Plasma-Treated Solutions (PTS) in Cancer Therapy

Hiromasa Tanaka, Sander Bekeschus, Dayun Yan, Masaru Hori, Michael Keidar, Mounir Laroussi, Hiromasa Tanaka, Sander Bekeschus, Dayun Yan, Masaru Hori, Michael Keidar, Mounir Laroussi

Abstract

Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer's lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to the toxic action of PTSs, suggesting a broad mechanism of action based on the tumor-toxic activity of ROS/RNS stored in these solutions. Moreover, it is indicated that the PTS has immuno-stimulatory properties. Two different routes of application are currently envisaged in the clinical setting. One is direct injection into the bulk tumor, and the other is lavage in patients suffering from peritoneal carcinomatosis adjuvant to standard chemotherapy. While many promising results have been achieved so far, several obstacles, such as the standardized generation of large volumes of sterile PTS, remain to be addressed.

Keywords: PAM; cold physical plasma; low-temperature plasma; nonthermal plasma; oncology; plasma medicine; plasma-activated medium; reactive nitrogen species; reactive oxygen species.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Direct plasma treatment exposes the biological target such as in vitro cells or in vivo or ex vivo tissue directly to the plasma gas phase. Plasma-treated solution (PTS), in turn, is generated by exposing a solution to the plasma gas phase and subsequently transferring this liquid to a target cell culture in vitro or for injection in vivo. Reproduced from [28]. Copyright 2020 MDPI.
Figure 2
Figure 2
Reactive species in the plasma gas phase dissolve into the bulk liquid to subsequently reach the cells with potentially cytotoxic consequences. The example shows an in vitro setup. Modified from [29]. Copyright 2014 IEEE.
Figure 3
Figure 3
Intracellular reactive oxygen and nitrogen species (ROS/RNS) dynamics in Plasma-Treated Solution (PTS)-exposed HeLa cells. (a) total RONS determined using CM-H2DCFDA fluorescent stain reagent; (b) H2O2 determined using OxiVision fluorescent stain reagent; (c)•NO determined using DAF-FM-DA fluorescent stain reagent; (d) •O2- determined using DHE fluorescent stain reagent; (e) •OH, ONOO−, and OCl− determined using APF fluorescent stain reagent; (f) •OH and ONOO− determined using HPF fluorescent stain reagent; (g) ONOO− determined using NiSPY-3 fluorescent stain reagent; (h) OCl− determined treatment using HySOx fluorescent stain reagent. The symbols * and # indicate significant differences between PAM and nontreatment and between PAM and 24 h DMEM treatment. One symbol; p < 0.05, double symbols; p < 0.01, triple symbols; p < 0.005. Modified from [60]. Copyright 2017 Wiley.
Figure 4
Figure 4
The PTS composition affects its extent of cytotoxicity. (a) Pancreatic cancer cell line PA-TU-8988T. (b) Glioblastoma cell line U87MG. Student’s t-test was performed and the significance is indicated as *** p < 0.005. Reproduced from [58]. Copyright 2017 Springer Nature.
Figure 5
Figure 5
Differences in gene expression dynamics between PTS- (medium, plasma-activated medium (“PAM”)) and PTS-exposed (Ringer’s lactate, plasma-activated Ringer’s lactate (“PAL”)) U251SP cells. Relative mRNA expression of GADD45α (a), GADD45β (b), ATF3 (c), and c-JUN (d) was calculated using qRT-PCR. Reproduced from [63].
Figure 6
Figure 6
Intracellular molecular mechanisms of cell death in PTS-exposed (cell culture medium) A549 cells. Reproduced from [41]. Copyright 2014 S Elsevier.
Figure 7
Figure 7
Gene expression network, signal transduction network, and metabolic network affected by PTS.
Figure 8
Figure 8
Inhibition of cytochrome C oxidase and the addition of PTS (fully supplemented cell culture medium, kINPen argon plasma jet) leads to an increase in superoxide anions (red) in the mitochondrial matrix that results in loss of MMP and subsequent ATP depletion. This finally leads to an energy crisis and cell death. Reproduced from [74]. Copyright 2018 Springer Nature.
Figure 9
Figure 9
The well size-dependent ROS/RNS accumulation in PTS. (a) Relative RNS concentration in 1 mL of PTS. (b) Relative H2O2 concentration in 1 mL of PTS. Student’s t-tests were performed and the significance compared with the first bar is indicated as *** p < 0.005. Reproduced from [75]. Copyright 2015 Springer Nature.
Figure 10
Figure 10
Effectiveness of stored/aged PTS (cell culture medium) to induce cell death in SCaBER cells for storage times of 1, 8, and 12 h, when measuring metabolic activity another 12 h later. Reproduced from [82].
Figure 11
Figure 11
Cysteine and methionine mainly cause the degradation of PTS (cell culture medium) at 22°C and 8 °C. (a) The H2O2 concentration in PTS (PBS) containing a specific component during the storage at 22 °C. (b) The H2O2 concentration in the PTS (cys/met-free DMEM, cys-free DMEM, met-free DMEM, and standard DMEM) during the storage at 8 °C. (c) The anticancer effect of the PTS (cys/met-free DMEM, cys-free DMEM, met-free DMEM, and standard DMEM) after storage at 8 °C. Student’s t-tests were performed and the significance is indicated as * p < 0.05 and *** p < 0.005. Reproduced from [31]. Copyright 2016 Springer Nature.
Figure 12
Figure 12
The effect of the gap, gas flow rate, plasma treatment time, the occurrence of discharges at the liquid surface, and the stability of a PTS (PBS, kINPen argon plasma jet) on the concentrations of NO2- and H2O2 in PTS and on the anticancer capacity of PTSs for three different cancer cell lines. Reproduced from [85]. Copyright 2017 Springer Nature.
Figure 13
Figure 13
Antitumor effect of PTS (RPMI, “PAM”) in mice with NOS2 and NOS2TR (paclitaxel-resistant) cell lines. (A,B): The macroscopic observation of nude mice bearing subcutaneous NOS2 (A) and NOS2TR (B) tumors on both flanks. Mice were injected with NOS2 and NOS2TR cells and then received medium alone or NEAPP-AM. A total of 0.4 mL of medium or NEAPP-AM was administered locally into both sides of mice three times a week. All mice were sacrificed at 29 days after implantation. Green arrowheads indicate tumor formation. (C,D): Time-dependent changes in the tumor volume in xenografted models are shown, medium alone or NEAPP-AM. Each point on the line graph represents the mean tumor volume (mm3) for each group on a particular day after implantation, and the bars represent SD. * p < 0.05, ** p < 0.01 versus control. Reproduced from [39]. Copyright 2013 PLOS.
Figure 14
Figure 14
Efficacy of the intraperitoneal administration of PTS (“PAM”) in vivo. Reproduced from [78]. Copyright 2017 Springer Nature.
Figure 15
Figure 15
Efficacy of the repeated intraperitoneal administration (a) of PTS (RPMI medium without supplements) against syngeneic, orthotopic, disseminated pancreatic cancer analyzed using MR-Imaging (I–II) and macroscopic imaging (III–IV) (b) and its quantification (c) as well the absolute tumor weights (d). Each triangle represents one mouse. * p < 0.05, ** p < 0.01. Reprinted with permission from [86]. Copyright 2017 Springer Nature.
Figure 16
Figure 16
Efficacy of the repeated intraperitoneal administration of PTS (NaCl, kINPen argon plasma jet) against syngeneic, orthotopic and disseminated colorectal in mice (a) and its absolute tumor weights (b). Each triangle represents one mouse. *** p < 0.001. Reproduced from [40]. Copyright 2019 Springer Nature.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Arnér E.S., Holmgren A. The thioredoxin system in cancer. Semin. Cancer Biol. 2006;16:420–426. doi: 10.1016/j.semcancer.2006.10.009.
    1. Lorenzen I., Mullen L., Bekeschus S., Hanschmann E.-M. Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. Oxidative Med. Cell. Longev. 2017;2017:1–23. doi: 10.1155/2017/8459402.
    1. Bansal A., Simon M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 2018;217:2291–2298. doi: 10.1083/jcb.201804161.
    1. Laroussi M. Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans. Plasma Sci. 1996;24:1188–1191. doi: 10.1109/27.533129.
    1. Laroussi M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects. IEEE Trans. Plasma Sci. 2002;30:1409–1415. doi: 10.1109/TPS.2002.804220.
    1. Isbary G., Heinlin J., Shimizu T., Zimmermann J., Morfill G., Schmidt H.-U., Monetti R., Steffes B., Bunk W., Li Y., et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: Results of a randomized controlled trial. Br. J. Dermatol. 2012;167:404–410. doi: 10.1111/j.1365-2133.2012.10923.x.
    1. Nosenko T., Shimizu T., Morfill G.E. Designing plasmas for chronic wound disinfection. New J. Phys. 2009;11:115013. doi: 10.1088/1367-2630/11/11/115013.
    1. Privat-Maldonado A., Schmidt A., Lin A., Weltmann K.-D., Wende K., Bogaerts A., Bekeschus S. ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. Oxidative Med. Cell. Longev. 2019;2019:1–29. doi: 10.1155/2019/9062098.
    1. Lu X., Naidis G., Laroussi M., Reuter S., Graves D., Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016;630:1–84. doi: 10.1016/j.physrep.2016.03.003.
    1. Stratmann B., Costea T.-C., Nolte C., Hiller J., Schmidt J., Reindel J., Masur K., Motz W., Timm J., Kerner W., et al. Effect of Cold Atmospheric Plasma Therapy vs Standard Therapy Placebo on Wound Healing in Patients with Diabetic Foot Ulcers. JAMA Netw. Open. 2020;3:e2010411. doi: 10.1001/jamanetworkopen.2020.10411.
    1. Von Woedtke T., Schmidt A., Bekeschus S., Wende K., Weltmann K.-D. Plasma Medicine: A Field of Applied Redox Biology. In Vivo. 2019;33:1011–1026. doi: 10.21873/invivo.11570.
    1. Fridman G., Shereshevsky A., Jost M.M., Brooks A.D., Fridman A., Gutsol A., Vasilets V., Friedman G. Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines. Plasma Chem. Plasma Process. 2007;27:163–176. doi: 10.1007/s11090-007-9048-4.
    1. Schlegel J., Köritzer J., Boxhammer V. Plasma in cancer treatment. Clin. Plasma Med. 2013;1:2–7. doi: 10.1016/j.cpme.2013.08.001.
    1. Barekzi N., Laroussi M. Effects of Low Temperature Plasmas on Cancer Cells. Plasma Process. Polym. 2013;10:1039–1050. doi: 10.1002/ppap.201300083.
    1. Keidar M., Walk R.M., Shashurin A., Srinivasan P., Sandler A.B., Dasgupta S., Ravi R., Guerreropreston R., Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br. J. Cancer. 2011;105:1295–1301. doi: 10.1038/bjc.2011.386.
    1. Vandamme M., Robert E., Lerondel S., Sarron V., Ries D., Dozias S., Sobilo J., Gosset D., Kieda C., Legrain B., et al. ROS implication in a new antitumor strategy based on non-thermal plasma. Int. J. Cancer. 2012;130:2185–2194. doi: 10.1002/ijc.26252.
    1. Semmler M.L., Bekeschus S., Schäfer M., Bernhardt T., Fischer T., Witzke K., Seebauer C., Rebl H., Grambow E., Vollmar B., et al. Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment. Cancers. 2020;12:269. doi: 10.3390/cancers12020269.
    1. Keidar M. Plasma Cancer Therapy. Springer; Berlin/Heidelberg, Germany: 2020.
    1. Metelmann H.-R., Seebauer C., Miller V., Fridman A., Bauer G., Graves D.B., Pouvesle J.-M., Rutkowski R., Schuster M., Bekeschus S., et al. Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin. Plasma Med. 2018;9:6–13. doi: 10.1016/j.cpme.2017.09.001.
    1. Metelmann H.-R., Seebauer C., Rutkowski R., Schuster M., Bekeschus S., Metelmann P. Treating cancer with cold physical plasma: On the way to evidence-based medicine. Contrib. Plasma Phys. 2018;58:415–419. doi: 10.1002/ctpp.201700085.
    1. Bekeschus S., Schmidt A., Weltmann K.-D., Von Woedtke T. The plasma jet kINPen—A powerful tool for wound healing. Clin. Plasma Med. 2016;4:19–28. doi: 10.1016/j.cpme.2016.01.001.
    1. Tanaka H., Mizuno M., Ishikawa K., Nakamura K., Kajiyama H., Kano H., Kikkawa F., Hori M. Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase. Plasma Med. 2011;1:265–277. doi: 10.1615/PlasmaMed.2012006275.
    1. Kaushik N.K., Ghimire B., Li Y., Adhikari M., Veerana M., Kaushik N., Jha N., Adhikari B., Lee S.-J., Masur K., et al. Biological and medical applications of plasma-activated media, water and solutions. Biol. Chem. 2018;400:39–62. doi: 10.1515/hsz-2018-0226.
    1. Wende K., von Woedtke T., Weltmann K.D., Bekeschus S. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biol. Chem. 2018;400:19–38. doi: 10.1515/hsz-2018-0242.
    1. Bauer G. Intercellular singlet oxygen-mediated bystander signaling triggered by long-lived species of cold atmospheric plasma and plasma-activated medium. Redox Biol. 2019;26:101301. doi: 10.1016/j.redox.2019.101301.
    1. Freund E., Bekeschus S. Gas plasma-oxidized liquids for cancer treatment: Pre-clinical relevance, immuno-oncology, and clinical obstacles. IEEE Trans. Radiat. Plasma Med. Sci. 2020;1 doi: 10.1109/TRPMS.2020.3029982.
    1. Hasse S., Meder T., Freund E., Von Woedtke T., Bekeschus S. Plasma Treatment Limits Human Melanoma Spheroid Growth and Metastasis Independent of the Ambient Gas Composition. Cancers. 2020;12:2570. doi: 10.3390/cancers12092570.
    1. Tanaka H., Mizuno M., Ishikawa K., Takeda K., Nakamura K., Utsumi F., Kajiyama H., Kano H., Okazaki Y., Toyokuni S., et al. Plasma medical science for cancer therapy: Toward cancer therapy using Nonthermal Atmospheric Pressure Plasma. IEEE Trans. Plasma Sci. 2014;42:3760–3764. doi: 10.1109/TPS.2014.2353659.
    1. Yan D., Sherman J.H., Keidar M. The application of the cold atmospheric plasma-activated solutions in cancer treatment. Anti-Cancer Agents Med. Chem. 2018;18:769–775. doi: 10.2174/1871520617666170731115233.
    1. Yan D., Nourmohammadi N., Bian K., Murad F., Sherman J.H., Keidar M. Stabilizing the cold plasma-stimulated medium by regulating medium’s composition. Sci. Rep. 2016;6:26016. doi: 10.1038/srep26016.
    1. Sato Y., Yamada S., Takeda S., Hattori N., Nakamura K., Tanaka H., Mizuno M., Hori M., Kodera Y. Effect of plasma-activated lactated ringer’s solution on pancreatic cancer cells in vitro and in vivo. Ann. Surg. Oncol. 2017;25:299–307. doi: 10.1245/s10434-017-6239-y.
    1. Verlackt C.C.W., Van Boxem W., Bogaerts A. Transport and accumulation of plasma generated species in aqueous solution. Phys. Chem. Chem. Phys. 2018;20:6845–6859. doi: 10.1039/C7CP07593F.
    1. Bekeschus S., Freund E., Wende K., Gandhirajan R.K., Schmidt A. Hmox1 Upregulation Is a Mutual Marker in Human Tumor Cells Exposed to Physical Plasma-Derived Oxidants. Antioxidants. 2018;7:151. doi: 10.3390/antiox7110151.
    1. Xu D., Cui Q., Xu Y., Wang B., Tian M., Li Q., Liu Z., Liu D., Chen H., Kong M.G. Systemic study on the safety of immuno-deficient nude mice treated by atmospheric plasma-activated water. Plasma Sci. Technol. 2018;20:044003. doi: 10.1088/2058-6272/aa9842.
    1. Tanaka H., Nakamura K., Mizuno M., Ishikawa K., Takeda K., Kajiyama H., Utsumi F., Kikkawa F., Hori M. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Sci. Rep. 2016;6:36282. doi: 10.1038/srep36282.
    1. Freund E., Liedtke K.R., Gebbe R., Heidecke A.K., Partecke L.-I., Bekeschus S. In Vitro Anticancer Efficacy of Six Different Clinically Approved Types of Liquids Exposed to Physical Plasma. IEEE Trans. Radiat. Plasma Med Sci. 2019;3:588–596. doi: 10.1109/TRPMS.2019.2902015.
    1. Wende K., Reuter S., Von Woedtke T., Weltmann K.-D., Masur K. Redox-Based Assay for Assessment of Biological Impact of Plasma Treatment. Plasma Process. Polym. 2014;11:655–663. doi: 10.1002/ppap.201300172.
    1. Utsumi F., Kajiyama H., Nakamura K., Tanaka H., Mizuno M., Ishikawa K., Kondo H., Kano H., Hori M., Kikkawa F. Effect of Indirect Nonequilibrium Atmospheric Pressure Plasma on Anti-Proliferative Activity against Chronic Chemo-Resistant Ovarian Cancer Cells In Vitro and In Vivo. PLoS ONE. 2013;8:e81576. doi: 10.1371/journal.pone.0081576.
    1. Freund E., Liedtke K.R., Van Der Linde J., Metelmann H.-R., Heidecke C.-D., Partecke L.-I., Bekeschus S. Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo. Sci. Rep. 2019;9:1–18. doi: 10.1038/s41598-018-37169-3.
    1. Adachi T., Tanaka H., Nonomura S., Hara H., Kondo S.-I., Hori M. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial–nuclear network. Free Radic. Biol. Med. 2015;79:28–44. doi: 10.1016/j.freeradbiomed.2014.11.014.
    1. Wende K., Bekeschus S., Schmidt A., Jatsch L., Hasse S., Weltmann K.D., Masur K., von Woedtke T. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat. Res. Genet. Toxicol Environ. Mutagen. 2016;798–799:48–54. doi: 10.1016/j.mrgentox.2016.02.003.
    1. Torii K., Yamada S., Nakamura K., Tanaka H., Kajiyama H., Tanahashi K., Iwata N., Kanda M., Kobayashi D., Tanaka C., et al. Effectiveness of plasma treatment on gastric cancer cells. Gastric Cancer. 2015;18:635–643. doi: 10.1007/s10120-014-0395-6.
    1. Hattori N., Yamada S., Torii K., Takeda S., Nakamura K., Tanaka H., Kajiyama H., Kanda M., Fujii T., Nakayama G., et al. Effectiveness of plasma treatment on pancreatic cancer cells. Int. J. Oncol. 2015;47:1655–1662. doi: 10.3892/ijo.2015.3149.
    1. Bekeschus S., Käding A., Schröder T., Wende K., Hackbarth C., Liedtke K.R., Van Der Linde J., Von Woedtke T., Heidecke C.-D., Partecke L.-I. Cold Physical Plasma-Treated Buffered Saline Solution as Effective Agent Against Pancreatic Cancer Cells. Anti-Cancer Agents Med. Chem. 2018;18:824–831. doi: 10.2174/1871520618666180507130243.
    1. Liedtke K.-R., Freund E., Hermes M., Oswald S., Heidecke C.-D., Partecke L.-I., Bekeschus S. Gas Plasma-Conditioned Ringer’s Lactate Enhances the Cytotoxic Activity of Cisplatin and Gemcitabine in Pancreatic Cancer In Vitro and In Ovo. Cancers. 2020;12:123. doi: 10.3390/cancers12010123.
    1. Bundscherer L., Bekeschus S., Tresp H., Hasse S., Reuter S., Weltmann K.-D., Lindequist U., Masur K. Viability of Human Blood Leukocytes Compared with Their Respective Cell Lines after Plasma Treatment. Plasma Med. 2013;3:71–80. doi: 10.1615/PlasmaMed.2013008538.
    1. Schmidt A., Rödder K., Hasse S., Masur K., Toups L., Lillig C.H., Von Woedtke T., Wende K., Bekeschus S. Redox-regulation of activator protein 1 family members in blood cancer cell lines exposed to cold physical plasma-treated medium. Plasma Process. Polym. 2016;13:1179–1188. doi: 10.1002/ppap.201600090.
    1. Schmidt A., Bekeschus S., Von Woedtke T., Hasse S. Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment. Clin. Plasma Med. 2015;3:24–31. doi: 10.1016/j.cpme.2015.05.003.
    1. Mohades S., Barekzi N., Laroussi M. Efficacy of Low Temperature Plasma against SCaBER Cancer Cells. Plasma Process. Polym. 2014;11:1150–1155. doi: 10.1002/ppap.201400108.
    1. Tornin J., Mateu-Sanz M., Rodríguez A., Labay C., Rodríguez R., Canal C. Pyruvate Plays a Main Role in the Antitumoral Selectivity of Cold Atmospheric Plasma in Osteosarcoma. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-47128-1.
    1. Biscop E., Lin A., Van Boxem W., Van Loenhout J., De Backer J., Deben C., Dewilde S., Smits E., Bogaerts A.A. Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment. Cancers. 2019;11:1287. doi: 10.3390/cancers11091287.
    1. Reuter S., Von Woedtke T., Weltmann K.-D. The kINPen—A review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. D Appl. Phys. 2018;51:233001. doi: 10.1088/1361-6463/aab3ad.
    1. Bekeschus S., Kolata J., Winterbourn C., Kramer A., Turner R., Weltmann K.D., Bröker B., Masur K. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radic. Res. 2014;48:542–549. doi: 10.3109/10715762.2014.892937.
    1. Bauer G. Targeting Protective Catalase of Tumor Cells with Cold Atmospheric Plasma- Activated Medium (PAM) Anti-Cancer Agents Med. Chem. 2018;18:784–804. doi: 10.2174/1871520617666170801103708.
    1. Bauer G. The synergistic effect between hydrogen peroxide and nitrite, two long-lived molecular species from cold atmospheric plasma, triggers tumor cells to induce their own cell death. Redox Biol. 2019;26:101291. doi: 10.1016/j.redox.2019.101291.
    1. Kurake N., Tanaka H., Ishikawa K., Kondo T., Sekine M., Nakamura K., Kajiyama H., Kikkawa F., Mizuno M., Hori M. Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch. Biochem. Biophys. 2016;605:102–108. doi: 10.1016/j.abb.2016.01.011.
    1. Yan D., Cui H., Zhu W., Nourmohammadi N., Milberg J., Zhang L.G., Sherman J.H., Keidar M. The specific vulnerabilities of cancer cells to the cold atmospheric plasma-stimulated solutions. Sci. Rep. 2017;7:4479. doi: 10.1038/s41598-017-04770-x.
    1. Kalghatgi S., Kelly C.M., Cerchar E., Torabi B., Alekseev O., Fridman A., Friedman G., Azizkhan-Clifford J. Effects of Non-Thermal Plasma on Mammalian Cells. PLoS ONE. 2011;6:e16270. doi: 10.1371/journal.pone.0016270.
    1. Furuta R., Kurake N., Ishikawa K., Takeda K., Hashizume H., Tanaka H., Kondo H., Sekine M., Hori M. Intracellular responses to reactive oxygen and nitrogen species, and lipid peroxidation in apoptotic cells cultivated in plasma-activated medium. Plasma Process. Polym. 2017;14:1700123. doi: 10.1002/ppap.201700123.
    1. Winterbourn C.C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta (BBA) Gen. Subj. 2014;1840:730–738. doi: 10.1016/j.bbagen.2013.05.004.
    1. Kalyanaraman B., Darleyusmar V.M., Davies K.J.A., Dennery P.A., Forman H.J., Grisham M.B., Mann G.E., Moore K., Roberts L.J., Ischiropoulos H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 2012;52:1–6. doi: 10.1016/j.freeradbiomed.2011.09.030.
    1. Tanaka H., Mizuno M., Katsumata Y., Ishikawa K., Kondo H., Hashizume H., Okazaki Y., Toyokuni S., Nakamura K., Yoshikawa N., et al. Oxidative stress-dependent and -independent death of glioblastoma cells induced by non-thermal plasma-exposed solutions. Sci. Rep. 2019;9:13657. doi: 10.1038/s41598-019-50136-w.
    1. Bekeschus S., Wende K., Hefny M.M., Rödder K., Jablonowski H., Schmidt A., Von Woedtke T., Weltmann K.-D., Benedikt J. Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Sci. Rep. 2017;7:2791. doi: 10.1038/s41598-017-03131-y.
    1. Bekeschus S., Wulf C.P., Freund E., Koensgen D., Mustea A., Weltmann K.-D., Stope M.B. Plasma treatment of ovarian cancer cells mitigates their immuno-modulatory products active on THP-1 monocytes. Plasma. 2018;1:201–217. doi: 10.3390/plasma1010018.
    1. Privat-Maldonado A., Gorbanev Y., Dewilde S., Smits E., Bogaerts A. Reduction of human glioblastoma spheroids using cold atmospheric plasma: The combined effect of short- and long-lived reactive species. Cancers. 2018;10:394. doi: 10.3390/cancers10110394.
    1. Masur K., Von Behr M., Bekeschus S., Weltmann K.-D., Hackbarth C., Heidecke C.-D., Von Bernstorff W., Von Woedtke T., Partecke L.I. Synergistic inhibition of tumor cell proliferation by cold plasma and gemcitabine. Plasma Process. Polym. 2015;12:1377–1382. doi: 10.1002/ppap.201500123.
    1. Bekeschus S., Masur K., Kolata J., Wende K., Schmidt A., Bundscherer L., Barton A., Kramer A., Bröker B., Weltmann K.-D. Human Mononuclear Cell Survival and Proliferation is Modulated by Cold Atmospheric Plasma Jet. Plasma Process. Polym. 2013;10:706–713. doi: 10.1002/ppap.201300008.
    1. Bekeschus S., Scherwietes L., Freund E., Liedtke K.R., Hackbarth C., Von Woedtke T., Partecke L.-I. Plasma-treated medium tunes the inflammatory profile in murine bone marrow-derived macrophages. Clin. Plasma Med. 2018;11:1–9. doi: 10.1016/j.cpme.2018.06.001.
    1. Yan D., Xiao H., Zhu W., Nourmohammadi N., Zhang L.G., Bian K., Keidar M. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. J. Phys. D Appl. Phys. 2017;50:055401. doi: 10.1088/1361-6463/aa53d6.
    1. Tanaka H., Mizuno M., Ishikawa K., Takeda K., Hashizume H., Nakamura K., Utsumi F., Kajiyama H., Okazaki Y., Toyokuni S., et al. Glioblastoma cell lines display different sensitivities to plasma-activated medium. IEEE Trans. Radiat. Plasma Med. Sci. 2017;2:99–102. doi: 10.1109/TRPMS.2017.2721973.
    1. Utsumi F., Kajiyama H., Nakamura K., Tanaka H., Hori M., Kikkawa F. Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma. SpringerPlus. 2014;3:398. doi: 10.1186/2193-1801-3-398.
    1. Tanaka H., Mizuno M., Ishikawa K., Nakamura K., Utsumi F., Kajiyama H., Kano H., Maruyama S., Kikkawa F., Hori M. Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Med. 2012;2:207–220. doi: 10.1615/PlasmaMed.2013008267.
    1. Gandhirajan R.K., Rödder K., Bodnar Y., Pasqual-Melo G., Emmert S., Griguer C.E., Weltmann K.-D., Bekeschus S. Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction. Sci. Rep. 2018;8:12734. doi: 10.1038/s41598-018-31031-2.
    1. Yan D., Talbot A., Nourmohammadi N., Cheng X., Canady J., Sherman J.H., Keidar M. Principles of using Cold Atmospheric Plasma Stimulated Media for Cancer Treatment. Sci. Rep. 2015;5:18339. doi: 10.1038/srep18339.
    1. Boehm D., Heslin C., Cullen P.J., Bourke P. Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Sci. Rep. 2016;6:21464. doi: 10.1038/srep21464.
    1. Girard P.-M., Arbabian A., Fleury M., Bauville G., Puech V., Dutreix M., Sousa J.S. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma. Sci. Rep. 2016;6:29098. doi: 10.1038/srep29098.
    1. Takeda S., Yamada S., Hattori N., Nakamura K., Tanaka H., Kajiyama H., Kanda M., Kobayashi D., Tanaka C., Fujii T., et al. Intraperitoneal Administration of Plasma-Activated Medium: Proposal of a Novel Treatment Option for Peritoneal Metastasis From Gastric Cancer. Ann. Surg. Oncol. 2017;24:1188–1194. doi: 10.1245/s10434-016-5759-1.
    1. Mohades S., Laroussi M., Sears J., Barekzi N., Razavi H. Evaluation of the effects of a plasma activated medium on cancer cells. Phys. Plasmas. 2015;22:122001. doi: 10.1063/1.4933367.
    1. Yan D., Sherman J.H., Cheng X., Ratovitski E., Canady J., Keidar M. Controlling plasma stimulated media in cancer treatment application. Appl. Phys. Lett. 2014;105:224101. doi: 10.1063/1.4902875.
    1. Judée F., Fongia C., Ducommun B., Yousfi M., Lobjois V., Merbahi N. Short and long time effects of low temperature plasma activated media on 3D multicellular tumor spheroids. Sci. Rep. 2016;6:21421. doi: 10.1038/srep21421.
    1. Mohades S., Barekzi N., Razavi H., Maruthamuthu V., Laroussi M. Temporal evaluation of the anti-tumor efficiency of plasma-activated media. Plasma Process. Polym. 2016;13:1206–1211. doi: 10.1002/ppap.201600118.
    1. Van Loenhout J., Flieswasser T., Boullosa L.F., De Waele J., Van Audenaerde J., Marcq E., Jacobs J., Lin A., Lion E., Dewitte H., et al. Cold atmospheric plasma-treated PBS eliminates immunosuppressive pancreatic stellate cells and induces immunogenic cell death of pancreatic cancer cells. Cancers. 2019;11:1597. doi: 10.3390/cancers11101597.
    1. Heusler T., Bruno G., Bekeschus S., Lackmann J.-W., Von Woedtke T., Wende K. Can the effect of cold physical plasma-derived oxidants be transported via thiol group oxidation? Clin. Plasma Med. 2019;14:100086. doi: 10.1016/j.cpme.2019.100086.
    1. Van Boxem W., Van Der Paal J., Gorbanev Y., Vanuytsel S., Smits E., Dewilde S., Bogaerts A. Anti-cancer capacity of plasma-treated PBS: Effect of chemical composition on cancer cell cytotoxicity. Sci. Rep. 2017;7:16478. doi: 10.1038/s41598-017-16758-8.
    1. Liedtke K.R., Bekeschus S., Kaeding A., Hackbarth C., Kuehn J.-P., Heidecke C.-D., Von Bernstorff W., Von Woedtke T., Partecke L.I. Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo. Sci. Rep. 2017;7:8319. doi: 10.1038/s41598-017-08560-3.
    1. Liedtke K.R., Freund E., Hackbarth C., Heidecke C.-D., Partecke L.-I., Bekeschus S. A myeloid and lymphoid infiltrate in murine pancreatic tumors exposed to plasma-treated medium. Clin. Plasma Med. 2018;11:10–17. doi: 10.1016/j.cpme.2018.07.001.
    1. Obeid M., Tesniere A., Ghiringhelli F., Fimia G.M., Apetoh L., Perfettini J.-L., Castedo M., Mignot G., Panaretakis T., Casares N., et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007;13:54–61. doi: 10.1038/nm1523.
    1. Bekeschus S., Clemen R., Nießner F., Sagwal S.K., Freund E., Schmidt A. Medical gas plasma jet technology targets murine melanoma in an immunogenic fashion. Adv. Sci. 2020;7:1903438. doi: 10.1002/advs.201903438.

Source: PubMed

3
Abonnere