Effects of Plasma-Activated Water on Skin Wound Healing in Mice

Dehui Xu, Shuai Wang, Bing Li, Miao Qi, Rui Feng, Qiaosong Li, Hao Zhang, Hailan Chen, Michael G Kong, Dehui Xu, Shuai Wang, Bing Li, Miao Qi, Rui Feng, Qiaosong Li, Hao Zhang, Hailan Chen, Michael G Kong

Abstract

Cold atmospheric plasma (CAP) has been widely used in biomedicine during the last two decades. While direct plasma treatment has been reported to promote wound healing, its application can be uneven and inconvenient. In this study, we first activated water with a portable dielectric barrier discharge plasma device and evaluated the inactivation effect of plasma-activated water (PAW) on several kinds of bacteria that commonly infect wounds. The results show that PAW can effectively inactivate these bacteria. Then, we activated tap water and examined the efficacy of PAW on wound healing in a mouse model of full-thickness skin wounds. We found that wound healing in mice treated with PAW was significantly faster compared with the control group. Histological analysis of the skin tissue of mice wounds showed a significant reduction in the number of inflammatory cells in the PAW treatment group. To identify the possible mechanism by which PAW promotes wound healing, we analyzed changes in the profiles of wound bacteria after PAW treatment. The results show that PAW can significantly reduce the abundance of wound bacteria in the treatment group. The results of biochemical blood tests and histological analysis of major internal organs in the mice show that PAW had no obvious side effects. Taken together, these results indicate that PAW may be a new and effective method for promoting wound healing without side effects.

Keywords: bacterial inactivation; plasma-activated water; wound healing.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) Schematic diagram of the internal connection of the portable device and (B) photograph of the portable device.
Figure 2
Figure 2
Inactivation effect of plasma-activated water (PAW) on Pseudomonas aeruginosa. The bacterial inactivation efficiency on Pseudomonas aeruginosa following incubation with PAW for 5 min after activating water for 1, 3, and 5 min in terms of (A) relative total ATP content and (B) relative total bacterial count. The results of activating water for 5 min and the effects of PAW incubation for 3, 7, and 11 min in terms of (C) relative total ATP content and (D) relative total bacterial count of Pseudomonas aeruginosa. All data are expressed as the mean ± SD of three separate experiments.
Figure 3
Figure 3
Inactivation effect of PAW on various kinds of bacteria. The results of activating water for 5 min and the effects of PAW incubating on bacteria for 5 min in (A) Pseudomonas aeruginosa, (B) Escherichia coli, (C) Staphylococcus aureus, and (D) Salmonella paratyphi-B, and (E) the statistical results of (A–D).
Figure 4
Figure 4
Timeline for animal experiments. The wounds of the mice in the treatment group had completely healed on day 17, and the wounds of the mice in the control group had completely healed on day 23.
Figure 5
Figure 5
Photographs of the wound healing process. Photographs of the mice wounds were captured at different time points (days 0, 4, 7, 10, and 17) for (A) the PAW treatment group and (B) the control group. (C) The results of the statistical analysis of wound diameters of mice in the treatment group (red lines) and the control group (blue lines) on days 0, 4, 7, 10, and 17. (D) The results of the analysis of the time required for the wounds to completely heal in the two groups of mice. Data are expressed as the mean ± SD, n = 5; **p < 0.01 (Student’s t-test).
Figure 6
Figure 6
Representative histology of skin wounds in mice on day 10. The wound skin tissues of mice from (A) the control group and (B) the PAW treatment group were stained by hematoxylin and eosin.
Figure 7
Figure 7
Differences in the types of bacterial operational taxonomic units (OTU) on skin wounds from (A) the control and (B) PAW treatment groups.
Figure 8
Figure 8
A heat map showing the differences in the bacterial abundance in (A) the control (n = 4) and (B) PAW treatment (n = 3) groups. Red indicates that the genus is more abundant in the sample than in other samples, and blue indicates that the genus is less abundant in the sample than other samples.
Figure 9
Figure 9
Relative abundance of some major bacterial operational taxonomic units (OTU) in the wound site in the control and PAW treatment group. (A) Azoarcus (Bacteria, Proteobacteria, Betaproteobacteria, Rhodocyclales, Rhodocyclaceae), (B) Enterococcus (Bacteria, Firmicutes, Bacilli, Lactobacillales, Enterococcaceae), (C) TM7_3 (Bacteria, TM7) and (D) Spirochaetes (Bacteria, Spirochaetes).
Figure 10
Figure 10
Representative histology of heart, liver, spleen, lung, and kidney stained by hematoxylin and eosin.

References

    1. Geoffrey C.G., Sabine W., Yann B., Michael T.L. Wound repair and regeneration. Nature. 2008;453:314–321.
    1. Lee M.-J., Lee D.J., Jung H.-S. Wound healing mechanism in Mongolian gerbil skin. Histochem. Cell Biol. 2018;151:229–238. doi: 10.1007/s00418-018-1752-z.
    1. Franks P.J., Barker J., Collier M., Gethin G., Haesler E., Jawien A., Laeuchli S., Mosti G., Probst S., Weller C. Management of Patients With Venous Leg Ulcers: Challenges and Current Best Practice. J. Wound Care. 2016;25:S1–S67. doi: 10.12968/jowc.2016.25.Sup6.S1.
    1. Hernandez R. The use of systemic antibiotics in the treatment of chronic wounds. Dermatol. Ther. 2010;19:326–337. doi: 10.1111/j.1529-8019.2006.00091.x.
    1. Shao T., Zhang C., Wang R.X., Yan P., Ren C.Y. Atmospheric-pressure Pulsed Gas Discharge and Pulsed Plasma Application. High Volt. Eng. 2016;42:685–705.
    1. Walsh J.L., Shi J.J., Kong M.G. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets. Appl. Phys. Lett. 2006;88:171501.1–171501.3. doi: 10.1063/1.2198100.
    1. Fridman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A. Applied Plasma Medicine. Plasma Process. Polym. 2008;5:503–533. doi: 10.1002/ppap.200700154.
    1. Kong M.G., Kroesen G., Morfill G., Nosenko T., Shimizu T., van Dijk J., Zimmermann J.L. Plasma medicine: An introductory review. New J. Phys. 2009;11:115012. doi: 10.1088/1367-2630/11/11/115012.
    1. Nayansi J., Jun R.J., Ha C.E., Kumar K.N. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry. Oxidative Med. Cell. Longev. 2017;2017:7542540
    1. Chen Z., Liu D., Xu H., Xia W., Liu Z., Xu D., Rong M., Kong M.G. Decoupling analysis of the production mechanism of aqueous reactive species induced by a helium plasma jet. Plasma Sources Sci. Technol. 2019;28:025001. doi: 10.1088/1361-6595/ab006b.
    1. He T., Liu D., Liu Z., Liu Z., Li Q., Rong M., Kong M.G. The mechanism of plasma-assisted penetration of NO2- in model tissues. Appl. Phys. Lett. 2017;111:203702. doi: 10.1063/1.4999366.
    1. Liu D.X., Liu Z.C., Chen C., Yang A.J., Li D., Rong M.Z., Chen H.L., Kong M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737.
    1. Pavlovich M.J., Chang H.W., Sakiyama Y., Clark D.S., Graves D.B. Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J. Phys. D Appl. Phys. 2013;46:145202. doi: 10.1088/0022-3727/46/14/145202.
    1. Reuter S., Winter J., Iseni S., Schmidt-Bleker A., Dunnbier M., Masur K., Wende K., Weltmann K.D. The Influence of Feed Gas Humidity Versus Ambient Humidity on Atmospheric Pressure Plasma Jet-Effluent Chemistry and Skin Cell Viability. IEEE Trans. Plasma Sci. 2015;43:3185–3192. doi: 10.1109/TPS.2014.2361921.
    1. Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001.
    1. Halliwell B., Gutteridge J.M. Free Radicals In Biology and Medicine. J. Free Radic. Biol. Med. 2007;1:331–332. doi: 10.1016/0748-5514(85)90140-0.
    1. Keidar M., Shashurin A., Volotskova O., Ann Stepp M., Srinivasan P., Sandler A., Trink B. Cold atmospheric plasma in cancer therapy. Phys. Plasmas. 2013;20:057101. doi: 10.1063/1.4801516.
    1. Keidar M., Walk R., Shashurin A., Srinivasan P., Sandler A., Dasgupta S., Ravi R., Guerrero-Preston R., Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br. J. Cancer. 2011;105:1295–1301. doi: 10.1038/bjc.2011.386.
    1. Ma J., Zhang H., Cheng C., Shen J., Bao L., Han W. Contribution of hydrogen peroxide to non-thermal atmospheric pressure plasma induced A549 lung cancer cell damage. Plasma Process. Polym. 2017;14:1600162. doi: 10.1002/ppap.201600162.
    1. Kuo S.P., Tarasenko O., Chang J., Popovic S., Chen C.Y., Fan H.W., Scott A., Lahiani M., Alusta P., Drake J.D. Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding. New J. Phys. 2009;11:115016. doi: 10.1088/1367-2630/11/11/115016.
    1. Lee J., Kim W.S., Bae K.B., Yun G., Lee J.K. Variation of Physical Parameters and Anomalous Healing Observation in Plasma Wound Healing. IEEE Trans. Plasma Sci. 2019;47:4833–4839. doi: 10.1109/TPS.2019.2923750.
    1. Lloyd G., Friedman G., Jafri S., Schultz G., Fridman A., Harding K. Gas Plasma: Medical Uses and Developments in Wound Care. Plasma Process. Polym. 2010;7:194–211. doi: 10.1002/ppap.200900097.
    1. Daeschlein G., von Woedtke T., Kindel E., Brandenburg R., Weltmann K.D., Jünger M. Antibacterial Activity of an Atmospheric Pressure Plasma Jet Against Relevant Wound Pathogens in vitro on a Simulated Wound Environment. Plasma Process. Polym. 2010;7:224–230. doi: 10.1002/ppap.200900059.
    1. Heinlin J., Isbary G., Stolz W., Morfill G.E., Karrer S. Plasma applications in medicine with a special focus on dermatology. J. Eur. Acad. Dermatol. Venereol. 2010;25:1–11. doi: 10.1111/j.1468-3083.2010.03702.x.
    1. Klämpfl T.G., Isbary G., Shimizu T., Li Y.-F., Zimmermann J.L., Stolz W., Schlegel J., Gregor E.M., Schmidt H.-U. Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest. Appl. Environ. Microbiol. 2012;78:5077–5082. doi: 10.1128/AEM.00583-12.
    1. Daeschlein G., Scholz S., von Woedtke T., Niggemeier M., Kindel E., Brandenburg R., Weltmann K.-D., Junger M. In Vitro Killing of Clinical Fungal Strains by Low-Temperature Atmospheric-Pressure Plasma Jet. IEEE Trans. Plasma Sci. 2011;39:815–821. doi: 10.1109/TPS.2010.2063441.
    1. He Y.Y., Ding C.B., Jin T., Fan Y.Y., Wu Z.W., Sun M.W., Wang K., Ji T. Sensitivity of two drug-resistant bacteria to low-temperature air plasma in catheter-associated urinary tract infections under different environments. Plasma Sci. Technol. 2020;22:065502. doi: 10.1088/2058-6272/ab770d.
    1. Bhatt S., Mehta P., Chen C., Daines D.A., Mermel L.A., Chen H.L., Kong M.G. Antimicrobial Efficacy and Safety of a Novel Gas Plasma-Activated Catheter Lock Solution. Antimicrob. Agents Chemother. 2018;62:e00744-18. doi: 10.1128/AAC.00744-18.
    1. Laberge A., Arif S., Moulin V.J. Microvesicles: Intercellular Messengers in Cutaneous Wound Healing. J. Cell. Physiol. 2018;233:5550–5563. doi: 10.1002/jcp.26426.
    1. Sander B., Anke S., Lydia B., Kai M., Thomas V.W., Sybille H., Kristian W. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma. Oxidative Med. Cell. Longev. 2016;2016:5910695
    1. Wende K., Strassenburg S., Haertel B., Harms M., Holtz S., Barton A., Masur K., Von Woedtke T., Lindequist U. Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology. Cell Biol. Int. 2014;38:412–425. doi: 10.1002/cbin.10200.
    1. Schmidt A., Bekeschus S., Wende K., Vollmar B., Von Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp. Dermatol. 2017;26:156–162. doi: 10.1111/exd.13156.
    1. Bekeschus S., Winterbourn C.C., Kolata J., Masur K., Hasse S., Broker B.M., Parker H.A. Neutrophil extracellular trap formation is elicited in response to cold physical plasma. J. Leukoc. Biol. 2016;100:791–799. doi: 10.1189/jlb.3A0415-165RR.
    1. Li D.H., Li G.L., Li J., Liu Z.-Q., Zhang X.M., Li H.-P. Promotion of Wound Healing of Genetic Diabetic Mice Treated by a Cold Atmospheric Plasma Jet. IEEE Trans. Plasma Sci. 2019;47:4848–4860. doi: 10.1109/TPS.2019.2928320.
    1. Kim D.W., Park T.J., Jang S.J., You S.J., Oh W.Y. Plasma Treatment Effect on Angiogenesis in Wound Healing Process Evaluated in Vivo Using Angiographic Optical CoherenceTomography. Appl. Phys. Lett. 2016;109:233701. doi: 10.1063/1.4967375.
    1. Haertel B., Woedtke T.V., Weltmann K.D., Lindequist U. Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing. Biomol. Ther. 2014;22:477–490. doi: 10.4062/biomolther.2014.105.
    1. Li Y., Ho Kang M., Sup Uhm H., Lee G.J., Choi E.H., Han I. Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells. Sci. Rep. 2017;7:45781. doi: 10.1038/srep45781.
    1. Darny T., Pouvesle J.-M., Puech V., Douat C., Dozias S., Robert E. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Sci. Technol. 2017;26:045008. doi: 10.1088/1361-6595/aa5b15.
    1. Szili E., Oh J.-S., Fukuhara H., Bhatia R., Gaur N., Nguyen C., Hong S.-H., Ito S., Ogawa K., Kawada C. Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour. Plasma Sources Sci. Technol. 2018;27:014001. doi: 10.1088/1361-6595/aa9b3b.
    1. Zhao Y., Chen R.C., Tian E.Q., Liu D.P., Niu J.H., Wang W.C., Qi Z.H., Xia Y., Song Y., Zhao Z.G. Plasma-Activated Water Treatment of Fresh Beef: Bacterial Inactivation and Effects on Quality Attribute. IEEE Trans. Radiat. Plasma Med Sci. 2020;4:113–120. doi: 10.1109/TRPMS.2018.2883789.
    1. Liu K., Yang Z.H., Liu S.T. Study of the Characteristics of DC Multineedle-to-Water Plasma-Activated Water and Its Germination Inhibition Efficiency: The Effect of Discharge Mode and Gas Flow. IEEE Trans. Plasma Sci. 2020;48:969–979. doi: 10.1109/TPS.2020.2980040.
    1. Wang L.Y., Xia C.K., Guo Y.J., Yang C.J., Cheng C., Zhao J., Yang X.Y., Cao Z.C. Bactericidal efficacy of cold atmospheric plasma treatment against multidrug-resistant Pseudomonas aeruginosa. Future Microbiol. 2020;15:115–125. doi: 10.2217/fmb-2019-0265.
    1. Jones L.M., Dunham D., Rennie M.Y., Kirman J., Dacosta R.S., Lopez A.J., Keim K.C., Little W., Gomez A., Smith A.C., et al. In vitro detection of porphyrin-producing wound bacteria with real-time fluorescence imaging. Future Microbiol. 2020;15:319–332. doi: 10.2217/fmb-2019-0279.
    1. Traylor M.J., Pavlovich M.J., Karim S., Hait P., Graves D.B. Long-term antibacterial efficacy of air plasma-activated water. J. Phys. D Appl. Phys. 2011;44:472001. doi: 10.1088/0022-3727/44/47/472001.
    1. Zhou R., Zhou R., Prasad K., Fang Z., Speight R., Bazaka K., Ostrikov K. Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite. Green Chem. 2018;20:5276–5284. doi: 10.1039/C8GC02800A.
    1. Nakamura K., Peng Y., Utsumi F., Tanaka H., Mizuno M., Toyokuni S., Hori M., Kikkawa F., Kajiyama H. Novel Intraperitoneal Treatment With Non-Thermal Plasma-Activated Medium Inhibits Metastatic Potential of Ovarian Cancer Cells. Sci. Rep. 2017;7:6085. doi: 10.1038/s41598-017-05620-6.
    1. Liedtke K.R., Bekeschus S., Kaeding A., Hackbarth C., Kuehn J.-P., Heidecke C.-D., von Bernstorff W., von Woedtke T., Partecke L.I. Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo. Sci. Rep. 2017;7:8319. doi: 10.1038/s41598-017-08560-3.

Source: PubMed

3
Abonnere