., Nakamura T., Shindo D. Carbon encapsulated iron carbide nanoparticles synthesized in ethanol by an electric plasma discharge in an ultrasonic cavitation field. Mater. Chem. Phys. 2006;98:34–38. doi: 10.1016/j.matchemphys.2005.08.064.
    1. Sergiienko R., Shibata E., Zentaro A., Shindo D., Nakamura T., Qin G. Formation and characterization of graphite-encapsulated cobalt nanoparticles synthesized by electric discharge in an ultrasonic cavitation field of liquid ethanol. Acta Mater. 2007;55:3671–3680. doi: 10.1016/j.actamat.2007.02.017.
    1. Kelgenbaeva Z., Omurzak E., Takebe S., Sulaimankulova S., Abdullaeva Z., Iwamoto C., Mashimo T. Synthesis of pure iron nanoparticles at liquid–liquid interface using pulsed plasma. J. Nanoparticle Res. 2014;16:2603. doi: 10.1007/s11051-014-2603-z.
    1. Hattori Y., Mukasa S., Toyota H., Inoue T., Nomura S. Synthesis of zinc and zinc oxide nanoparticles from zinc electrode using plasma in liquid. Mater. Lett. 2011;65:188–190. doi: 10.1016/j.matlet.2010.09.068.
    1. Graham W.G., Stalder K.R. Plasmas in liquids and some of their applications in nanoscience. J. Phys. D Appl. Phys. 2011;44:174037. doi: 10.1088/0022-3727/44/17/174037.
    1. Saito G., Akiyama T. Nanomaterial Synthesis Using Plasma Generation in Liquid. J. Nanomater. 2015;16:299. doi: 10.1155/2015/123696.
    1. Thompson M., Ramsey M., Pahlavanpour B. Water analysis by inductively coupled plasma atomic-emission spectrometry after a rapid pre-concentration. Analyst. 1982;107:1330–1334. doi: 10.1039/an9820701330.
    1. Brenner I.B., Taylor H.E. A Critical-Review of Inductively Coupled Plasma-Mass Spectrometry for Geoanalysis, Geochemistry, and Hydrology. Part I. Analytical Performance. Crit. Rev. Anal. Chem. 1992;23:355–367. doi: 10.1080/10408349208051650.
    1. Xiong C., Jiang Z., Hu B. Speciation of dissolved Fe (II) and Fe (III) in environmental water samples by micro-column packed with N-benzoyl-N-phenylhydroxylamine loaded on microcrystalline naphthalene and determination by electrothermal vaporization inductively coupled plasma-opti. Anal. Chim. Acta. 2006;559:113–119. doi: 10.1016/j.aca.2005.11.051.
    1. Maestre S.E., Mora J., Hernandis V., Todoli J.L. A system for the direct determination of the nonvolatile organic carbon, dissolved organic carbon, and inorganic carbon in water samples through inductively coupled plasma atomic emission spectrometry. Anal. Chem. 2003;75:111–117. doi: 10.1021/ac025980f.
    1. Karandashev V.K., Leikin A.Y., Khvostikov V.A., Kutseva N.K., Pirogova S.V. Water analysis by inductively coupled plasma mass spectrometry. Inorg. Mater. 2016;52:1391–1404. doi: 10.1134/S0020168516140053.
    1. Popp M., Hann S., Koellensperger G. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry—A review. Anal. Chim. Acta. 2010;668:114–129. doi: 10.1016/j.aca.2010.04.036.
    1. Hill S., Bloxham M., Worsfold P. Chromatography Coupled With Inductively Coupled Plasma Atomic Emission Spectrometry and Inductively Coupled Plasma Mass Spectrometry—A review. J. Anal. At. Spectrom. 1993;8:499–515. doi: 10.1039/ja9930800499.
    1. Pröfrock D., Prange A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: A review of challenges, solutions, and trends. Appl. Spectrosc. 2012;66:843–868. doi: 10.1366/12-06681.
    1. Gilstrap R.A., Jr. A Colloidal Nanoparticle form of Indium Tin Oxide: System Development and Characterization. Georgia Institute of Technology, School of Materials Science and Engineering; Atlanta, GA, USA: 2009.
    1. Cramer R., Corless S. Liquid ultraviolet matrix-assisted laser desorption/ionization—Mass spectrometry for automated proteomic analysis. Proteomics. 2005;5:360–370. doi: 10.1002/pmic.200400956.
    1. Tholey A., Heinzle E. Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry—Applications and perspectives. Anal. Bioanal. Chem. 2006;386:24–37. doi: 10.1007/s00216-006-0600-5.
    1. Banerjee S., Mazumdar S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012;2012:1–40. doi: 10.1155/2012/282574.
    1. Hahn D.W., Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012;66:347–419. doi: 10.1366/11-06574.
    1. Kurniawan K.H., Tjia M.O., Kagawa K. Review of laser-induced plasma, its mechanism, and application to quantitative analysis of hydrogen and deuterium. Appl. Spectrosc. Rev. 2014;49 doi: 10.1080/05704928.2013.825267.
    1. Pardede M., Kurniawan H., Tjia M.O., Ikezawa K., Maruyama T., Kagawa K. Spectrochemical Analysis of Metal Elements Electrodeposited from Water Samples by Laser-Induced Shock Wave Plasma Spectroscopy. Appl. Spectrosc. 2001;55:1229–1236. doi: 10.1366/0003702011953243.
    1. Li X., Zhou W., Li K., Qian H., Ren Z. Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil. Opt. Commun. 2012;285:54–58. doi: 10.1016/j.optcom.2011.08.074.
    1. Baude S., Broekaert J., Delfosse D. Glow discharge atomic spectrometry for the analysis of environmental samples—A review. J. Anal. At. Spectrom. 2000;15:1516–1525. doi: 10.1039/b004039h.
    1. Cserfalvi T., Mezei P., Apai P. Emission studies on a glow discharge in atmospheric pressure air using water as a cathode. J. Phys. D Appl. Phys. 1993;26:2184. doi: 10.1088/0022-3727/26/12/015.
    1. Marcus R.K., Davis W.C. An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Anal. Chem. 2001;73:2903–2910. doi: 10.1021/ac010158h.
    1. Huang R., Zhu Z., Zheng H., Liu Z., Zhang S. Alternating current driven atmospheric-pressure liquid discharge for the determination of elements with optical emission spectrometry. J. Anal. At. Spectrom. 2011;26:1178–1182. doi: 10.1039/c1ja00009h.
    1. He Q., Zhu Z., Hu S., Zheng H., Jin L. Elemental determination of microsamples by liquid film dielectric barrier discharge atomic emission spectrometry. Anal. Chem. 2012;84:4179–4184. doi: 10.1021/ac300518y.
    1. Yagov V., Korotkov A., Zuev B. Drop-spark discharge: An atomization and excitation source for atomic emission sensors. Mendeleev Commun. 1998;8:161–162. doi: 10.1070/MC1998v008n04ABEH000934.
    1. Yagov V.V., Getsina M.L., Zuev B.K. Use of Electrolyte Jet Cathode Glow Discharges as Sources of Emission Spectra for Atomic Emission Detectors in Flow-Injection Analysis. J. Anal. Chem. 2004;59:1037–1041. doi: 10.1023/B:JANC.0000047005.47648.f0.
    1. Zuev B.K., Yagov V.V., Getsina M.L., Rudenko B.A. Discharge on boiling in a channel as a new atomization and excitation source for the flow determination of metals by atomic emission spectrometry. J. Anal. Chem. 2002;57:907–911. doi: 10.1023/A:1020475025336.
    1. Wu J., Yu J., Li J., Wang J., Ying Y. Detection of metal ions by atomic emission spectroscopy from liquid-electrode discharge plasma, Spectrochim. Acta Part B At. Spectrosc. 2007;62:1269–1272. doi: 10.1016/j.sab.2007.10.026.
    1. Staack D., Fridman A., Gutsol A., Gogotsi Y., Friedman G. Nanoscale corona discharge in liquids, enabling nanosecond optical emission spectroscopy. Angew. Chem. Int. Ed. 2008;47:8020–8024. doi: 10.1002/anie.200802891.
    1. He Q., Zhu Z.L., Hu S.H. Flowing and Nonflowing Liquid Electrode Discharge Microplasma for Metal Ion Detection by Optical Emission Spectrometry. Appl. Spectrosc. Rev. 2013;49:249–269. doi: 10.1080/05704928.2013.820195.
    1. Mezei P., Cserfalvi T. Electrolyte cathode atmospheric glow discharges for direct solution analysis. Appl. Spectrosc. Rev. 2007;42:573–604. doi: 10.1080/05704920701624451.
    1. Gupta V.K., Ali I., Saleh T.A., Nayak A., Agarwal S. Chemical treatment technologies for waste-water recycling—An overview. RSC Adv. 2012;2:6380–6388. doi: 10.1039/c2ra20340e.
    1. Goheen S.C., Durham D.E., McCulloch M., Heath W.O. The degradation of organic dyes by corona discharge; Proceedings of the Second Internation Symposium Chemical Oxidation Technology Nineties; Nashville, TN, USA. 19–21 Feburary 1992; pp. 356–367.
    1. Maximov A.I., Kuzmin S.M. Some results of the plasma-solution system investigation; Proceedings of the 5th Symposium on High Pressure Low Temperature Plasma Chemistry Hakone V; Milovy, Brno, Czech Republic. 2–4 September 1996; p. 282.
    1. Jufang Z., Jierong C., Xiaoyong L. Remove of Phenolic Compounds in Water by Low-Temperature Plasma: A Review of Current Research. J. Water Resour. Prot. 2009;1:99–109.
    1. Jiang B., Zheng J., Qiu S., Wu M., Zhang Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014;236:348–368. doi: 10.1016/j.cej.2013.09.090.
    1. Magureanu M., Mandache N.B., Parvulescu V.I. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res. 2015;81:124–136. doi: 10.1016/j.watres.2015.05.037.
    1. Magureanu M., Bradu C., Parvulescu V.I. Plasma processes for the treatment of water contaminated with harmful organic compounds. J. Phys. D Appl. Phys. 2018;51:313002. doi: 10.1088/1361-6463/aacd9c.
    1. Aziz K.H.H., Miessner H., Mueller S., Mahyar A., Kalass D., Moeller D., Khorshid I., Rashid M.A.M. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor. J. Hazard. Mater. 2018;343:107–115. doi: 10.1016/j.jhazmat.2017.09.025.
    1. Hijosa-Valsero M., Molina R., Schikora H. Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma. J. Hazard. Mater. 2013;262:664–673. doi: 10.1016/j.jhazmat.2013.09.022.
    1. Brisset J.L., Pawlat J. Chemical Effects of Air Plasma Species on Aqueous Solutes in Direct and Delayed Exposure Modes: Discharge, Post-discharge and Plasma Activated Water. Plasma Chem. Plasma Process. 2016;36:355–381. doi: 10.1007/s11090-015-9653-6.
    1. Yang Y., Cho Y., Fridman A. Plasma Discharge in Liquid: Water Treatment and Applications. CRC Press; Boca Raton, FL, USA: 2012.
    1. Imai S., Kumagai H., Iwata M., Onodera M., Suzuki M. In-Water Plasma Generation on a Liquid Wall Using a Compact Device and Dedicated Power Supply. IEEE Trans. Plasma Sci. 2015;43:2166–2173. doi: 10.1109/TPS.2015.2429571.
    1. Parvulescu V.I., Magureanu M., Lukes P. Plasma Chemistry and Catalysis in Gases and Liquids. Wiley-VCH; Weinheim, Germany: 2012.
    1. Ghodbane H., Nikiforov A.Y., Hamdaoui O., Surmont P., Lynen F., Willems G., Leys C. Non-thermal plasma degradation of anthraquinonic dye in water: Oxidation pathways and effect of natural matrices. J. Adv. Oxid. Technol. 2014;17:372–384. doi: 10.1515/jaots-2014-0223.
    1. Foster J.E., Mujovic S., Groele J., Blankson I.M. Towards high throughput plasma based water purifiers: Design considerations and the pathway towards practical application. J. Phys. D Appl. Phys. 2018;51:293001. doi: 10.1088/1361-6463/aac816.
    1. Feng L. Advanced Oxidation Processes for the Removal of Residualnon-Steroidal Anti-Inflammatory Pharmaceuticals Fromaqueous Systems. University of Paris-Est; Champs-sur-Marne, France: 2014.
    1. Zhao X., Hou Y., Liu H., Qiang Z., Qu J. Electro-oxidation of diclofenac at boron doped diamond: Kinetics and mechanism. Electrochim. Acta. 2009;54:4172–4179. doi: 10.1016/j.electacta.2009.02.059.
    1. Kutepov A.M. Chemical Processes Initiated by a Nonequilibrium in Solutions. Theor. Found. Chem. Eng. 2000;34:70–75. doi: 10.1007/BF02757467.
    1. Hijosa-Valsero M., Molina R., Schikora H., Müller M., Bayona J.M. Removal of cyanide from water by means of plasma discharge technology. Water Res. 2013;47:1701–1707. doi: 10.1016/j.watres.2013.01.001.
    1. Cheremisinoff N. Handbook of Water and Wastewater Treatment Technologies. Butterworth-Heinemann; Oxford, UK: 2001.
    1. Siemens W. Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten. Ann. Phys. 1857;178:66–122. doi: 10.1002/andp.18571780905.
    1. Laroussi M. The Biomedical Applications of Plasma: A Brief History of the Development of a New Field of Research. IEEE Trans. Plasma Sci. 2008;36:1612–1614. doi: 10.1109/TPS.2008.917167.
    1. Boucher R.M.G. Liquid Phase Disinfection/Sterilization with Microwave Energy. 6,039,921A. U.S. Patent. 2000 Mar 21;
    1. Laroussi M. Sterilization of tools and infectious waste by plasmas. Bull. Amer. Phys. Soc. Div. Plasma Phys. 1995;40:1685–1686.
    1. Laroussi M. Sterilization of contaminated matter with an atmopsheric pressure plasma. IEEE Trans. Plasma Sci. 1996;24:1188–1191. doi: 10.1109/27.533129.
    1. Garate E., Evans K., Gornostaeva O., Alexeff I., Kang W.L., Rader M., Wood T.K. Atmospheric plasma induced sterilization and chemical neutralization; Proceedings of the IEEE International Conference on Plasma Science; Raleigh, NC, USA. 1–4 June 1998; p. 183.
    1. Kelly-Wintenberg K., Montie T.C., Brickman C., Roth J.R., Carr A.K., Sorge K., Wadsworth L.C., Tsai P.P. Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma. J. Ind. Microbiol. Biotechnol. 1998;20:69–74. doi: 10.1038/sj.jim.2900482.
    1. Laroussi M. Biological Decontamination by Non Thermal Plasmas. IEEE Trans. Plasma Sci. 2000;28:184–188. doi: 10.1109/27.842899.
    1. Kelly-Wintenberg K., Roth J.R., Montie T.H. An overview of research using the one atmosphere uniform glow discharge plasma. IEEE Trans. Plasma Sci. 2000;28:41–50. doi: 10.1109/27.842866.
    1. Richardson J.P., Dyer F.F., Dobbs F.C., Alexeff I., Laroussi M. On the use of the resistive barrier discharge to kill bacteria: Recent results; Proceedings of the IEEE International Conference on Plasma Science; New Orleans, LA, USA. 4–7 June 2000; p. 109.
    1. De Geyter N., Morent R. Nonthermal plasma sterilization of living and nonliving surfaces. Annu. Rev. Biomed. Eng. 2012;14:255–274. doi: 10.1146/annurev-bioeng-071811-150110.
    1. Rossi F., Kylian O., Rauscher H., Gilliland D., Sirghi L. Use of a low-pressure plasma discharge for the decontamination and sterilization of medical devices. Pure Appl. Chem. 2008;80:1939–1951. doi: 10.1351/pac200880091939.
    1. Kostov K.G., Rocha V., Koga-Ito C.Y., Matos B.M., Algatti M.A., Honda R.Y., Kayama M.E., Mota R.P. Bacterial sterilization by a dielectric barrier discharge (DBD) in air. Surf. Coat. Technol. 2010;204:2954–2959. doi: 10.1016/j.surfcoat.2010.01.052.
    1. Choi J.H., Han I., Baik H.K., Lee M.H., Han D.W., Park J.C., Lee I.S., Song K.M., Lim Y.S. Analysis of sterilization effect by pulsed dielectric barrier discharge. J. Electrostat. 2006;64:17–22. doi: 10.1016/j.elstat.2005.04.001.
    1. Laroussi M., Dobbs F.C., Wei Z., Doblin M.A., Ball L.G., Moreira K.R., Dyer F.F., Richardson J.P. Decontamination of water by excimer UV radiation. IEEE Trans. Plasma Sci. 2002;30:1501–1503. doi: 10.1109/TPS.2002.804208.
    1. Hwang I., Jeong J., You T., Jung J. Water electrode plasma discharge to enhance the bacterial inactivation in water. Biotechnol. Biotechnol. Equip. 2018;32:530–534. doi: 10.1080/13102818.2017.1321969.
    1. Park J.H., Kumar N., Park D.H., Yusupov M., Neyts E.C., Verlackt C.C.W., Bogaerts A., Kang M.H., Uhm H.S., Choi E.H., et al. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Sci. Rep. 2015;5:13849. doi: 10.1038/srep13849.
    1. Oehmigen K., Hähnel M., Brandenburg R., Wilke C., Weltmann K.D., von Woedtke T. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 2010;7:250–257. doi: 10.1002/ppap.200900077.
    1. Oehmigen K., Winter J., Hähnel M., Wilke C., Brandenburg R., Weltmann K.D., von Woedtke T. Estimation of possible mechanisms of escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process. Polym. 2011;8:904–913. doi: 10.1002/ppap.201000099.
    1. Von Woedtke T., Oehmigen K., Brandenburg R., Hoder T., Wilke C., Hähnel M., Weltmann K. Plasma Bio-Decontamination, Medicine and Food Security. Springer; Berlin/Heidelberg, Germany: 2012. Plasma-liquid-interactions: Chemistry and antimicrobial effects; pp. 67–78.
    1. Ziuzina D., Patil S., Bourke P., Keener K., Cullen P., Ziuzina D., Patil S., Cullen P.J., Keener K.M., Bourke P. Atmospheric Cold Plasma Inactivation of Escherichia Coli in Liquid Media Inside a Sealed Package. J. Appl. Microbiol. 2013;114:778–787. doi: 10.1111/jam.12087.
    1. Satoh K., MacGregor S.J., Anderson J.G., Woolsey G.A., Fouracre R.A. Pulsed-plasma disinfection of water containing Escherichia coli. Jpn. J. Appl. Phys. 2007;46:1137–1141. doi: 10.1143/JJAP.46.1137.
    1. Machala Z., Tarabova B., Hensel K., Spetlikova E., Sikurova L., Lukes P. Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Process. Polym. 2013;10:649–659. doi: 10.1002/ppap.201200113.
    1. Shainsky N., Dobrynin D., Ercan U., Joshi S., Ji H., Brooks A., Cho Y., Fridman A., Friedman G. Non-Equilibrium Plasma Treatment of Liquids, Formation of Plasma Acid; Proceedings of the ISPC-20 20th International Symposium on Plasma Chemistry; Philadelphia, PA, USA. 24–29 July 2011; pp. 5–8.
    1. Ikawa S., Kitano K., Hamaguchi S. Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application. Plasma Process. Polym. 2010;7:33–42. doi: 10.1002/ppap.200900090.
    1. Helmke A., Hoffmeister D., Mertens N., Emmert S., Schuette J., Vioel W. The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New J. Phys. 2009;11:115025. doi: 10.1088/1367-2630/11/11/115025.
    1. Kim A., Thayer D. Radiation-induced cell lethality of Salmonella typhimurium ATCC 14028: Cooperative effect of hydroxyl radical and oxygen. Radiat. Res. 1995;144:36–42. doi: 10.2307/3579233.
    1. Thomas J.K., Rabani J., Matheson M.S., Hart E.J., Gordon S. Absorption Spectrum of the Hydroxyl Radical1. J. Phys. Chem. 1966;70:2409–2410. doi: 10.1021/j100879a503.
    1. Marklund S. Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. J. Biol. Chem. 1976;251:7504–7507.
    1. Korshunov S., Imlay J. A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol. Microbiol. 2002;43:95–106. doi: 10.1046/j.1365-2958.2002.02719.x.
    1. Liu F., Sun P., Bai N., Tian Y., Zhou H. Inactivation of Bacteria in an Aqueous Environment by a Direct-Current, Cold- Atmospheric-Pressure Air Plasma Microjet. Plasma Process. Polym. 2010;7:231–236. doi: 10.1002/ppap.200900070.
    1. Bai N., Sun P., Zhou H., Wu H., Wang R., Liu F., Zhu W., Lopez J.L., Zhang J., Fang J. Inactivation of staphylococcus aureus in water by a cold, He/O2 atmospheric pressure plasma microjet. Plasma Process. Polym. 2011;8:424–431. doi: 10.1002/ppap.201000078.
    1. Shen J., Sun Q., Zhang Z., Cheng C., Lan Y., Zhang H., Xu Z., Zhao Y., Xia W., Chu P.K. Characteristics of DC gas-liquid phase atmospheric-pressure plasma and bacteria inactivation mechanism. Plasma Process. Polym. 2015;12:252–259. doi: 10.1002/ppap.201400129.
    1. Kojtari A., Ercan U.K., Smith J., Friedman G., Sensenig R.B., Tyagi S., Joshi S.G., Ji H.F., Ari B.D. Chemistry for Antimicrobial Properties of Water Treated With Non-Equilibrium Plasma. Nanomedicine Biother. Discov. 2013;4:120.
    1. Lukes P., Dolezalova E., Sisrova I., Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-dischsrge reaction of H2O2 and HNO2. Plasma Sources Sci. Technol. 2014;23:15019. doi: 10.1088/0963-0252/23/1/015019.
    1. Van Gils C.a.J., Hofmann S., Boekema B.K.H.L., Brandenburg R., Bruggeman P.J. Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 2013;46:175203. doi: 10.1088/0022-3727/46/17/175203.
    1. Takamatsu T., Uehara K., Sasaki Y., Hidekazu M., Matsumura Y., Iwasawa A., Ito N., Kohno M., Azuma T., Okino A. Microbial inactivation in the liquid phase induced by multigas plasma jet. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0132381.
    1. Pavlovich M.J., Chang H.-W., Sakiyama Y., Clark D.S., Graves D.B. Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J. Phys. D Appl. Phys. 2013;46:145202. doi: 10.1088/0022-3727/46/14/145202.
    1. Ercan U.K., Smith J., Ji H.-F., Brooks A.D., Joshi S.G. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation. Sci. Rep. 2016;6:20365. doi: 10.1038/srep20365.
    1. Vaze N.D., Arjunan K.P., Gallagher M.J., Vasilets V.N., Gutsol A., Fridman A., Anandan S. Air and water sterilization using non-thermal plasma; Proceedings of the PPPS-2007—Pulsed Power Plasma Science; Albuquerque, NM, USA. 17–22 June 2007; pp. 1231–1235.
    1. Yang Y., Kim H., Starikovskiy A., Cho Y.I., Fridman A. Note: An underwater multi-channel plasma array for water sterilization. Rev. Sci. Instrum. 2011;82:96103. doi: 10.1063/1.3633945.
    1. Bakovsky P., Fantova V., Chumachenko K. Bacterial Inactivation by Physiologically Relevant Liquids Activated by Atmospheric Pressure Non-Thermal Plasma. [(accessed on 27 August 2019)]; Available online: .
    1. Boxman R.L., Parkansky N., Mamane H., Meirovitz M., Orkabi Y., Halperin T., Cohen D., Orr N., Gidalevich E., Alterkop B., et al. Plasma Assisted Decontamination of Biological and Chemical Agents. Springer; Dordrecht, The Netherlands: 2008. Pulsed submerged arc plasma disinfection of water: Bacteriological results and an exploration of possible mechanisms; pp. 41–50.
    1. Antoniu A., Kurita H., Nakajima T., Mizuno A. Safety Evaluation of Non—Thermal Atmospheric Pressure Plasma Liquid Treatment. Mutagenesis. 2012;6:1–8.
    1. Akishev Y., Grushin M., Karalnik V., Trushkin N., Kholodenko V., Chugunov V., Kobzev E., Zhirkova N., Irkhina I., Kireev G. Atmospheric-pressure, nonthermal plasma sterilization of microorganisms in liquids and on surfaces. Pure Appl. Chem. 2008;80:1953–1969. doi: 10.1351/pac200880091953.
    1. Tang Y.Z., Lu X.P., Laroussi M., Dobbs F.C. Sublethal and killing effects of atmospheric-pressure, Nonthermal plasma on eukaryotic microalgae in aqueous media. Plasma Process. Polym. 2008;5:552–558. doi: 10.1002/ppap.200800014.
    1. Gutsol A., Vaze N.D., Arjunan K.P., Gallagher M.J., Yang Y., Zhu J., Vasilets V.N., Fridman A. Plasma Assisted Decontamination of Biological and Chemical Agents. Springer; Dordrecht, The Netherlands: 2008. Plasma for air and water sterilization; pp. 21–39.
    1. D’Arsonval J. Nouvel appareil de diathermie intensive. Arch Electr. Med. 1914;377:34.
    1. Napp J., Daeschlein G., Napp M., von Podewils S., Gumbel D., Spitzmueller R., Fornaciari P., Hinz P., Junger M. On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices. GMS Hyg. Infect. Control. 2015;10:Doc08.
    1. Nagelschmidt C.F. Uber Hochfrequenzstrome. Berl. Med. Ges. 1909;24
    1. Gitomer S., Jones R. Laser produced plasmas in medicine. II. Properties and effects. Plasma Sci. IEEE. 1990:202. doi: 10.1109/PLASMA.1990.110823.
    1. Gorbanev Y., O’Connell D., Chechik V. Non-Thermal Plasma in Contact with Water: The Origin of Species. Chem. A Eur. J. 2016;22:3496–3505. doi: 10.1002/chem.201503771.
    1. Jablonowski H., Bussiahn R., Hammer M.U., Weltmann K.-D., von Woedtke T., Reuter S. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids. Phys. Plasmas. 2015;22:122008. doi: 10.1063/1.4934989.
    1. Liu D.X., Bruggeman P., Iza F., Rong M.Z., Kong M.G. Global model of low-temperature atmospheric-pressure He + H2O plasmas. Plasma Sources Sci. Technol. 2010;19:025018. doi: 10.1088/0963-0252/19/2/025018.
    1. Darwent B.D. Bond dissociation energies in simple molecules. National Institute of Standards and Technology; Gaithersburg, MD, USA: 1970. NSRDS-NBS31.
    1. Fridman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A. Applied plasma medicine. Plasma Process. Polym. 2008;5:503–533. doi: 10.1002/ppap.200700154.
    1. Rhoades R., Bell D. Medical Phisiology: Principles for Clinical Medicine. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2012.
    1. Stoffels E., Sakiyama Y., Graves D.B. Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Trans. Plasma Sci. 2008;36:1441–1457. doi: 10.1109/TPS.2008.2001084.
    1. Gurtner G.C., Werner S., Barrandon Y., Longaker M.T. Wound repair and regeneration. Nature. 2008;453:314–321. doi: 10.1038/nature07039.
    1. Kalghatgi S., Fridman G., Nagaraj G., Peddinghaus M., Balasubramanian M., Brooks A., Gutsol A., Vasilets V., Fridman G. Mechanism of Blood Coagulation by Non-Equilibrium Atmospheric Pressure Dielectric Barrier Discharge Plasma; Proceedings of the 18th International Conference Plasma Chemistry; Kyoto, Japan. 26–31 August 2007; pp. 1559–1566.
    1. Chen C.Y., Fan H.W., Kuo S.P., Chang J., Pedersen T., Mills T.J., Huang C.C. Blood clotting by low-temperature air plasma. IEEE Trans. Plasma Sci. 2009;37:993–999. doi: 10.1109/TPS.2009.2016344.
    1. Kuo S.P., Tarasenko O., Chang J., Popovic S., Chen C.Y., Fan H.W., Scott A., Lahiani M., Alusta P., Drake J.D., et al. Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding. New J. Phys. 2009;11:115016. doi: 10.1088/1367-2630/11/11/115016.
    1. Kuo S. Air plasma for medical applications. J. Biomed. Sci. Eng. 2012;5:481–495. doi: 10.4236/jbise.2012.59061.
    1. Raiser J., Zenker M. Argon plasma coagulation for open surgical and endoscopic applications: State of the art. J. Phys. D Appl. Phys. 2006;39:3520–3523. doi: 10.1088/0022-3727/39/16/S10.
    1. Malick K. Clinical applications of argon plasma coagulation in endoscopy. Gastroenterol. Nurs. 2006;29:386–391. doi: 10.1097/00001610-200609000-00006.
    1. Arjunan K.P., Clyne A.M. Hydroxyl radical and hydrogen peroxide are primarily responsible for dielectric barrier discharge plasma-induced angiogenesis. Plasma Process. Polym. 2011;8:1154–1164. doi: 10.1002/ppap.201100078.
    1. Tiede R., Hirschberg J., Daeschlein G., von Woedtke T., Vioel W., Emmert S. Plasma applications: A dermatological view. Contrib. to Plasma Phys. 2014;54:118–130. doi: 10.1002/ctpp.201310061.
    1. Maisch T., Shimizu T., Li Y.F., Heinlin J., Karrer S., Morfill G., Zimmermann J.L. Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS ONE. 2012;7:e34610. doi: 10.1371/journal.pone.0034610.
    1. Foster W.K., Moy R.L., Fincher E.F. Advances in plasma skin regeneration. J. Cosmet. Dermatol. 2008;7:169–179. doi: 10.1111/j.1473-2165.2008.00385.x.
    1. Kronemyer B. Portrait PSR3 Technology Provides True Skin Regeneration, European Aesthetic Buyers Guide. Spring; Berlin/Heidelberg, Germany: 2006.
    1. Bogle M.A., Arndt K.A., Dover J.S. Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation. Arch. Dermatol. 2007;143:168–174. doi: 10.1001/archderm.143.2.168.
    1. Mertens N., Helmke A., Goppold A. March. S: Emmert, A. Kaemling, and D. Wandke; Proceedings of the Second International Conference Plasma Medicine; Boulder, CO, USA. 5–8 January 2009.
    1. Heinlin J., Isbary G., Stolz W., Morfill G., Landthaler M., Shimizu T., Steffes B., Nosenko T., Zimmermann J.L., Karrer S. Plasma applications in medicine with a special focus on dermatology. J. Eur. Acad. Dermatol. Venereol. 2011;25:1–11. doi: 10.1111/j.1468-3083.2010.03702.x.
    1. Pennisi E. A mouthful of microbes: Oral biologists are devouring new data on the composition, activity, and pathogenic potential of microbes in the mouth, the gateway to the gut. Science (80-) 2005;307:1899–1902. doi: 10.1126/science.307.5717.1899.
    1. Moore W., Moore L. The bacteria of periodontal diseases. Periodontology. 2000;5:66–77. doi: 10.1111/j.1600-0757.1994.tb00019.x.
    1. Hoffmann C., Berganza C., Zhang J. Cold Atmospheric Plasma: Methods of production and application in dentistry and oncology. Med. Gas Res. 2013;3:21. doi: 10.1186/2045-9912-3-21.
    1. Li Y. Tooth bleaching using peroxide-containing agents: Current status of safety issues. Compend. Contin. Educ. Dent. 1998;19:783–786.
    1. Kawamoto K., Tsujimoto Y. Effects of the hydroxyl radical and hydrogen peroxide on tooth bleaching. J. Endod. 2004;30:45–50. doi: 10.1097/00004770-200401000-00010.
    1. Lee H., Kim G., Kim J., Park J., Lee J. Tooth bleaching with nonthermal atmospheric pressure plasma. J. Endod. 2009;35:587–591. doi: 10.1016/j.joen.2009.01.008.
    1. Sun P., Pan J., Tian Y., Bai N., Wu H., Wang L., Yu C., Zhang J., Zhu W., Becker K.H., et al. Tooth whitening with hydrogen peroxide assisted by a direct-current cold atmospheric-pressure air plasma microjet. IEEE Trans. Plasma Sci. 2010;38:1892–1896.
    1. Pan J., Sun P., Tian Y., Zhou H., Wu H., Bai N., Liu F., Zhu W., Zhang J., Becker K.H., et al. A novel method of tooth whitening using cold plasma microjet driven by direct current in atmospheric-pressure air. IEEE Trans. Plasma Sci. 2010;38:3143–3151. doi: 10.1109/TPS.2010.2066291.
    1. Kim M.S., Koo I.G., Choi M.Y., Jung J.C., Eldali F., Lee J.K., Collins G.J. Correlated Electrical and Optical Studies of Hybrid Argon Gas–Water Plasmas and their Application to Tooth Whitening. Plasma Process. Polym. 2012;9:339–345. doi: 10.1002/ppap.201100141.
    1. Park J.K., Nam S.H., Kwon H.C., Mohamed A.A.H., Lee J.K., Kim G.C. Feasibility of nonthermal atmospheric pressure plasma for intracoronal bleaching. Int. Endod. J. 2011;44:170–175. doi: 10.1111/j.1365-2591.2010.01828.x.
    1. Nam S.H., Lee H.W., Cho S.H., Lee J.K., Jeon Y.C., Kim G.C. High-efficiency tooth bleaching using non-thermal atmospheric pressure plasma with low concentration of hydrogen peroxide. J. Appl. Oral Sci. 2013;21:265–270. doi: 10.1590/1679-775720130016.
    1. Claiborne D., Mccombs G., Lemaster M., Akman M.A., Laroussi M. Low-temperature atmospheric pressure plasma enhanced tooth whitening: The next-generation technology. Int. J. Dent. Hyg. 2014;12:108–114. doi: 10.1111/idh.12031.
    1. Arora V., Nikhil V., Suri N.K., Arora P. Cold atmospheric plasma (CAP) in dentistry. Dentistry. 2014;4:1. doi: 10.4172/2161-1122.1000189.
    1. Fridman G., Shereshevsky A., Jost M.M., Brooks A.D., Fridman A., Gutsol A., Vasilets V., Friedman G. Floating Electrode Dielectric Barrier Discharge Plasmain Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines, Plasma Chem. Plasma Process. 2007;27:163–176. doi: 10.1007/s11090-007-9048-4.
    1. Kieft I.E., Darios D., Roks A.J.M., Stoffels E. Plasma treatment of mammalian vascular cells: A quantitative description. IEEE Trans. Plasma Sci. 2005;33:771–775. doi: 10.1109/TPS.2005.844528.
    1. Stoffels E., Roks A.J.M., Deelman L.E. Delayed Effects of Cold Atmospheric Plasma on Vascular Cells. Plasma Process. Polym. 2008;5:599–605. doi: 10.1002/ppap.200800028.
    1. Kiaris H., Schally A. Apoptosis versus necrosis: Which should be the aim of cancer therapy? Exp. Biol. Med. 1999;221:87–88. doi: 10.3181/00379727-221-44388.
    1. Joh H., Kim S., Chung T., Leem S. Reactive oxygen species-related plasma effects on the apoptosis of human bladder cancer cells in atmospheric pressure pulsed plasma jets. Appl. Phys. Lett. 2012;101:53703.
    1. Kim G.J., Kim W., Kim K.T., Lee J.K. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Appl. Phys. Lett. 2010;96:21502. doi: 10.1063/1.3292206.
    1. Keidar M., Shashurin A., Volotskova O., Stepp M.A., Srinivasan P., Sandler A., Trink B. Cold atmospheric plasma in cancer therapy. Phys. Plasmas. 2013;20:057101. doi: 10.1063/1.4801516.
    1. Chen Z., Cheng X., Lin L., Keidar M. Cold atmospheric plasma discharge in water and its potential use in cancer therapy. J. Phys. D Appl. Phys. 2017;50:15208. doi: 10.1088/1361-6463/50/1/015208.
    1. Dobrynin D., Fridman G., Friedman G., Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 2009;11:115020. doi: 10.1088/1367-2630/11/11/115020.
    1. Kalghatgi S., Kelly C.M., Cerchar E., Torabi B., Alekseev O., Fridman A., Friedman G., Azizkhan-Clifford J. Effects of non-thermal plasma on mammalian cells. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0016270.
    1. Shekhter A.B., Serezhenkov V.A., Rudenko T.G., Pekshev A.V., Anatoly F. Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric Oxide. 2005;12:210–219. doi: 10.1016/j.niox.2005.03.004.
    1. Shekhter A., Kabisov R., Pekshev A., Kozlov N., Perov Y.L. Experimental and clinical validation of plasmadynamic therapy of wounds with nitric oxide. Bull. Exp. Biol. Med. 1998;126:829–834. doi: 10.1007/BF02446923.
    1. Schlegel J., Köritzer J., Boxhammer V. Plasma in cancer treatment. Clin. Plasma Med. 2013;1:2–7. doi: 10.1016/j.cpme.2013.08.001.
    1. Graves D.B. Reactive Species From Cold Atmospheric Plasma: Implications for Cancer Therapy. Plasma Process. Polym. 2014;11:1120–1127. doi: 10.1002/ppap.201400068.
    1. Kim J.Y., Wei Y., Li J., Foy P., Hawkins T., Ballato J., Kim S.O. Cancer Therapy: Single-Cell-Level Microplasma Cancer Therapy (Small 16/2011) Small. 2011;7:2290. doi: 10.1002/smll.201190059.
    1. Tanaka H., Iseki S., Nakamura K., Hayashi M., Tanaka H., Kondo H., Kajiyama H., Kano H., Kikkawa F. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 2012;100:113702. doi: 10.1557/opl.2012.927.
    1. Utsumi F., Kajiyama H., Nakamura K., Tanaka H., Ishikawa F.K.K., Kondo H., Kano H., Hori M. Effect of Indirect Nonequilibrium Atmospheric Pressure Plasma on Anti-Proliferative Activity against Chronic Chemo-Resistant Ovarian Cancer Cells In Vitro and In Vivo. PLoS ONE. 2013;8:e81576. doi: 10.1371/journal.pone.0081576.
    1. Wende K., Williams P., Dalluge J., van Gaens W., Aboubakr H., Bischof J., von Woedtke T., Goyal S.M., Weltmann K.-D., Bogaerts A., et al. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases. 2015;10:29518. doi: 10.1116/1.4919710.
    1. Bergemann C., Hoppe C., Karmazyna M., Hoentsch M., Eggert M. Physicochemical Analysis of Argon Plasma-Treated Cell Culture Medium. In: Mieno T., editor. Plasma Science and Technology-Progress in Physical States and Chemical Reactions. IntechOpen; London, UK: 2016. pp. 183–200.
    1. Yan D., Talbot A., Nourmohammadi N., Cheng X. Principles of using cold atmospheric plasma stimulated media for cancer treatment. Sci. Rep. 2015;5:18339. doi: 10.1038/srep18339.
    1. Weiss M., Gümbel D., Hanschmann E., Mandelkow R. Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS ONE. 2015;10:e0130350. doi: 10.1371/journal.pone.0130350.
    1. Nguyen N.H., Park H.J., Yang S.S., Choi K.S., Lee J.-S. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells. Sci. Rep. 2016;6:29020. doi: 10.1038/srep29020.
    1. Chen Z., Lin L., Cheng X., Gjika E., Keidar M. Treatment of gastric cancer cells with non-thermal atmospheric plasma generated in water. Biointerphases. 2016;11:31010. doi: 10.1116/1.4962130.
    1. Bernal M., Verdaguer D., Badosa J., Abadía A., Llusià J., Peñuelas J., Núñez-Olivera E., Llorens L. Effects of enhanced UV radiation and water availability on performance, biomass production and photoprotective mechanisms of Laurus nobilis seedlings. Environ. Exp. Bot. 2015;109:264–275. doi: 10.1016/j.envexpbot.2014.06.016.
    1. Teramura A.H. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol. Plant. 1983;58:415–427. doi: 10.1111/j.1399-3054.1983.tb04203.x.
    1. Karabourniotis G., Bornman J.F. Penetration of UV-A, UV-B and blue light through the leaf trichome layers of two xeromorphic plants, olive and oak, measured by optical fibre microprobes. Physiol. Plant. 1999;105:655–661. doi: 10.1034/j.1399-3054.1999.105409.x.
    1. Cen Y., Bornman J. The response of bean plants to UV-B radiation under different irradiances of background visible light. J. Exp. Bot. 1990;41:1489–1495. doi: 10.1093/jxb/41.11.1489.
    1. Ohta T. Plasma in Agriculture. In: Cullen P.J., Misra N.N., Schlüter O., editors. Cold Plasma Food Agriculture Fundamentals Application. 1st ed. Academic Press; Cambridge, MA, USA: 2016. p. 380.
    1. Ito M., Ohta T., Hori M. Plasma agriculture. J. Korean Phys. Soc. 2012;60:937–943. doi: 10.3938/jkps.60.937.
    1. Randeniya L.K., de Groot G.J.J.B. Non-Thermal Plasma Treatment of Agricultural Seeds for Stimulation of Germination, Removal of Surface Contamination and Other Benefits: A Review. Plasma Process. Polym. 2015;12:608–623. doi: 10.1002/ppap.201500042.
    1. Surowsky B., Schlüter O., Knorr D. Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review. Food Eng. Rev. 2014;7:82–108. doi: 10.1007/s12393-014-9088-5.
    1. Krapivina S.A., Filippov A.K., Levitskaya T.N., Bakhvalov A. Gas Plasma Treatment of Plant Seeds. 5,281,315. U.S. Patent. 1994 Jan 24;
    1. Volin J.C., Denes F.S., Young R.A., Park S.M.T. Modification of Seed Germination Performance through Cold Plasma Chemistry Technology. Crop Sci. 2000;40:1706–1718. doi: 10.2135/cropsci2000.4061706x.
    1. Lynikiene S., Pozeliene A. Influence of corona discharge field on seed viability and dynamics of germination. Int. Agrophysics. 2006;20:195.
    1. Bormashenko E., Shapira Y., Grynyov R., Whyman G., Bormashenko Y., Drori E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris) J. Exp. Bot. 2015;66:4013–4021. doi: 10.1093/jxb/erv206.
    1. Wang L.Y., Huang Z.L., Li G., Zhao H.X., Xing X.H., Sun W.T., Li H.P., Gou Z.X., Bao C.Y. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J. Appl. Microbiol. 2010;108:851–858. doi: 10.1111/j.1365-2672.2009.04483.x.
    1. Padureanu S. The Influence of Cold Plasma Produced by Glidarc Without Water Vapor, Upon the Cells Division in Triticum Aestivum L. Agron. Ser. Sci. Res. Stiint. Ser. Agron. 2012;55:119–124.
    1. Zhang H., Ma D., Qiu R., Tang Y., Du C. Non-thermal plasma technology for organic contaminated soil remediation: A review. Chem. Eng. J. 2017;313:157–170. doi: 10.1016/j.cej.2016.12.067.
    1. Aggelopoulos C.A., Tsakiroglou C.D., Ognier S., Cavadias S. Non-aqueous phase liquid-contaminated soil remediation by ex situ dielectric barrier discharge plasma. Int. J. Environ. Sci. Technol. 2015;12:1011–1020. doi: 10.1007/s13762-013-0489-4.
    1. Aggelopoulos C.A. Atmospheric pressure dielectric barrier discharge for the remediation of soil contaminated by organic pollutants. Int. J. Environ. Sci. Technol. 2016;13:1731–1740. doi: 10.1007/s13762-016-1009-0.
    1. Wang T., Qu G., Li J., Liang D., Hu S. Depth dependence of p-nitrophenol removal in soil by pulsed discharge plasma. Chem. Eng. J. 2014;239:178–184. doi: 10.1016/j.cej.2013.11.015.
    1. Lou J., Lu N., Li J., Wang T., Wu Y. Remediation of chloramphenicol-contaminated soil by atmospheric pressure dielectric barrier discharge. Chem. Eng. J. 2012;180:99–105. doi: 10.1016/j.cej.2011.11.013.
    1. Stryczewska H.D., Ebihara K., Takayama M., Gyoutoku Y., Tachibana M. Non-thermal plasma-based technology for soil treatment. Plasma Process. Polym. 2005;2:238–245. doi: 10.1002/ppap.200400061.
    1. Park D.P., Davis K., Gilani S., Alonzo C.A., Dobrynin D., Friedman G., Fridman A., Rabinovich A., Fridman G. Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Curr. Appl. Phys. 2013;13:S19–S29. doi: 10.1016/j.cap.2012.12.019.
    1. Sivachandiran L., Khacef A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment. RSC Adv. 2017;7:1822–1832. doi: 10.1039/C6RA24762H.
    1. Zhou R., Zhou R., Zhang X., Zhuang J., Yang S. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth. Sci. Rep. 2016;6:32603. doi: 10.1038/srep32603.
    1. Marsili L., Espie S., Anderson J.G., MacGregor S.J. Plasma inactivation of food-related microorganisms in liquids, Radiat. Phys. Chem. 2002;65:507–513.
    1. Goulet V., Hedberg C., le Monnier A., de Valk H. Increasing incidence of listeriosis in France and other European countries. Emerg. Infect. Dis. 2008;14:734–740. doi: 10.3201/eid1405.071395.
    1. Zhao Y.-M., de Alba M., Sun D.-W., Tiwari B. Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review. Crit. Rev. Food Sci. Nutr. 2018;59:1–15. doi: 10.1080/10408398.2018.1544885.
    1. Zhang Z.H., Wang L.H., Zeng X.A., Han Z., Brennan C.S. Non-thermal technologies and its current and future application in the food industry: A review. Int. J. Food Sci. Technol. 2019;54:1–13. doi: 10.1111/ijfs.13903.
    1. Jiang B., Zheng J., Wu M. Nonthermal Plasma for Effluent and Waste Treatment. Cold Plasma in Food and Agriculture: Fundamentals and Applications. Elsevier Inc.; Amsterdam, The Netherlands: 2016.
    1. Yasui S., Seki S., Yoshida R., Shoji K., Terazoe H. Sterilization of Fusarium oxysporum by treatment of non-thermalequilibrium plasma in nutrient solution. Jpn. J. Appl. Phys. 2016;55:01AB01. doi: 10.7567/JJAP.55.01AB01.
    1. Gurol C., Ekinci F.Y., Aslan N., Korachi M. Low Temperature Plasma for decontamination of E. coli in milk. Int. J. Food Microbiol. 2012;157:1–5. doi: 10.1016/j.ijfoodmicro.2012.02.016.
    1. Kim H.J., Yong H.I., Park S., Kim K., Choe W., Jo C. Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control. 2015;47:451–456. doi: 10.1016/j.foodcont.2014.07.053.
    1. Takai E., Kitano K., Kuwabara J., Shiraki K. Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution. Plasma Process. Polym. 2012;9:77–82. doi: 10.1002/ppap.201100063.
    1. Tammineedi C.V., Choudhary R., Perez-Alvarado G.C., Watson D.G. Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. LWT-Food Sci. Technol. 2013;54:35–41. doi: 10.1016/j.lwt.2013.05.020.
    1. Pankaj S.K., Misra N.N., Cullen P.J. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov. Food Sci. Emerg. Technol. 2013;19:153–157. doi: 10.1016/j.ifset.2013.03.001.
    1. Shi X.M., Zhang G.J., Wu X.L., Li Y.X., Ma Y., Shao X.J. Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Trans. Plasma Sci. 2011;39:1591–1597. doi: 10.1109/TPS.2011.2142012.
    1. Yong H.I., Kim H., Cheo J.H., Jeon H., Jung S., Park S., Choe W., Jo C. The Use of Plasma-Treated Water as a Source of Nitrite for Curing Ham. Meat Sci. 2015;108:132–137.
    1. Korachi M., Ozen F., Aslan N., Vannini L., Guerzoni M.E., Gottardi D., Ekinci F.Y. Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. Int. Dairy J. 2015;42:64–69. doi: 10.1016/j.idairyj.2014.10.006.
    1. Kovačević D.B., Putnik P., Dragović-Uzelac V., Pedisić S., Jambrak A.R., Herceg Z. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chem. 2016;190:317–323. doi: 10.1016/j.foodchem.2015.05.099.
    1. Ma T.J., Lan W.S. Effects of non-thermal plasma sterilization on volatile components of tomato juice. Int. J. Environ. Sci. Technol. 2015;12:3767–3772. doi: 10.1007/s13762-015-0796-z.
    1. Kovačević D.B., Kljusurić J.G., Putnik P., Vukušić T., Herceg Z., Dragović-Uzelac V. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chem. 2016;212:323–331. doi: 10.1016/j.foodchem.2016.05.192.
    1. Ponraj S.B., Sharp J., Kanwar J.R., Sinclair A.J., Kviz L., Nicholas K.R., Dai X.J. Sterilization of cow’ s milk using liquid plasma; Proceedings of the 22nd International Symposium on Plasma Chemistry; Antwerp, Belgium. 5–10 July 2015; pp. 5–7.
    1. Garofulić I.E., Jambrak A.R., Milošević S., Dragović-Uzelac V., Zorić Z., Herceg Z. The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice. LWT-Food Sci. Technol. 2015;62:894–900.
    1. Van Nguyen D. Experimental Studies of Streamer Phenomena in Long Oil Gaps. Norwegian University of Science and Technology; Trondheim, Norway: 2013.
    1. Zakaria I.H., Ahmad M.H., Arief Y.Z., Awang N.A., Ahmad N.A. Characteristics of mineral oil-based nanofluids for power transformer application. Int. J. Electr. Comput. Eng. 2017;7:1530–1537. doi: 10.11591/ijece.v7i3.pp1530-1537.
    1. Qin C., He Y., Shi B., Zhao T., Lv F., Cheng X. Experimental study on breakdown characteristics of transformer oil influenced by bubbles. Energies. 2018;11:634. doi: 10.3390/en11030634.
    1. Mankowski J., Dickens J. High voltage subnanosecond breakdown. IEEE Trans. Plasma Sci. 1998;26:874–881. doi: 10.1109/27.700858.
    1. Haidara M., Denat A. Electron multiplication in liquid cyclohexane and propane: An estimation of the ionization coefficient; Proceedings of the IEEE 10th International Conference on Conduction and Breakdown in Dielectric Liquids; Grenoble, France. 10–14 September 1990; pp. 397–401.
    1. Dumitrescu L., Lesaint O., Bonifaci N., Denat A. Study of streamer inception in cyclohexane with a sensitive charge measurement technique under impulse voltage. J. Electrostat. 2001;53:135–146. doi: 10.1016/S0304-3886(01)00136-X.
    1. Gournay P., Lesaint O. A study of the inception of positive streamers in cyclohexane and pentane. J. Phys. D Appl. Phys. 1993;26:1966–1974. doi: 10.1088/0022-3727/26/11/019.
    1. Chadband W.G. On variations in the propagation of positive discharges between transformer oil and silicone fluids. J. Phys. D Appl. Phys. 1980;13:1299–1307. doi: 10.1088/0022-3727/13/7/025.
    1. Yamashita H., Amano H., Mori T. Optical observation of pre-breakdown and breakdown phenomena in transformer oil. J. Phys. D Appl. Phys. 1977;10:1753. doi: 10.1088/0022-3727/10/13/010.
    1. Yamashita H., Amano H. Pre-breakdown current and light emission in transformer oil. IEEE Trans. Electr. Insul. 1985;2:247–255. doi: 10.1109/TEI.1985.348827.
    1. Rafiq M., Lv Y., Li C. A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids. J. Nanomater. 2016;2016:24. doi: 10.1155/2016/8371560.
    1. Liao T.W., Anderson J.G. Propagation Mechanism of Impulse Corona and Breakdown in Oil. Trans. Am. Inst. Electr. Eng. Part I Commun. Electron. 1953;72:641–648. doi: 10.1109/TCE.1953.6371939.
    1. Hizal E.M., Dincer S. Breakdown time lags and prebreakdown phenomena in transformer oil, effects of hydrostatic pressure. J. Electrostat. 1982;12:333–343. doi: 10.1016/0304-3886(82)90100-0.
    1. Linhjell D., Lundgaard L., Berg G. Streamer propagation under impulse voltage in long point-plane oil gaps. IEEE Trans. Dielectr. Electr. Insul. 1994;1:447–458. doi: 10.1109/94.300288.
    1. Lesaint O., Massala G. Positive streamer propagation in large oil gaps: Experimental characterization of propagation modes. IEEE Trans. Dielectr. Electr. Insul. 1998;5:360–370. doi: 10.1109/94.689425.
    1. Lundgaard L., Linhjell D., Berg G., Sigmond S. Propagation of positive and negative streamers in oil with and without pressboard interfaces. IEEE Trans. Dielectr. Electr. Insul. 1998;5:388–395. doi: 10.1109/94.689428.
    1. Badent R., Kist K., Schwab A.J. Prebreakdown phenomena in insulating oil at large gap distances; Proceedings of the 1994 4th International Conference Properties Applications of Dielectric Matererials; Queensland, Australia. 3–8 July 1994; pp. 103–106.
    1. Rain P., Lesaint O. Prebreakdown Phenomena in Mineral Oil under Step and ac Voltage in large-gap divergent fields. IEEE Trans. Dielectr. Electr. Insul. 1994;1:692–701. doi: 10.1109/94.311712.
    1. Lesaint O., Saker A., Gournay P., Tobazeon R., Aubin J., Mailhot M. Streamer propagation and breakdown under ac voltage in very large oil gaps. IEEE Trans. Dielectr. Electr. Insul. 1998;5:351–359. doi: 10.1109/94.689424.
    1. Massala G., Lesaint O. Positive streamer propagation in large oil gaps: Electrical properties of streamers. IEEE Trans. Dielectr. Electr. Insul. 1998;5:371–380. doi: 10.1109/94.689426.
    1. Saker A., Lesaint O., Tobazeon R. Propagation of streamers in mineral oil at large distances; Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena; Arlington, TX, USA. 23–26 October 1994; pp. 889–894.
    1. Massala G., Lesaint O. A comparison of negative and positive streamers in mineral oil at large gaps. J. Phys. D Appl. Phys. 2001;34:1525. doi: 10.1088/0022-3727/34/10/312.
    1. Chadband W., Sufian T. Experimental support for a model of positive streamer propagation in liquid insulation. IEEE Trans. Electr. Insul. 1985;2:239–246. doi: 10.1109/TEI.1985.348826.
    1. Hebner R.E., Kelley E.F., Forster E.O., FitzPatrick G.J. Observation of prebreakdown and breakdown phenomena in liquid hydrocarbons II. Non-uniform field conditions. IEEE Trans. Electr. Insul. 1985;2:281–292. doi: 10.1109/TEI.1985.348832.
    1. Lesaint O., Jung M. On the relationship between streamer branching and propagation in liquids: Influence of pyrene in cyclohexane. J. Phys. D Appl. Phys. 2000;33:1360–1368. doi: 10.1088/0022-3727/33/11/315.
    1. Ingebrigtsen S., Lundgaard L.E., Åstrand P.O. Effects of additives on prebreakdown phenomena in liquid cyclohexane: II. Streamer propagation. J. Phys. D Appl. Phys. 2007;40:5624. doi: 10.1088/0022-3727/40/18/018.
    1. Linhjell D., Ingebrigtsen S., Lundgaard L.E., Unge M. Streamers in long point-plane gaps in cyclohexane with and without additives under step voltage; Proceedings of the IEEE International Conference on Dielectric Liquids; Trondheim, Norway. 26–30 June 2011; pp. 1–5.
    1. Dung N.V., Høidalen H.K., Linhjell D., Lundgaard L.E., Unge M. Effects of reduced pressure and additives on streamers in white oil in long point-plane gap. J. Phys. D Appl. Phys. 2013;46:255501. doi: 10.1088/0022-3727/46/25/255501.
    1. Duy C.T., Lesaint O., Denat A., Bonifaci N. Streamer propagation and breakdown in natural ester at high voltage. IEEE Trans. Dielectr. Electr. Insul. 2009;16:1582–1594. doi: 10.1109/TDEI.2009.5361578.
    1. Liu Q., Wang Z.D. Streamer characteristic and breakdown in synthetic and natural ester transformer liquids with pressboard interface under lightning impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2011;18:1908–1917. doi: 10.1109/TDEI.2011.6118629.
    1. Hueso J.L., Rico V.J., Cotrino J., Jime J.M., Gonza A.R. Water plasmas for the revalorisation of heavy oils and cokes from petroleum refining. Environ. Sci. Technol. 2009;43:2557–2562. doi: 10.1021/es900236b.
    1. Prieto G., Okumoto M., Takashima K., Katsura S., Mizuno A., Prieto O., Gay C.R. Nonthermal plasma reactors for the production of light hydrocarbon olefins from heavy oil. Braz. J. Chem. Eng. 2003;20:57–61. doi: 10.1590/S0104-66322003000100011.
    1. Prieto G., Okumoto M., Shimano K. Reforming of heavy oil using nonthermal plasma. IEEE Trans. Ind. Appl. 2001;37:1464–1467. doi: 10.1109/28.952522.
    1. Honorato H.D., Silva R.C., Piumbini C.K., Zucolotto C.G., De Souza A.A., Cunha A.G., Emmerich F.G., Lacerda V., De Castro E.V., Bonagamba T.J., et al. 1 H low-and high-field NMR study of the effects of plasma treatment on the oil and water fractions in crude heavy oil. Fuel. 2012;92:62–68. doi: 10.1016/j.fuel.2011.08.009.
    1. Massala G., Lesaint O. On the correlation between propagation mode, charge and shape of streamers in mineral oil; Proceedings of the ICDL’96. 12th International Conference on Conduction and Breakdown in Dielectric Liquids; Roma, Italy. 15–19 July 1996; pp. 255–258.
    1. Kamata Y., Kako Y. Flashover Characteristics of Extremely Long Gaps in Transformer Oil under Non-Uniform Field Conditions. IEEE Trans. Electr. Insul. 1980;15:18–26. doi: 10.1109/TEI.1980.298292.
    1. Trinh N.G., Saker A. Interpretation of the Physical Mechanisms in the Breakdown of Long Gaps in Transformer Oil; Proceedings of the International Conference on Conduction and Breakdown in Dielectric Liquids; Roma, Italy. 15–19 July 1996; pp. 287–291.
    1. Tian C., Chao Y., Ying Y., Yan-Hong D. Photoluminescence of silicone oil treated by fluorocarbon plasma. Chin. Phys. B. 2012;21:97802.
    1. Rezaei F., Nikiforov A., Morent R., de Geyter N. Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers. Sci. Rep. 2018;8:2241. doi: 10.1038/s41598-018-20714-5.
    1. Rezaei F., Gorbanev Y., Chys M., Nikiforov A., van Hulle S.W.H., Cos P., Bogaerts A., de Geyter N. Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Process. Polym. 2018:e1700226. doi: 10.1002/ppap.201700226.
    1. Colombo V., Fabiani D., Focarete M.L., Gherardi M., Gualandi C., Laurita R., Zaccaria M. Atmospheric Pressure Non-Equilibrium Plasma Treatment to Improve the Electrospinnability of Poly( L -Lactic Acid) Polymeric Solution. Plasma Process. Polym. 2014;11:247–255. doi: 10.1002/ppap.201300141.
    1. Shi Q., Vitchuli N., Nowak J., Lin Z., Guo B., McCord M., Bourham M., Zhang X. Atmospheric Plasma Treatment of Pre-Electrospinning Polymer Solution: A Feasible Method to Improve Electrospinnability. J. Polym. Sci. Part B Polym. Phys. 2011;49:115–122. doi: 10.1002/polb.22157.
    1. Shi Q., Vitchuli N., Nowak J., Caldwell J.M., Breidt F., Bourham M., Zhang X., McCord M. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur. Polym. J. 2011;47:1402–1409. doi: 10.1016/j.eurpolymj.2011.04.002.
    1. Grande S., van Guyse J., Nikiforov A.Y., Onyshchenko I., Asadian M., Morent R., Hoogenboom R., de Geyter N. Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning. ACS Appl. Mater. Interfaces. 2017;9:33080–33090. doi: 10.1021/acsami.7b08439.
    1. Chen J.P., Su C.H. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 2011;7:234–243. doi: 10.1016/j.actbio.2010.08.015.
    1. Zhang Y., Li J., An G., He X. Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties. Sens. Actuators B Chem. 2010;144:43–48. doi: 10.1016/j.snb.2009.10.012.
    1. Yoon Y.I., Moon H.S., Lyoo W.S., Lee T.S., Park W.H. Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment. Carbohydr. Polym. 2009;75:246–250. doi: 10.1016/j.carbpol.2008.07.015.
    1. Wang H., Tang H., He J., Wang Q. Fabrication of aligned ferrite nanofibers by magnetic-field-assisted electrospinning coupled with oxygen plasma treatment. Mater. Res. Bull. 2009;44:1676–1680. doi: 10.1016/j.materresbull.2009.04.006.
    1. Ghobeira R., Philips C., de Naeyer V., Declercq H., Cools P., de Geyter N., Cornelissen R., Morent R. Comparative study of the surface properties and cytocompatibility of plasma-treated poly-ϵ-caprolactone nanofibers subjected to different sterilization methods. J. Biomed. Nanotechnol. 2017;13:699–716. doi: 10.1166/jbn.2017.2377.
    1. Asadian M., Dhaenens M., Onyshchenko I., de Waele S., Declercq H., Cools P., Devreese B., Deforce D., Morent R., de Geyter N. Plasma Functionalization of Polycaprolactone Nanofibers Changes Protein Interactions with Cells, Resulting in Increased Cell Viability. ACS Appl. Mater. Interfaces. 2018;10:41962–41977. doi: 10.1021/acsami.8b14995.
    1. Asadian M., Onyshchenko I., Thiry D., Cools P., Declercq H., Snyders R., Morent R., de Geyter N. Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Appl. Surf. Sci. 2019;479:942–952. doi: 10.1016/j.apsusc.2019.02.178.
    1. Grande S., Cools P., Asadian M., van Guyse J., Onyshchenko I., Declercq H., Morent R., Hoogenboom R., de Geyter N. Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering. Macromol. Biosci. 2018;18:1800309. doi: 10.1002/mabi.201800309.

Source: PubMed

3
Abonnere