Soluble Urokinase Plasminogen Activator Receptor (suPAR) as a Biomarker of Systemic Chronic Inflammation

Line Jee Hartmann Rasmussen, Jens Emil Vang Petersen, Jesper Eugen-Olsen, Line Jee Hartmann Rasmussen, Jens Emil Vang Petersen, Jesper Eugen-Olsen

Abstract

Systemic chronic inflammation (SCI) is persistent, health-damaging, low-grade inflammation that plays a major role in immunosenescence and in development and progression of many diseases. But currently, there are no recognized standard biomarkers to assess SCI levels alone, and SCI is typically measured by combining biomarkers of acute inflammation and infection, e.g., CRP, IL-6, and TNFα. In this review, we highlight 10 properties and characteristics that are shared by the blood protein soluble urokinase plasminogen activator receptor (suPAR) and SCI, supporting the argument that suPAR is a biomarker of SCI: (1) Expression and release of suPAR is upregulated by immune activation; (2) uPAR and suPAR exert pro-inflammatory functions; (3) suPAR is associated with the amount of circulating immune cells; (4) Blood suPAR levels correlate with the levels of established inflammatory biomarkers; (5) suPAR is minimally affected by acute changes and short-term influences, in contrast to many currently used markers of systemic inflammation; (6) Like SCI, suPAR is non-specifically associated with multiple diseases; (7) suPAR and SCI both predict morbidity and mortality; (8) suPAR and SCI share the same risk factors; (9) suPAR is associated with risk factors and outcomes of inflammation above and beyond other inflammatory biomarkers; (10) The suPAR level can be reduced by anti-inflammatory interventions and treatment of disease. Assessing SCI has the potential to inform risk for morbidity and mortality. Blood suPAR is a newer biomarker which may, in fact, be a biomarker of SCI since it is stably associated with inflammation and immune activation; shares the same risk factors as many age-related diseases; is both elevated by and predicts age-related diseases. There is strong evidence that suPAR is a prognostic marker of adverse events, morbidity, and mortality. It is associated with immune activity and prognosis across diverse conditions, including kidney disease, cardiovascular disease, cancer, diabetes, and inflammatory disorders. Thus, we think it likely represents a common underlying disease-process shared by many diseases; that is, SCI. We review the supporting literature and propose a research agenda that can help test the hypothesis that suPAR indexes SCI, with the potential of becoming the new gold standard for measuring SCI.

Keywords: C-reactive protein; biomarkers; immunosenescence; inflammaging; inflammation; inflammation mediators - blood; interleukin-6.

Conflict of interest statement

JE-O is a named inventor on patents on suPAR as a prognostic biomarker. The patents are owned by Copenhagen University Hospital Amager and Hvidovre, Denmark, and is licensed to ViroGates A/S. JE-O is a co-founder, shareholder, and CSO of ViroGates A/S. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Rasmussen, Petersen and Eugen-Olsen.

Figures

Figure 1
Figure 1
Inflammatory functions of uPAR and suPAR. Upon an inflammatory stimulus, e.g., stimulation of toll-like receptors (TLRs) or cytokine receptors, the expression of urokinase plasminogen activator receptor (uPAR) in immunologically active cells is increased via activation of transcription factors, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP1), which bind to the promoter region of the PLAUR gene. The uPAR mRNA is either degraded (by p53) or stabilized for translation (by HuR or hnRNPC), after which uPAR is expressed at the cell surface, bound to the membrane via a glycosyl phosphatidylinositol (GPI) anchor. At the cell surface, uPAR can become cleaved by various proteases or its own ligand urokinase plasminogen activator (uPA), thus generating suPAR, which plays a role in inflammation by impairing neutrophil efferocytosis and stimulating angiogenesis and chemotaxis. Active uPA cleaves plasminogen to plasmin, which in turn cleaves and activates uPA. Plasmin activates matrix metalloproteases (MMPs), cleaves extracellular matrix (ECM) components, degrades fibrin, and activates the classical complement pathway, thereby promoting migration and invasion of cells, fibrinolysis, vasodilation, opsonization, and phagocytosis of foreign pathogens. Co-localization of uPAR with the proteins cytokeratin-1 (CK1) and globular C1q receptor (gC1qR) on the surface of endothelial cells also promotes vasodilation through release of bradykinin via activation of kallikrein. In a complex with β2 integrin and gC1qR, uPAR also induces release of cytokines (IL-1β, IL-6, TNFα) and chemokines (IL-8, MCP-1), upon stimulation by cleaved high molecular weight kininogen (HKa). Cytokines stimulate the production of C-reactive protein (CRP) from the liver, and CRP itself functions as an opsonin and also activates the classical complement pathway. Furthermore, uPAR interacts with vitronectin, fibrinogen, and integrins, mainly αMβ2 integrin (Mac-1) but also β1 and β3 integrin complexes, activating intracellular signaling pathways that facilitate cell adhesion, migration, invasion, proliferation, and survival by affecting F-actin assembly and gene transcription. The activity of uPA and plasmin is inhibited by plasminogen activator inhibitor (PAI)-1, PAI-2, and α2-antiplasmin. Binding of PAI-1 and low-density lipoprotein receptor-related protein 1 (LRP1) mediates endocytosis of uPAR-uPA-PAI-1 complexes, followed by lysosomal degradation of uPA and PAI-1 and recycling of uPAR back to the membrane. In endothelial cells, co-localization of uPAR with CK1 and gC1qR activates kallikrein and promotes the release of the vasodilator bradykinin. hnRNPC, heterogeneous nuclear ribonucleoprotein C; HuR, Hu antigen R; IL, interleukin; MCP-1, monocyte chemoattractant protein-1; TNFα, tumor necrosis factor α. Adapted from Rasmussen, LJH (2018) (19) with permission.
Figure 2
Figure 2
Structure of uPAR and suPAR isoforms. Soluble urokinase plasminogen activator receptor (suPAR) is the soluble form of the membrane-bound receptor uPAR, which is tethered to the membrane by a glycosyl phosphatidylinositol (GPI) anchor. The protein consists of three domains, D1-D3, that are connected with a linker region between D1 and D2D3. Several cleavage sites exist, both in the linker region and the GPI anchor, and proteolytic cleavage generates three suPAR isoforms: full-length suPARI-III, suPARI, and suPARII-III. Cleavage of uPAR/suPAR in the linker region exposes an SRSRY sequence, which is involved in chemotaxis. Reprinted from Rasmussen, LJH (2018) (19) with permission.
Figure 3
Figure 3
Functions of suPAR. The urokinase plasminogen activator receptor (uPAR) is expressed on the surface of immune cells, endothelial cells, and vascular smooth muscle cells, and proteolytic cleavage in the linker region or glycosyl phosphatidylinositol (GPI) anchor of uPAR generates soluble uPAR (suPAR). Various functions of suPAR have been proposed, including inhibition of neutrophil efferocytosis; binding of urokinase plasminogen activator (uPA) and vitronectin; stimulation of angiogenesis via endothelial sprouting and tube formation; promoting chemotaxis; and interactions with β3 integrin, which is suggested to cause podocyte injury in the glomeruli. Adapted from Rasmussen, LJH (2018) (19) with permission.
Figure 4
Figure 4
Overview of diseases with elevated suPAR levels. Clinical studies have shown that suPAR levels are elevated and associated with disease severity and prognosis in many diseases, including diseases of the brain, liver, kidneys, and respiratory system, cardiovascular disease, diabetes (type 1 and type 2), cancer as well as infectious, rheumatic, and psychiatric disorders. COVID-19, coronavirus disease 2019; FSGS, focal segmental glomerulosclerosis; HIV, human immunodeficiency virus; suPAR, soluble urokinase plasminogen activator receptor. Created with BioRender.com.
Figure 5
Figure 5
Levels of CRP, IL-6, and suPAR in the three inflammation groups identified by latent class analysis in the E-Risk study (n=1,390). Panels on the left show boxplots (box indicates median and interquartile range, and whiskers indicate 95% confidence interval) of untransformed C-reactive protein (CRP), interleukin-6 (IL-6), and soluble urokinase plasminogen activator receptor (suPAR) levels in the three groups, while the panel on the right shows mean Z-scores with standard deviations (M=0, SD=1). Group 1 (n=1,057) consisted of individuals with low CRP, IL-6, and suPAR. Group 2 (n=249) consisted of individuals with high CRP and IL-6 and moderately elevated suPAR. Group 3 (n=84) consisted of individuals with elevated CRP and IL-6 and high suPAR. Data from Rasmussen LJH, et al. (2020) (163).

References

    1. World Health Organization . (2014). Global Status Report on Noncommunicable Diseases 2014. World Health Organization.
    1. Furman D, Campisi J, Verdin E, Carrera-bastos P, Targ S, Franceschi C, et al. . Chronic Inflammation in the Etiology of Disease Across the Life Span. Nat Med (2019) 25:1822–32. doi: 10.1038/s41591-019-0675-0
    1. Yuan N, Chen Y, Xia Y, Dai J, Liu C. Inflammation-Related Biomarkers in Major Psychiatric Disorders: A Cross-Disorder Assessment of Reproducibility and Specificity in 43 Meta-Analyses. Transl Psychiatry (2019) 9:233. doi: 10.1038/s41398-019-0570-y
    1. Miller AH. Beyond Depression: The Expanding Role of Inflammation in Psychiatric Disorders. World Psychiatry (2020) 19:108–9. doi: 10.1002/wps.20723
    1. Medzhitov R. Origin and Physiological Roles of Inflammation. Nature (2008) 454:428–35. doi: 10.1038/nature07201
    1. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, Criqui M, et al. . Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: A Statement for Healthcare Professionals From the Centers for Disease Control and Prevention and the American Heart Association. Circulation (2003) 107:499–511. doi: 10.1161/01.CIR.0000052939.59093.45
    1. Ridker PM. Clinical Application of C-Reactive Protein for Cardiovascular Disease Detection and Prevention. Circulation (2003) 107:363–9. doi: 10.1161/01.CIR.0000053730.47739.3C
    1. Alpert A, Pickman Y, Leipold M, Rosenberg-Hasson Y, Ji X, Gaujoux R, et al. . A Clinically Meaningful Metric of Immune Age Derived From High-Dimensional Longitudinal Monitoring. Nat Med (2019) 25:487–95. doi: 10.1038/s41591-019-0381-y
    1. Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, et al. . An Inflammatory Aging Clock (Iage) Based on Deep Learning Tracks Multimorbidity, Immunosenescence, Frailty and Cardiovascular Aging. Nat Aging (2021) 1:598–615. doi: 10.1038/s43587-021-00082-y
    1. Zeier M, Reiser J. suPAR and Chronic Kidney Disease—A Podocyte Story. Pflugers Arch (2017) 469:1017–20. doi: 10.1007/s00424-017-2026-7
    1. Ni W, Han Y, Zhao J, Cui J, Wang K, Wang R, et al. . Serum Soluble Urokinase-Type Plasminogen Activator Receptor as a Biological Marker of Bacterial Infection in Adults: A Systematic Review and Meta-Analysis. Sci Rep (2016) 6:39481. doi: 10.1038/srep39481
    1. Hodges GW, Bang CN, Wachtell K, Eugen-Olsen J, Jeppesen JL. suPAR: A New Biomarker for Cardiovascular Disease? Can J Cardiol (2015) 31:1293–302. doi: 10.1016/j.cjca.2015.03.023
    1. Desmedt S, Desmedt V, Delanghe JR, Speeckaert R, Speeckaert MM. The Intriguing Role of Soluble Urokinase Receptor in Inflammatory Diseases. Crit Rev Clin Lab Sci (2017) 54:117–33. doi: 10.1080/10408363.2016.1269310
    1. Marsland AL. suPAR: A Newer Biomarker of Systemic Chronic Inflammation. Brain Behav Immun (2021) 98:263–4. doi: 10.1016/j.bbi.2021.08.224
    1. Mustjoki S, Sidenius N, Sier CF, Blasi F, Elonen E, Alitalo R, et al. . Soluble Urokinase Receptor Levels Correlate With Number of Circulating Tumor Cells in Acute Myeloid Leukemia and Decrease Rapidly During Chemotherapy. Cancer Res (2000) 60:7126–32.
    1. Kjellman A, Akre O, Gustafsson O, Høyer-Hansen G, Lilja H, Norming U, et al. . Soluble Urokinase Plasminogen Activator Receptor as a Prognostic Marker in Men Participating in Prostate Cancer Screening. J Intern Med (2011) 269:299–305. doi: 10.1111/j.1365-2796.2010.02284.x
    1. Tzanakaki G, Paparoupa M, Kyprianou M, Barbouni A, Eugen-Olsen J, Kourea-Kremastinou J. Elevated Soluble Urokinase Receptor Values in CSF, Age and Bacterial Meningitis Infection Are Independent and Additive Risk Factors of Fatal Outcome. Eur J Clin Microbiol Infect Dis (2012) 31:1157–62. doi: 10.1007/s10096-011-1423-7
    1. Gustafsson A, Ajeti V, Ljunggren L. Detection of suPAR in the Saliva of Healthy Young Adults: Comparison With Plasma Levels. Biomark Insights (2011) 6:119–25. doi: 10.4137/BMI.S8326
    1. Rasmussen LJH. Clinical Prognostication With the Inflammatory Biomarker suPAR. PhD Thesis. University of Copenhagen. (2018).
    1. Smith HW, Marshall CJ. Regulation of Cell Signalling by uPAR. Nat Rev Mol Cell Biol (2010) 11:23–36. doi: 10.1038/nrm2821
    1. Thunø M, Macho B, Eugen-Olsen J. suPAR: The Molecular Crystal Ball. Dis Markers (2009) 27:157–72. doi: 10.3233/DMA-2009-0657
    1. Enocsson H, Wetterö J, Skogh T, Sjöwall C. Soluble Urokinase Plasminogen Activator Receptor Levels Reflect Organ Damage in Systemic Lupus Erythematosus. Transl Res (2013) 162:287–96. doi: 10.1016/j.trsl.2013.07.003
    1. Koch A, Voigt S, Kruschinski C, Sanson E, Dückers H, Horn A, et al. . Circulating Soluble Urokinase Plasminogen Activator Receptor Is Stably Elevated During the First Week of Treatment in the Intensive Care Unit and Predicts Mortality in Critically Ill Patients. Crit Care (2011) 15:R63. doi: 10.1186/cc10037
    1. Andersen O, Eugen-Olsen J, Kofoed K, Iversen J, Haugaard SB. Soluble Urokinase Plasminogen Activator Receptor Is a Marker of Dysmetabolism in HIV-Infected Patients Receiving Highly Active Antiretroviral Therapy. J Med Virol (2008) 80:209–16. doi: 10.1002/jmv.21114
    1. Haastrup E, Grau K, Eugen-Olsen J, Thorball C, Kessing LV, Ullum H. Soluble Urokinase Plasminogen Activator Receptor as a Marker for Use of Antidepressants. PloS One (2014) 9:e110555. doi: 10.1371/journal.pone.0110555
    1. Haupt TH, Kallemose T, Ladelund S, Rasmussen LJH, Thorball CW, Andersen O, et al. . Risk Factors Associated With Serum Levels of the Inflammatory Biomarker Soluble Urokinase Plasminogen Activator Receptor in a General Population. Biomark Insights (2014) 9:91–100. doi: 10.4137/BMI.S19876
    1. Chew-Harris J, Appleby S, Richards AM, Troughton RW, Pemberton CJ. Analytical, Biochemical and Clearance Considerations of Soluble Urokinase Plasminogen Activator Receptor (suPAR) in Healthy Individuals. Clin Biochem (2019) 69:36–44. doi: 10.1016/j.clinbiochem.2019.05.010
    1. Wlazel RN, Szwabe K, Guligowska A, Kostka T. Soluble Urokinase Plasminogen Activator Receptor Level in Individuals of Advanced Age. Sci Rep (2020) 10:15462. doi: 10.1038/s41598-020-72377-w
    1. Stephens RW, Pedersen AN, Nielsen HJ, Hamers MJ, Høyer-Hansen G, Rønne E, et al. . ELISA Determination of Soluble Urokinase Receptor in Blood From Healthy Donors and Cancer Patients. Clin Chem (1997) 43:1868–76. doi: 10.1093/clinchem/43.10.1868
    1. Dowsett J, Ferkingstad E, Rasmussen LJH, Thørner LW, Magnússon MK, Sugden K, et al. . Eleven Genomic Loci Affect Plasma Levels of Chronic Inflammation Marker Soluble Urokinase-Type Plasminogen Activator Receptor. Commun Biol (2021) 4:655. doi: 10.1038/s42003-021-02144-8
    1. Manetti M, Allanore Y, Revillod L, Fatini C, Guiducci S, Cuomo G, et al. . A Genetic Variation Located in the Promoter Region of the UPAR (CD87) Gene Is Associated With the Vascular Complications of Systemic Sclerosis. Arthritis Rheum (2011) 63:247–56. doi: 10.1002/art.30101
    1. Zandifar A, Soleimani S, Iraji N, Haghdoost F, Tajaddini M, Javanmard SH. Association Between Promoter Region of the uPAR (Rs344781) Gene Polymorphism in Genetic Susceptibility to Migraine Without Aura in Three Iranian Hospitals. Clin Neurol Neurosurg (2014) 120:45–8. doi: 10.1016/j.clineuro.2014.02.003
    1. Weng C-J, Tsai C-M, Chen Y-C, Hsieh Y-H, Lin C-W, Liu Y-F, et al. . Evaluation of the Association of Urokinase Plasminogen Activator System Gene Polymorphisms With Susceptibility and Pathological Development of Hepatocellular Carcinoma. Ann Surg Oncol (2010) 17:3394–401. doi: 10.1245/s10434-010-1124-y
    1. Andraweera PH, Dekker GA, Thompson SD, Nowak RC, Jayasekara RW, Dissanayake VHW, et al. . Polymorphisms in the Fibrinolytic Pathway Genes and the Risk of Recurrent Spontaneous Abortion. Reprod BioMed Online (2014) 29:745–51. doi: 10.1016/j.rbmo.2014.08.014
    1. Drechsler C, Hayek SS, Wei C, Sever S, Genser B, Krane V, et al. . Soluble Urokinase Plasminogen Activator Receptor and Outcomes in Patients With Diabetes on Hemodialysis. Clin J Am Soc Nephrol (2017) 12:1265–73. doi: 10.2215/CJN.10881016
    1. Wlazeł RN, Szadkowska I, Bartnicki P, Rośniak-Bąk K, Rysz J. Clinical and Prognostic Usefulness of Soluble Urokinase Plasminogen Activator Receptor in Hemodialysis Patients. Int Urol Nephrol (2018) 50:339–45. doi: 10.1007/s11255-017-1778-5
    1. Azam TU, Shadid HR, Blakely P, O’Hayer P, Berlin H, Pan M, et al. . Soluble Urokinase Receptor (SuPAR) in COVID-19–Related AKI. J Am Soc Nephrol (2020) 31:2725–35. doi: 10.1681/asn.2020060829
    1. Wei C, Li J, Adair BD, Zhu K, Cai J, Merchant M, et al. . uPAR Isoform 2 Forms a Dimer and Induces Severe Kidney Disease in Mice. J Clin Invest (2019) 129:1946–59. doi: 10.1172/jci124793
    1. Bhandary YP, Velusamy T, Shetty P, Shetty RS, Idell S, Cines DB, et al. . Post-Transcriptional Regulation of Urokinase-Type Plasminogen Activator Receptor Expression in Lipopolysaccharide-Induced Acute Lung Injury. Am J Respir Crit Care Med (2009) 179:288–98. doi: 10.1164/rccm.200712-1787OC
    1. Matsumoto H, Ueshima S, Fukao H, Mitsui Y, Matsuo O. Effects of Lipopolysaccharide on the Expression of Fibrinolytic Factors in an Established Cell Line From Human Endothelial Cells. Life Sci (1996) 59:85–96. doi: 10.1016/0024-3205(96)00265-2
    1. Zimmermann HW, Reuken PA, Koch A, Bartneck M, Adams DH, Trautwein C, et al. . Soluble Urokinase Plasminogen Activator Receptor Is Compartmentally Regulated in Decompensated Cirrhosis and Indicates Immune Activation and Short-Term Mortality. J Intern Med (2013) 274:86–100. doi: 10.1111/joim.12054
    1. Dekkers PE, ten Hove T, te Velde AA, van Deventer SJ, van der Poll T. Upregulation of Monocyte Urokinase Plasminogen Activator Receptor During Human Endotoxemia. Infect Immun (2000) 68:2156–60. doi: 10.1128/IAI.68.4.2156-2160.2000
    1. Ostrowski SR, Plomgaard P, Fischer CP, Steensberg AS, Møller K, Høyer-Hansen G, et al. . Interleukin-6 Infusion During Human Endotoxaemia Inhibits In Vitro Release of the Urokinase Receptor From Peripheral Blood Mononuclear Cells. Scand J Immunol (2005) 61:197–206. doi: 10.1111/j.0300-9475.2005.01547.x
    1. Pliyev BK. Activated Human Neutrophils Rapidly Release the Chemotactically Active D2D3 Form of the Urokinase-Type Plasminogen Activator Receptor (uPAR/Cd87). Mol Cell Biochem (2009) 321:111–22. doi: 10.1007/s11010-008-9925-z
    1. Selleri C, Montuori N, Ricci P, Visconte V, Carriero MV, Sidenius N, et al. . Involvement of the Urokinase-Type Plasminogen Activator Receptor in Hematopoietic Stem Cell Mobilization. Blood (2005) 105:2198–205. doi: 10.1182/blood-2004-06-2424
    1. Chavakis T, Willuweit AK, Lupu F, Preissner KT, Kanse SM. Release of Soluble Urokinase Receptor From Vascular Cells. Thromb Haemost (2001) 86:686–93. doi: 10.1055/s-0037-1616105
    1. Carmeliet P, Moons L, Lijnen R, Baes M, Lemaître V, Tipping P, et al. . Urokinase-Generated Plasmin Activates Matrix Metalloproteinases During Aneurysm Formation. Nat Genet (1997) 17:439–44. doi: 10.1038/ng1297-439
    1. Del Rosso M, Fibbi G, Pucci M, Margheri F, Serratì S. The Plasminogen Activation System in Inflammation. Front Biosci (2008) 13:4667–86. doi: 10.2741/3032
    1. Houck K, Leung D, Rowland A, Winer J, Ferrara N. Dual Regulation of Vascular Endothelial Growth Factor Bioavailability by Genetic and Proteolytic Mechanisms. J Biol Chem (1992) 267:26031–7. doi: 10.1016/S0021-9258(18)35712-0
    1. Lyons RM, Gentry LE, Purchio AF, Moses HL. Mechanism of Activation of Latent Recombinant Transforming Growth Factor Beta 1 by Plasmin. J Cell Biol (1990) 110:1361–7. doi: 10.1083/jcb.110.4.1361
    1. Bohuslav J, Horejsi V, Hansmann C, Stöckl J, Weidle UH, Majdic O, et al. . Urokinase Plasminogen Activator Receptor, Beta 2-Integrins, and Src-Kinases Within a Single Receptor Complex of Human Monocytes. J Exp Med (1995) 181:1381–90. doi: 10.1084/jem.181.4.1381
    1. Khan MM, Bradford HN, Isordia-Salas I, Liu Y, Wu Y, Espinola RG, et al. . High-Molecular-Weight Kininogen Fragments Stimulate the Secretion of Cytokines and Chemokines Through uPAR, Mac-1, and Gc1qr in Monocytes. Arterioscler Thromb Vasc Biol (2006) 26:2260–6. doi: 10.1161/01.ATV.0000240290.70852.c0
    1. Sidenius N, Andolfo A, Fesce R, Blasi F. Urokinase Regulates Vitronectin Binding by Controlling Urokinase Receptor Oligomerization. J Biol Chem (2002) 277:27982–90. doi: 10.1074/jbc.M111736200
    1. Chavakis T, Kanse SM, Yutzy B, Lijnen HR, Preissner KT. Vitronectin Concentrates Proteolytic Activity on the Cell Surface and Extracellular Matrix by Trapping Soluble Urokinase Receptor-Urokinase Complexes. Blood (1998) 91:2305–12. doi: 10.1182/blood.V91.7.2305
    1. Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, et al. . The Fibrinolytic Receptor for Urokinase Activates the G Protein-Coupled Chemotactic Receptor FPRL1/LXA4R. Proc Natl Acad Sci USA (2002) 99:1359–64. doi: 10.1073/pnas.022652999
    1. Resnati M, Guttinger M, Valcamonica S, Sidenius N, Blasi F, Fazioli F. Proteolytic Cleavage of the Urokinase Receptor Substitutes for the Agonist-Induced Chemotactic Effect. EMBO J (1996) 15:1572–82. doi: 10.1002/j.1460-2075.1996.tb00502.x
    1. Bifulco K, Longanesi-Cattani I, Masucci MT, De Chiara A, Fazioli F, Di Carluccio G, et al. . Involvement of the Soluble Urokinase Receptor in Chondrosarcoma Cell Mobilization. Sarcoma (2011) 2011:842842. doi: 10.1155/2011/842842
    1. Furlan F, Orlando S, Laudanna C, Resnati M, Basso V, Blasi F, et al. . The Soluble D2D3(88-274) Fragment of the Urokinase Receptor Inhibits Monocyte Chemotaxis and Integrin-Dependent Cell Adhesion. J Cell Sci (2004) 117:2909–16. doi: 10.1242/jcs.01149
    1. Bifulco K, Longanesi-Cattani I, Gala M, Di Carluccio G, Masucci MT, Pavone V, et al. . The Soluble Form of Urokinase Receptor Promotes Angiogenesis Through Its Ser88-Arg-Ser-Arg-Tyr92 Chemotactic Sequence. J Thromb Haemost (2010) 8:2789–99. doi: 10.1111/j.1538-7836.2010.04075.x
    1. Park Y-J, Liu G, Tsuruta Y, Lorne E, Abraham E. Participation of the Urokinase Receptor in Neutrophil Efferocytosis. Blood (2009) 114:860–70. doi: 10.1182/blood-2008-12-193524
    1. Masucci MT, Pedersen N, Blasi F. A Soluble, Ligand Binding Mutant of the Human Urokinase Plasminogen Activator Receptor. J Biol Chem (1991) 266:8655–8. doi: 10.1016/S0021-9258(18)31492-3
    1. Høyer-Hansen G, Pessara U, Holm A, Pass J, Weidle U, Danø K, et al. . Urokinase-Catalysed Cleavage of the Urokinase Receptor Requires an Intact Glycolipid Anchor. Biochem J (2001) 358:673–9. doi: 10.1042/0264-6021:3580673
    1. Langkilde A, Jakobsen TL, Bandholm TQ, Eugen-Olsen J, Blauenfeldt T, Petersen J, et al. . Inflammation and Post-Operative Recovery in Patients Undergoing Total Knee Arthroplasty-Secondary Analysis of a Randomized Controlled Trial. Osteoarthr Cartil (2017) 25:1265–73. doi: 10.1016/j.joca.2017.03.008
    1. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu Rev Pathol (2010) 5:99–118. doi: 10.1146/annurev-pathol-121808-102144
    1. Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, et al. . Senolytic CAR T Cells Reverse Senescence-Associated Pathologies. Nature (2020) 583:127–32. doi: 10.1038/s41586-020-2403-9
    1. Eugen-Olsen J, Ladelund S, Sørensen LT. Plasma suPAR Is Lowered by Smoking Cessation: A Randomized Controlled Study. Eur J Clin Invest (2016) 46:305–11. doi: 10.1111/eci.12593
    1. Haupt TH, Petersen J, Ellekilde G, Klausen HH, Thorball CW, Eugen-Olsen J, et al. . Plasma suPAR Levels Are Associated With Mortality, Admission Time, and Charlson Comorbidity Index in the Acutely Admitted Medical Patient: A Prospective Observational Study. Crit Care (2012) 16:R130. doi: 10.1186/cc11434
    1. Zimmermann HW, Koch A, Seidler S, Trautwein C, Tacke F. Circulating Soluble Urokinase Plasminogen Activator Is Elevated in Patients With Chronic Liver Disease, Discriminates Stage and Aetiology of Cirrhosis and Predicts Prognosis. Liver Int (2012) 32:500–9. doi: 10.1111/j.1478-3231.2011.02665.x
    1. Rasmussen LJH, Moffitt TE, Eugen-Olsen J, Belsky DW, Danese A, Harrington HL, et al. . Cumulative Childhood Risk Is Associated With a New Measure of Chronic Inflammation in Adulthood. J Child Psychol Psychiatry (2019) 60:199–208. doi: 10.1111/jcpp.12928
    1. Ostrowski SR, Ullum H, Goka BQ, Høyer-Hansen G, Obeng-Adjei G, Pedersen BK, et al. . Plasma Concentrations of Soluble Urokinase-Type Plasminogen Activator Receptor Are Increased in Patients With Malaria and Are Associated With a Poor Clinical or a Fatal Outcome. J Infect Dis (2005) 191:1331–41. doi: 10.1086/428854
    1. Wrotek A, Jackowska T, Pawlik K. Soluble Urokinase Plasminogen Activator Receptor: An Indicator of Pneumonia Severity in Children. Adv Exp Med Biol (2015) 835:1–7. doi: 10.1007/5584_2014_40
    1. Koch A, Zimmermann HW, Gassler N, Jochum C, Weiskirchen R, Bruensing J, et al. . Clinical Relevance and Cellular Source of Elevated Soluble Urokinase Plasminogen Activator Receptor (suPAR) in Acute Liver Failure. Liver Int (2014) 34:1330–9. doi: 10.1111/liv.12512
    1. Hahm E, Wei C, Fernandez I, Li J, Tardi NJ, Tracy M, et al. . Bone Marrow-Derived Immature Myeloid Cells Are a Main Source of Circulating suPAR Contributing to Proteinuric Kidney Disease. Nat Med (2017) 23:100–6. doi: 10.1038/nm.4242
    1. Pietras EM. Inflammation: A Key Regulator of Hematopoietic Stem Cell Fate in Health and Disease. Blood (2017) 130:1693–8. doi: 10.1182/blood-2017-06-780882
    1. Botha S, Fourie CMT, Schutte R, Kruger A, Schutte AE. Associations of suPAR With Lifestyle and Cardiometabolic Risk Factors. Eur J Clin Invest (2014) 44:619–26. doi: 10.1111/eci.12278
    1. Eugen-Olsen J, Andersen O, Linneberg A, Ladelund S, Hansen TW, Langkilde A, et al. . Circulating Soluble Urokinase Plasminogen Activator Receptor Predicts Cancer, Cardiovascular Disease, Diabetes and Mortality in the General Population. J Intern Med (2010) 268:296–308. doi: 10.1111/j.1365-2796.2010.02252.x
    1. Rasmussen LJH, Ladelund S, Haupt TH, Ellekilde G, Poulsen JH, Iversen K, et al. . Soluble Urokinase Plasminogen Activator Receptor (suPAR) in Acute Care: A Strong Marker of Disease Presence and Severity, Readmission and Mortality. A Retrospective Cohort Study. Emerg Med J (2016) 33:769–75. doi: 10.1136/emermed-2015-205444
    1. Toldi G, Bekő G, Kádár G, Mácsai E, Kovács L, Vásárhelyi B, et al. . Soluble Urokinase Plasminogen Activator Receptor (suPAR) in the Assessment of Inflammatory Activity of Rheumatoid Arthritis Patients in Remission. Clin Chem Lab Med (2013) 51:327–32. doi: 10.1515/cclm-2012-0221
    1. Slot O, Brünner N, Locht H, Oxholm P, Stephens RW. Soluble Urokinase Plasminogen Activator Receptor in Plasma of Patients With Inflammatory Rheumatic Disorders: Increased Concentrations in Rheumatoid Arthritis. Ann Rheum Dis (1999) 58:488–92. doi: 10.1136/ard.58.8.488
    1. AboEl-Magd GH, Mabrouk MM. Soluble Urokinase-Type Plasminogen Activator Receptor as a Measure of Treatment Response in Acute Exacerbation of COPD. J Bras Pneumol (2018) 44:36–41. doi: 10.1590/S1806-37562017000000151
    1. Gumus A, Altintas N, Cinarka H, Kirbas A, Hazıroglu M, Karatas M, et al. . Soluble Urokinase-Type Plasminogen Activator Receptor Is a Novel Biomarker Predicting Acute Exacerbation in COPD. Int J Chron Obstruct Pulmon Dis (2015) 10:357–65. doi: 10.2147/COPD.S77654
    1. Zeng M, Chang M, Zheng H, Li B, Chen Y, He W, et al. . Clinical Value of Soluble Urokinase-Type Plasminogen Activator Receptor in the Diagnosis, Prognosis, and Therapeutic Guidance of Sepsis. Am J Emerg Med (2016) 34:375–80. doi: 10.1016/j.ajem.2015.11.004
    1. Botha S, Fourie CM, Schutte R, Eugen-Olsen J, Pretorius R, Schutte AE. Soluble Urokinase Plasminogen Activator Receptor as a Prognostic Marker of All-Cause and Cardiovascular Mortality in a Black Population. Int J Cardiol (2015) 184:631–6. doi: 10.1016/j.ijcard.2015.03.041
    1. Almroth G, Lönn J, Uhlin F, Brudin L, Andersson B, Hahn-Zoric M. Sclerostin, TNF-Alpha and Interleukin-18 Correlate and Are Together With Klotho Related to Other Growth Factors and Cytokines in Haemodialysis Patients. Scand J Immunol (2016) 83:58–63. doi: 10.1111/sji.12392
    1. Diederichsen MZ, Diederichsen SZ, Mickley H, Steffensen FH, Lambrechtsen J, Sand NPR, et al. . Prognostic Value of suPAR and Hs-CRP on Cardiovascular Disease. Atherosclerosis (2018) 271:245–51. doi: 10.1016/j.atherosclerosis.2018.01.029
    1. Böcskei RM, Benczúr B, Losonczy G, Illyés M, Cziráki A, Müller V, et al. . Soluble Urokinase-Type Plasminogen Activator Receptor and Arterial Stiffness in Patients With COPD. Lung (2019) 197:189–97. doi: 10.1007/s00408-019-00211-w
    1. Yilmaz G, Mentese A, Kaya S, Uzun A, Karahan SC, Koksal I. The Diagnostic and Prognostic Significance of Soluble Urokinase Plasminogen Activator Receptor in Crimean-Congo Hemorrhagic Fever. J Clin Virol (2011) 50:209–11. doi: 10.1016/j.jcv.2010.11.014
    1. Wittenhagen P, Andersen JB, Hansen A, Lindholm L, Rønne F, Theil J, et al. . Plasma Soluble Urokinase Plasminogen Activator Receptor in Children With Urinary Tract Infection. Biomark Insights (2011) 6:79–82. doi: 10.4137/BMI.S6876
    1. Rasmussen LJH, Schultz M, Gaardsting A, Ladelund S, Garred P, Iversen K, et al. . Inflammatory Biomarkers and Cancer: CRP and suPAR as Markers of Incident Cancer in Patients With Serious Nonspecific Symptoms and Signs of Cancer. Int J Cancer (2017) 141:191–9. doi: 10.1002/ijc.30732
    1. Lyngbæk S, Sehestedt T, Marott JL, Hansen TW, Olsen MH, Andersen O, et al. . CRP and suPAR Are Differently Related to Anthropometry and Subclinical Organ Damage. Int J Cardiol (2013) 167:781–5. doi: 10.1016/j.ijcard.2012.03.040
    1. Zhou X, Fragala MS, McElhaney JE, Kuchel GA. Conceptual and Methodological Issues Relevant to Cytokine and Inflammatory Marker Measurements in Clinical Research. Curr Opin Clin Nutr Metab Care (2010) 13:541–7. doi: 10.1097/MCO.0b013e32833cf3bc
    1. Petrovsky N, McNair P, Harrison LC. Diurnal Rhythms of Pro-Inflammatory Cytokines: Regulation by Plasma Cortisol and Therapeutic Implications. Cytokine (1998) 10:307–12. doi: 10.1006/cyto.1997.0289
    1. Kleiner G, Marcuzzi A, Zanin V, Monasta L, Zauli G. Cytokine Levels in the Serum of Healthy Subjects. Mediators Inflammation (2013) 2013:434010. doi: 10.1155/2013/434010
    1. Zelová H, Hošek J. TNF-α Signalling and Inflammation: Interactions Between Old Acquaintances. Inflammation Res (2013) 62:641–51. doi: 10.1007/s00011-013-0633-0
    1. Aziz N. Measurement of Circulating Cytokines and Immune-Activation Markers by Multiplex Technology in the Clinical Setting: What Are We Really Measuring? For Immunopathol Dis Therap (2015) 6:19–22. doi: 10.1615/ForumImmunDisTher.2015014162
    1. Lyngbæk S, Marott JL, Møller DV, Christiansen M, Iversen KK, Clemmensen PM, et al. . Usefulness of Soluble Urokinase Plasminogen Activator Receptor to Predict Repeat Myocardial Infarction and Mortality in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Intervention. Am J Cardiol (2012) 110:1756–63. doi: 10.1016/j.amjcard.2012.08.008
    1. Sier CF, Sidenius N, Mariani A, Aletti G, Agape V, Ferrari A, et al. . Presence of Urokinase-Type Plasminogen Activator Receptor in Urine of Cancer Patients and Its Possible Clinical Relevance. Lab Invest (1999) 79:717–22.
    1. Rasmussen LJH, Ladelund S, Haupt TH, Ellekilde GE, Eugen-Olsen J, Andersen O. Combining National Early Warning Score With Soluble Urokinase Plasminogen Activator Receptor (suPAR) Improves Risk Prediction in Acute Medical Patients: A Registry-Based Cohort Study. Crit Care Med (2018) 46:1961–8. doi: 10.1097/CCM.0000000000003441
    1. Kofoed K, Schneider UV, Scheel T, Andersen O, Eugen-Olsen J. Development and Validation of a Multiplex Add-on Assay for Sepsis Biomarkers Using xMAP Technology. Clin Chem (2006) 52:1284–93. doi: 10.1373/clinchem.2006.067595
    1. Schenk M, Eichelmann F, Schulze MB, Rudovich N, Pfeiffer AF, di Giuseppe R, et al. . Reproducibility of Novel Immune-Inflammatory Biomarkers Over 4 Months: An Analysis With Repeated Measures Design. Biomark Med (2019) 13:639–48. doi: 10.2217/bmm-2018-0351
    1. Haupt TH, Rasmussen LJH, Kallemose T, Ladelund S, Andersen O, Pisinger C, et al. . Healthy Lifestyles Reduce suPAR and Mortality in a Danish General Population Study. Immun Ageing (2019) 16:1. doi: 10.1186/s12979-018-0141-8
    1. Rasmussen LJH, Caspi A, Ambler A, Danese A, Elliott M, Eugen-Olsen J, et al. . Association Between Elevated suPAR, a New Biomarker of Inflammation, and Accelerated Aging. J Gerontol A Biol Sci Med Sci (2021) 76:318–27. doi: 10.1093/gerona/glaa178
    1. Bourassa KJ, Rasmussen LJH, Danese A, Eugen-Olsen J, Harrington H, Houts R, et al. . Linking Stressful Life Events and Chronic Inflammation Using suPAR (Soluble Urokinase Plasminogen Activator Receptor). Brain Behav Immun (2021) 97:79–88. doi: 10.1016/j.bbi.2021.06.018
    1. Fagerberg B, Borné Y, Barregard L, Sallsten G, Forsgard N, Hedblad B, et al. . Cadmium Exposure Is Associated With Soluble Urokinase Plasminogen Activator Receptor, A Circulating Marker of Inflammation and Future Cardiovascular Disease. Environ Res (2017) 152:185–91. doi: 10.1016/j.envres.2016.10.019
    1. Timmermans K, Vaneker M, Scheffer GJ, Maassen P, Janssen S, Kox M, et al. . Soluble Urokinase-Type Plasminogen Activator Levels Are Related to Plasma Cytokine Levels But Have Low Predictive Value for Mortality in Trauma Patients. J Crit Care (2015) 30:476–80. doi: 10.1016/j.jcrc.2015.01.006
    1. Loosen SH, Tacke F, Püthe N, Binneboesel M, Wiltberger G, Alizai PH, et al. . High Baseline Soluble Urokinase Plasminogen Activator Receptor (suPAR) Serum Levels Indicate Adverse Outcome After Resection of Pancreatic Adenocarcinoma. Carcinogenesis (2019) 40:947–55. doi: 10.1093/carcin/bgz033
    1. Persson M, Östling G, Smith G, Hamrefors V, Melander O, Hedblad B, et al. . Soluble Urokinase Plasminogen Activator Receptor: A Risk Factor for Carotid Plaque, Stroke, and Coronary Artery Disease. Stroke (2014) 45:18–23. doi: 10.1161/STROKEAHA.113.003305
    1. Westin O, Rasmussen LJH, Andersen O, Buch E, Eugen-Olsen J, Friberg J. Soluble Urokinase Plasminogen Activator Receptor (suPAR) as a Predictor of Incident Atrial Fibrillation. J Atr Fibrillation (2018) 10:1801. doi: 10.4022/jafib.1801
    1. Theilade S, Lyngbaek S, Hansen TW, Eugen-Olsen J, Fenger M, Rossing P, et al. . Soluble Urokinase Plasminogen Activator Receptor Levels Are Elevated and Associated With Complications in Patients With Type 1 Diabetes. J Intern Med (2015) 277:362–71. doi: 10.1111/joim.12269
    1. Curovic VR, Theilade S, Winther SA, Tofte N, Eugen-Olsen J, Persson F, et al. . Soluble Urokinase Plasminogen Activator Receptor Predicts Cardiovascular Events, Kidney Function Decline, and Mortality in Patients With Type 1 Diabetes. Diabetes Care (2018) 42:1112–9. doi: 10.2337/dc18-1427
    1. Heraclides A, Jensen TM, Rasmussen SS, Eugen-Olsen J, Haugaard SB, Borch-Johnsen K, et al. . The Pro-Inflammatory Biomarker Soluble Urokinase Plasminogen Activator Receptor (suPAR) Is Associated With Incident Type 2 Diabetes Among Overweight But Not Obese Individuals With Impaired Glucose Regulation: Effect Modification by Smoking and Body Weight. Diabetologia (2013) 56:1542–6. doi: 10.1007/s00125-013-2914-0
    1. Guthoff M, Wagner R, Randrianarisoa E, Hatziagelaki E, Peter A, Häring H-U, et al. . Soluble Urokinase Receptor (suPAR) Predicts Microalbuminuria in Patients at Risk for Type 2 Diabetes Mellitus. Sci Rep (2017) 7:40627. doi: 10.1038/srep40627
    1. Mustjoki S, Alitalo R, Stephens RW, Vaheri A. Blast Cell-Surface and Plasma Soluble Urokinase Receptor in Acute Leukemia Patients: Relationship to Classification and Response to Therapy. Thromb Haemost (1999) 81:705–10. doi: 10.1055/s-0037-1614558
    1. Wach S, Al-Janabi O, Weigelt K, Fischer K, Greither T, Marcou M, et al. . The Combined Serum Levels of miR-375 and Urokinase Plasminogen Activator Receptor Are Suggested as Diagnostic and Prognostic Biomarkers in Prostate Cancer. Int J Cancer (2015) 137:1406–16. doi: 10.1002/ijc.29505
    1. Sorio C, Mafficini A, Furlan F, Barbi S, Bonora A, Brocco G, et al. . Elevated Urinary Levels of Urokinase-Type Plasminogen Activator Receptor (uPAR) in Pancreatic Ductal Adenocarcinoma Identify a Clinically High-Risk Group. BMC Cancer (2011) 11:448. doi: 10.1186/1471-2407-11-448
    1. Cobos E, Jumper C, Lox C. Pretreatment Determination of the Serum Urokinase Plasminogen Activator and Its Soluble Receptor in Advanced Small-Cell Lung Cancer or Non-Small-Cell Lung Cancer. Clin Appl Thromb (2003) 9:241–6. doi: 10.1177/107602960300900309
    1. Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S. Elevation of Serum Levels of Urokinase-Type Plasminogen Activator and Its Receptor Is Associated With Disease Progression and Prognosis in Patients With Prostate Cancer. Prostate (1999) 39:123–9. doi: 10.1002/(SICI)1097-0045(199w90501)39:2<123::AID-PROS7>;2-2
    1. Rigolin GM, Tieghi A, Ciccone M, Bragotti LZ, Cavazzini F, Della Porta M, et al. . Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) as an Independent Factor Predicting Worse Prognosis and Extra-Bone Marrow Involvement in Multiple Myeloma Patients. Br J Haematol (2003) 120:953–9. doi: 10.1046/j.1365-2141.2003.04176.x
    1. Braybrooke JP, O’Byrne KJ, Propper DJ, Blann A, Saunders M, Dobbs N, et al. . A Phase II Study of Razoxane, an Antiangiogenic Topoisomerase II Inhibitor, in Renal Cell Cancer With Assessment of Potential Surrogate Markers of Angiogenesis. Clin Cancer Res (2000) 6:4697–704.
    1. Schmidt M, Hoppe F. Increased Levels of Urokinase Receptor in Plasma of Head and Neck Squamous Cell Carcinoma Patients. Acta Otolaryngol (1999) 119:949–53. doi: 10.1080/00016489950180342
    1. Riisbro R, Christensen IJ, Piironen T, Greenall M, Larsen B, Stephens RW, et al. . Prognostic Significance of Soluble Urokinase Plasminogen Activator Receptor in Serum and Cytosol of Tumor Tissue From Patients With Primary Breast Cancer. Clin Cancer Res (2002) 8:1132–41.
    1. Loosen SH, Gorgulho J, Jördens MS, Schulze-Hagen M, Beier F, Vucur M, et al. . Serum Levels of Soluble Urokinase Plasminogen Activator Receptor Predict Tumor Response and Outcome to Immune Checkpoint Inhibitor Therapy. Front Oncol (2021) 11:646883. doi: 10.3389/fonc.2021.646883
    1. Jing J, Zheng S, Han C, Du L, Guo Y, Wang P. Evaluating the Value of uPAR of Serum and Tissue on Patients With Cervical Cancer. J Clin Lab Anal (2012) 26:16–21. doi: 10.1002/jcla.20499
    1. Riisbro R, Stephens RW, Brünner N, Christensen IJ, Nielsen HJ, Heilmann L, et al. . Soluble Urokinase Plasminogen Activator Receptor in Preoperatively Obtained Plasma From Patients With Gynecological Cancer or Benign Gynecological Diseases. Gynecol Oncol (2001) 82:523–31. doi: 10.1006/gyno.2001.6324
    1. Lomholt AF, Høyer-Hansen G, Nielsen HJ, Christensen IJ. Intact and Cleaved Forms of the Urokinase Receptor Enhance Discrimination of Cancer From Non-Malignant Conditions in Patients Presenting With Symptoms Related to Colorectal Cancer. Br J Cancer (2009) 101:992–7. doi: 10.1038/sj.bjc.6605228
    1. Usnarska-Zubkiewicz L, Strutyńska-Karpińska M, Zubkiewicz-Kucharska A, Zarębski P, Grabowski K. Soluble Urokinase-Type Plasminogen Activator Receptor and Ferritin Concentration in Patients With Advanced Alimentary Tract Carcinoma. Relationship to Localization, Surgical Treatment and the Stage of the Disease - Preliminary Report. Adv Clin Exp Med (2014) 23:959–67. doi: 10.17219/acem/30817
    1. Fidan E, Mentese A, Ozdemir F, Deger O, Kavgaci H, Caner Karahan S, et al. . Diagnostic and Prognostic Significance of CA IX and suPAR in Gastric Cancer. Med Oncol (2013) 30:540. doi: 10.1007/s12032-013-0540-9
    1. Chounta A, Ellinas C, Tzanetakou V, Pliarhopoulou F, Mplani V, Oikonomou A, et al. . Serum Soluble Urokinase Plasminogen Activator Receptor as a Screening Test for the Early Diagnosis of Hepatocellular Carcinoma. Liver Int (2015) 35:601–7. doi: 10.1111/liv.12705
    1. Rubio-Jurado B, Tello-González A, Bustamante-Chávez L, de la Peña A, Riebeling-Navarro C, Nava-Zavala AH. Circulating Levels of Urokinase-Type Plasminogen Activator Receptor and D-Dimer in Patients With Hematological Malignancies. Clin Lymphoma Myeloma Leuk (2015) 15:621–6. doi: 10.1016/j.clml.2015.07.632
    1. Henic E, Borgfeldt C, Christensen IJ, Casslén B, Høyer-Hansen G. Cleaved Forms of the Urokinase Plasminogen Activator Receptor in Plasma Have Diagnostic Potential and Predict Postoperative Survival in Patients With Ovarian Cancer. Clin Cancer Res (2008) 14:5785–93. doi: 10.1158/1078-0432.CCR-08-0096
    1. Enocsson H, Lukic T, Ziegelasch M, Kastbom A. Serum Levels of the Soluble Urokinase Plasminogen Activator Receptor (suPAR) Correlates With Disease Activity in Early Rheumatoid Arthritis and Reflects Joint Damage Over Time. Transl Res (2021) 232:142–9. doi: 10.1016/j.trsl.2021.02.007
    1. Portelli MA, Siedlinski M, Stewart CE, Postma DS, Nieuwenhuis MA, Vonk JM, et al. . Genome-Wide Protein QTL Mapping Identifies Human Plasma Kallikrein as a Post-Translational Regulator of Serum uPAR Levels. FASEB J (2014) 28:923–34. doi: 10.1096/fj.13-240879
    1. Long D, Wang Y, Wang H, Wu X, Yu L. Correlation of Serum and Ascitic Fluid Soluble Form Urokinase Plasminogen Activator Receptor Levels With Patient Complications, Disease Severity, Inflammatory Markers, and Prognosis in Patients With Severe Acute Pancreatitis. Pancreas (2019) 48:335–42. doi: 10.1097/MPA.0000000000001247
    1. Wiese S, Mortensen C, Gøtze JP, Christensen E, Andersen O, Bendtsen F, et al. . Cardiac and Proinflammatory Markers Predict Prognosis in Cirrhosis. Liver Int (2014) 34:e19–30. doi: 10.1111/liv.12428
    1. Sjöwall C, Martinsson K, Cardell K, Ekstedt M, Kechagias S. Soluble Urokinase Plasminogen Activator Receptor Levels Are Associated With Severity of Fibrosis in Nonalcoholic Fatty Liver Disease. Transl Res (2015) 165:658–66. doi: 10.1016/j.trsl.2014.09.007
    1. Hayek SS, Leaf DE, Samman Tahhan A, Raad M, Sharma S, Waikar SS, et al. . Soluble Urokinase Receptor and Acute Kidney Injury. N Engl J Med (2020) 382:416–26. doi: 10.1056/NEJMoa1911481
    1. Iversen E, Houlind MB, Kallemose T, Rasmussen LJH, Hornum M, Feldt-Rasmussen B, et al. . Elevated suPAR Is an Independent Risk Marker for Incident Kidney Disease in Acute Medical Patients. Front Cell Dev Biol (2020) 8:339. doi: 10.3389/fcell.2020.00339
    1. Meijers B, Poesen R, Claes K, Dietrich R, Bammens B, Sprangers B, et al. . Soluble Urokinase Receptor Is a Biomarker of Cardiovascular Disease in Chronic Kidney Disease. Kidney Int (2015) 87:210–6. doi: 10.1038/ki.2014.197
    1. Schaefer F, Trachtman H, Wühl E, Kirchner M, Hayek SS, Anarat A, et al. . Association of Serum Soluble Urokinase Receptor Levels With Progression of Kidney Disease in Children. JAMA Pediatr (2017) 171:e172914. doi: 10.1001/jamapediatrics.2017.2914
    1. Rovina N, Akinosoglou K, Eugen-Olsen J, Hayek S, Reiser J, Giamarellos-Bourboulis EJ. Soluble Urokinase Plasminogen Activator Receptor (suPAR) as an Early Predictor of Severe Respiratory Failure in Patients With COVID-19 Pneumonia. Crit Care (2020) 24:187. doi: 10.1186/s13054-020-02897-4
    1. Sevgi DY, Bayraktar B, Gündüz A, Özgüven BY, Togay A, Bulut E, et al. . Serum Soluble Urokinase-Type Plasminogen Activator Receptor and Interferon-γ-Induced Protein 10 Levels Correlate With Significant Fibrosis in Chronic Hepatitis B. Wien Klin Wochenschr (2016) 128:28–33. doi: 10.1007/s00508-015-0886-4
    1. Sidenius N, Sier CF, Ullum H, Pedersen BK, Cozzi-Lepri A, Blasi F, et al. . Serum Level of Soluble Urokinase-Type Plasminogen Activator Receptor Is a Strong and Independent Predictor of Survival in Human Immunodeficiency Virus Infection. Blood (2000) 96:4091–5. doi: 10.1182/blood.V96.13.4091
    1. Hoenigl M, Raggam RB, Wagner J, Valentin T, Leitner E, Seeber K, et al. . Diagnostic Accuracy of Soluble Urokinase Plasminogen Activator Receptor (suPAR) for Prediction of Bacteremia in Patients With Systemic Inflammatory Response Syndrome. Clin Biochem (2013) 46:225–9. doi: 10.1016/j.clinbiochem.2012.11.004
    1. Wittenhagen P, Kronborg G, Weis N, Nielsen H, Obel N, Pedersen SS, et al. . The Plasma Level of Soluble Urokinase Receptor Is Elevated in Patients With Streptococcus Pneumoniae Bacteraemia and Predicts Mortality. Clin Microbiol Infect (2004) 10:409–15. doi: 10.1111/j.1469-0691.2004.00850.x
    1. Østergaard C, Benfield T, Lundgren JD, Eugen-Olsen J. Soluble Urokinase Receptor Is Elevated in Cerebrospinal Fluid From Patients With Purulent Meningitis and Is Associated With Fatal Outcome. Scand J Infect Dis (2004) 36:14–9. doi: 10.1080/00365540310017366
    1. Savva A, Raftogiannis M, Baziaka F, Routsi C, Antonopoulou A, Koutoukas P, et al. . Soluble Urokinase Plasminogen Activator Receptor (suPAR) for Assessment of Disease Severity in Ventilator-Associated Pneumonia and Sepsis. J Infect (2011) 63:344–50. doi: 10.1016/j.jinf.2011.07.016
    1. Donadello K, Scolletta S, Taccone FS, Covajes C, Santonocito C, Cortes DO, et al. . Soluble Urokinase-Type Plasminogen Activator Receptor as a Prognostic Biomarker in Critically Ill Patients. J Crit Care (2014) 29:144–9. doi: 10.1016/j.jcrc.2013.08.005
    1. Rabna P, Andersen A, Wejse C, Oliveira I, Gomes VF, Haaland MB, et al. . Utility of the Plasma Level of suPAR in Monitoring Risk of Mortality During TB Treatment. PloS One (2012) 7:e43933. doi: 10.1371/journal.pone.0043933
    1. Perch M, Kofoed P, Fischer TK, Có F, Rombo L, Aaby P, et al. . Serum Levels of Soluble Urokinase Plasminogen Activator Receptor Is Associated With Parasitemia in Children With Acute Plasmodium Falciparum Malaria Infection. Parasite Immunol (2004) 26:207–11. doi: 10.1111/j.0141-9838.2004.00695.x
    1. Plewes K, Royakkers AA, Hanson J, Hasan MMU, Alam S, Ghose A, et al. . Correlation of Biomarkers for Parasite Burden and Immune Activation With Acute Kidney Injury in Severe Falciparum Malaria. Malar J (2014) 13:91. doi: 10.1186/1475-2875-13-91
    1. Outinen TK, Tervo L, Mäkelä S, Huttunen R, Mäenpää N, Huhtala H, et al. . Plasma Levels of Soluble Urokinase-Type Plasminogen Activator Receptor Associate With the Clinical Severity of Acute Puumala Hantavirus Infection. PloS One (2013) 8:e71335. doi: 10.1371/journal.pone.0071335
    1. Ventorp F, Gustafsson A, Träskman-Bendz L, Westrin Å, Ljunggren L. Increased Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Levels in Plasma of Suicide Attempters. PloS One (2015) 10:e0140052. doi: 10.1371/journal.pone.0140052
    1. Nielsen J, Røge R, Pristed SG, Viuff AG, Ullum H, Thørner LW, et al. . Soluble Urokinase-Type Plasminogen Activator Receptor Levels in Patients With Schizophrenia. Schizophr Bull (2015) 41:764–71. doi: 10.1093/schbul/sbu118
    1. Bigseth TT, Fredriksen M, Egeland J, Andersen E, Andreassen OA, Bang-Kittilsen G, et al. . Elevated Levels of Soluble Urokinase Plasminogen Activator Receptor as a Low-Grade Inflammation Marker in Schizophrenia: A Case-Control Study. Schizophr Res (2021) 228:190–2. doi: 10.1016/j.schres.2020.11.051
    1. Giovannini S, Onder G, Liperoti R, Russo A, Carter C, Capoluongo E, et al. . Interleukin-6, C-Reactive Protein, and Tumor Necrosis Factor-Alpha as Predictors of Mortality in Frail, Community-Living Elderly Individuals. J Am Geriatr Soc (2011) 59:1679–85. doi: 10.1111/j.1532-5415.2011.03570.x
    1. Proctor MJ, McMillan DC, Horgan PG, Fletcher CD, Talwar D, Morrison DS. Systemic Inflammation Predicts All-Cause Mortality: A Glasgow Inflammation Outcome Study. PloS One (2015) 10:e0116206. doi: 10.1371/journal.pone.0116206
    1. Emerging Risk Factors Collaboration. Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, et al. . C-Reactive Protein Concentration and Risk of Coronary Heart Disease, Stroke, and Mortality: An Individual Participant Meta-Analysis. Lancet (2010) 375:132–40. doi: 10.1016/S0140-6736(09)61717-7
    1. Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, Wadhwani S, et al. . Soluble Urokinase Receptor and Chronic Kidney Disease. N Engl J Med (2015) 373:1916–25. doi: 10.1056/NEJMoa1506362
    1. Enocsson H, Wirestam L, Dahle C, Padyukov L, Jönsen A, Urowitz MB, et al. . Soluble Urokinase Plasminogen Activator Receptor (suPAR) Levels Predict Damage Accrual in Patients With Recent-Onset Systemic Lupus Erythematosus. J Autoimmun (2020) 106:102340. doi: 10.1016/j.jaut.2019.102340
    1. Persson M, Engström G, Björkbacka H, Hedblad B. Soluble Urokinase Plasminogen Activator Receptor in Plasma Is Associated With Incidence of CVD. Results From the Malmö Diet and Cancer Study. Atherosclerosis (2012) 220:502–5. doi: 10.1016/j.atherosclerosis.2011.10.039
    1. Törnkvist PBS, Haupt TH, Rasmussen LJH, Ladelund S, Toft U, Pisinger C, et al. . Soluble Urokinase Plasminogen Activator Receptor Is Linearly Associated With Dietary Quality and Predicts Mortality. Br J Nutr (2019) 121:699–708. doi: 10.1017/S0007114518003720
    1. Borné Y, Persson M, Melander O, Smith JG, Engström G. Increased Plasma Level of Soluble Urokinase Plasminogen Activator Receptor Is Associated With Incidence of Heart Failure But Not Atrial Fibrillation. Eur J Heart Fail (2014) 16:377–83. doi: 10.1002/ejhf.49
    1. Rasmussen LJH, Moffitt TE, Arseneault L, Danese A, Eugen-Olsen J, Fisher HL, et al. . Association of Adverse Experiences and Exposure to Violence in Childhood and Adolescence With Inflammatory Burden in Young People. JAMA Pediatr (2020) 174:38–47. doi: 10.1001/jamapediatrics.2019.3875
    1. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood Trauma and Adulthood Inflammation: A Meta-Analysis of Peripheral C-Reactive Protein, Interleukin-6 and Tumour Necrosis Factor-α. Mol Psychiatry (2016) 21:642–9. doi: 10.1038/mp.2015.67
    1. Liu W, Zhang A, He H, Zhao X, Tao F, Sun Y. Inflammatory Burden in Adolescents With Prolonged Parent-Child Separation. Brain Behav Immun (2021) 98:257–62. doi: 10.1016/j.bbi.2021.08.227
    1. Valsdottir TD, Henriksen C, Odden N, Nellemann B, Jeppesen PB, Hisdal J, et al. . Effect of a Low-Carbohydrate High-Fat Diet and a Single Bout of Exercise on Glucose Tolerance, Lipid Profile and Endothelial Function in Normal Weight Young Healthy Females. Front Physiol (2019) 10:1499. doi: 10.3389/fphys.2019.01499
    1. Kolho K-L, Valtonen E, Rintamäki H, Savilahti E. Soluble Urokinase Plasminogen Activator Receptor suPAR as a Marker for Inflammation in Pediatric Inflammatory Bowel Disease. Scand J Gastroenterol (2012) 47:951–5. doi: 10.3109/00365521.2012.699549
    1. Kasang C, Kalluvya S, Majinge C, Kongo G, Mlewa M, Massawe I, et al. . Effects of Prednisolone on Disease Progression in Antiretroviral-Untreated HIV Infection: A 2-Year Randomized, Double- Blind Placebo-Controlled Clinical Trial. PloS One (2016) 11:e0146678. doi: 10.1371/journal.pone.0146678
    1. Asciutto G, Edsfeldt A, Dias NV, Nilsson J, Prehn C, Adamski J, et al. . Treatment With Beta-Blockers Is Associated With Lower Levels of Lp-PLA2 and suPAR in Carotid Plaques. Cardiovasc Pathol (2013) 22:438–43. doi: 10.1016/j.carpath.2013.04.005
    1. Hodges GW, Bang CN, Forman JL, Olsen MH, Boman K, Ray S, et al. . Effect of Simvastatin and Ezetimibe on suPAR Levels and Outcomes. Atherosclerosis (2018) 272:129–36. doi: 10.1016/j.atherosclerosis.2018.03.030
    1. Tsai P-K, Tsao S-M, Yang W-E, Yeh C-B, Wang H-L, Yang S-F. Plasma Soluble Urokinase-Type Plasminogen Activator Receptor Level as a Predictor of the Severity of Community-Acquired Pneumonia. Int J Environ Res Public Health (2019) 16:1035. doi: 10.3390/ijerph16061035
    1. Ostrowski SR, Katzenstein TL, Piironen T, Gerstoft J, Pedersen BK, Ullum H. Soluble Urokinase Receptor Levels in Plasma During 5 Years of Highly Active Antiretroviral Therapy in HIV-1-Infected Patients. J Acquir Immunodefic Syndr (2004) 35:337–42. doi: 10.1097/00126334-200404010-00002
    1. Tavenier J, Haupt TH, Andersen AL, Buhl SF, Langkilde A, Andersen JR, et al. . A High-Protein Diet During Hospitalization Is Associated With an Accelerated Decrease in Soluble Urokinase Plasminogen Activator Receptor Levels in Acutely Ill Elderly Medical Patients With SIRS. Nutr Res (2017) 41:56–64. doi: 10.1016/j.nutres.2017.04.006
    1. Biomarkers Definitions Working Group . Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clin Pharmacol Ther (2001) 69:89–95. doi: 10.1067/mcp.2001.113989
    1. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, et al. . Circulating Urokinase Receptor as a Cause of Focal Segmental Glomerulosclerosis. Nat Med (2011) 17:952–60. doi: 10.1038/nm.2411
    1. Khater WS, Salah-Eldeen NN, Khater MS, Saleh AN. Role of suPAR and Lactic Acid in Diagnosing Sepsis and Predicting Mortality in Elderly Patients. Eur J Microbiol Immunol (2016) 6:178–85. doi: 10.1556/1886.2016.00011
    1. Kyriazopoulou E, Panagopoulos P, Metallidis S, Dalekos GN, Poulakou G, Gatselis N, et al. . An Open Label Trial of Anakinra to Prevent Respiratory Failure in COVID-19. Elife (2021) 10:e66125. doi: 10.7554/eLife.66125
    1. Kyriazopoulou E, Poulakou G, Milionis H, Metallidis S, Adamis G, Tsiakos K, et al. . Early Treatment of COVID-19 With Anakinra Guided by Soluble Urokinase Plasminogen Receptor Plasma Levels: A Double-Blind, Randomized Controlled Phase 3 Trial. Nat Med (2021) 27:1752–60. doi: 10.1038/s41591-021-01499-z
    1. Goronzy JJ, Weyand CM. Understanding Immunosenescence to Improve Responses to Vaccines. Nat Immunol (2013) 14:428–36. doi: 10.1038/ni.2588
    1. Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, et al. . Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front Immunol (2019) 10:2247. doi: 10.3389/fimmu.2019.02247
    1. Pera A, Campos C, López N, Hassouneh F, Alonso C, Tarazona R, et al. . Immunosenescence: Implications for Response to Infection and Vaccination in Older People. Maturitas (2015) 82:50–5. doi: 10.1016/j.maturitas.2015.05.004
    1. Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the Immune Response With Aging: Immunosenescence and Its Potential Impact on COVID-19 Immune Response. Front Immunol (2020) 11:1748. doi: 10.3389/fimmu.2020.01748
    1. Tavenier J, Rasmussen LJH, Houlind MB, Andersen AL, Panum I, Andersen O, et al. . Alterations of Monocyte NF-κb P65/RelA Signaling in a Cohort of Older Medical Patients, Age-Matched Controls, and Healthy Young Adults. Immun Ageing (2020) 17:25. doi: 10.1186/s12979-020-00197-7
    1. Rhodes B, Fürnrohr BG, Vyse TJ. C-Reactive Protein in Rheumatology: Biology and Genetics. Nat Rev Rheumatol (2011) 7:282–9. doi: 10.1038/nrrheum.2011.37
    1. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol (2018) 9:754. doi: 10.3389/fimmu.2018.00754
    1. Nilsonne G, Lekander M, Åkerstedt T, Axelsson J, Ingre M. Diurnal Variation of Circulating Interleukin-6 in Humans: A Meta-Analysis. PloS One (2016) 11:e0165799. doi: 10.1371/journal.pone.0165799
    1. Meier-Ewert HK, Ridker PM, Rifai N, Price N, Dinges DF, Mullington JM. Absence of Diurnal Variation of C-Reactive Protein Concentrations in Healthy Human Subjects. Clin Chem (2001) 47:426–30. doi: 10.1093/clinchem/47.3.426
    1. Marsland AL, Walsh C, Lockwood K, John-Henderson NA. The Effects of Acute Psychological Stress on Circulating and Stimulated Inflammatory Markers: A Systematic Review and Meta-Analysis. Brain Behav Immun (2017) 64:208–19. doi: 10.1016/j.bbi.2017.01.011
    1. Pepys MB. Hirschfield Gm. C-Reactive Protein: Crit Update J Clin Invest (2003) 111:1805–12. doi: 10.1172/JCI18921
    1. Rana OR, Schröder JW, Koch A, Tacke F, Koos R, Schwinger RHG, et al. . Soluble Urokinase Plasminogen Activator Receptor (suPAR): Its Relation to Neurological Outcome in Patients With Survived Cardiac Arrest. IJC Metab Endocr (2016) 12:8–13. doi: 10.1016/j.ijcme.2016.05.008
    1. Kofoed K, Andersen O, Kronborg G, Tvede M, Petersen J, Eugen-Olsen J, et al. . Use of Plasma C-Reactive Protein, Procalcitonin, Neutrophils, Macrophage Migration Inhibitory Factor, Soluble Urokinase-Type Plasminogen Activator Receptor, and Soluble Triggering Receptor Expressed on Myeloid Cells-1 in Combination to Diagnose Infections. Crit Care (2007) 11:R38. doi: 10.1186/cc5723
    1. Parrinello CM, Lutsey PL, Ballantyne CM, Folsom AR, Pankow JS, Selvin E. Six-Year Change in High-Sensitivity C-Reactive Protein and Risk of Diabetes, Cardiovascular Disease, and Mortality. Am Heart J (2015) 170:380–9. doi: 10.1016/j.ahj.2015.04.017
    1. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-Reactive Protein and Low-Density Lipoprotein Cholesterol Levels in the Prediction of First Cardiovascular Events. N Engl J Med (2002) 347:1557–65. doi: 10.1056/NEJMoa021993
    1. Bower JK, Lazo M, Juraschek SP, Selvin E. Within-Person Variability in High-Sensitivity C-Reactive Protein. Arch Intern Med (2012) 172:1519–21. doi: 10.1001/archinternmed.2012.3712
    1. Bogaty P, Dagenais GR, Joseph L, Boyer L, Leblanc A, Bélisle P, et al. . Time Variability of C-Reactive Protein: Implications for Clinical Risk Stratification. PloS One (2013) 8:e60759. doi: 10.1371/journal.pone.0060759
    1. Mac Giollabhui N, Ellman LM, Coe CL, Byrne ML, Abramson LY, Alloy LB. To Exclude or Not to Exclude: Considerations and Recommendations for C-Reactive Protein Values Higher Than 10 Mg/L. Brain Behav Immun (2020) 87:898–900. doi: 10.1016/j.bbi.2020.01.023
    1. Muscatell KA, Brosso SN, Humphreys KL. Socioeconomic Status and Inflammation: A Meta-Analysis. Mol Psychiatry (2020) 25:2189–99. doi: 10.1038/s41380-018-0259-2
    1. Alfano M, Cinque P, Giusti G, Proietti S, Nebuloni M, Danese S, et al. . Full-Length Soluble Urokinase Plasminogen Activator Receptor Down-Modulates Nephrin Expression in Podocytes. Sci Rep (2015) 5:13647. doi: 10.1038/srep13647
    1. Hayek SS, Koh KH, Grams ME, Wei C, Ko Y-A, Li J, et al. . A Tripartite Complex of suPAR, APOL1 Risk Variants and αvβ3 Integrin on Podocytes Mediates Chronic Kidney Disease. Nat Med (2017) 23:945–53. doi: 10.1038/nm.4362
    1. Spinale JM, Mariani LH, Kapoor S, Zhang J, Weyant R, Song PX, et al. . A Reassessment of Soluble Urokinase-Type Plasminogen Activator Receptor in Glomerular Disease. Kidney Int (2015) 87:564–74. doi: 10.1038/ki.2014.346
    1. Caseley EA, Poulter JA, Rodrigues F. Immunome Project Consortium for Autoinflammatory Disorders (ImmunAID), Mcdermott MF. Inflammasome Inhibition Under Physiological and Pharmacological Conditions. Genes Immun (2020) 21:211–23. doi: 10.1038/s41435-020-0104-x
    1. Shields GS, Spahr CM, Slavich GM. Psychosocial Interventions and Immune System Function: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. JAMA Psychiatry (2020) 77:1031–43. doi: 10.1001/jamapsychiatry.2020.0431
    1. Pries-Heje MM, Hasselbalch RB, Raaschou H, Rezanavaz-Gheshlagh B, Heebøll H, Rehman S, et al. . Utility of Multiple Rule Out CT Screening of High-Risk Atraumatic Patients in an Emergency Department — A Feasibility Study. Emerg Radiol (2018) 25:357–65. doi: 10.1007/s10140-018-1584-0
    1. Velissaris D, Dimopoulos G, Parissis J, Alexiou Z, Antonakos N. Prognostic Role of Soluble Urokinase Plasminogen Activator Receptor at the Emergency Department: A Position Paper by the Hellenic Sepsis Study Group. Infect Dis Ther (2020) 9:407–16. doi: 10.1007/s40121-020-00301-w
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. . The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA (2016) 315:801–10. doi: 10.1001/jama.2016.0287
    1. Joshi A, Rienks M, Theofilatos K, Mayr M. Systems Biology in Cardiovascular Disease: A Multiomics Approach. Nat Rev Cardiol (2021) 18:313–30. doi: 10.1038/s41569-020-00477-1
    1. Hoogeveen RM, Pereira JPB, Nurmohamed NS, Zampoleri V, Bom MJ, Baragetti A, et al. . Improved Cardiovascular Risk Prediction Using Targeted Plasma Proteomics in Primary Prevention. Eur Heart J (2020) 41:3998–4007. doi: 10.1093/eurheartj/ehaa648
    1. Hayek SS, Raffield LM, Gao Y, Engstrom G, Quyyumi AA, Reiner AP, et al. . Assay-Related Differences in SuPAR Levels: Implications for Measurement and Data Interpretation. medRxiv (2021). doi: 10.1101/2021.06.23.21259148 PREPRINT.
    1. Abraham AG, Xu Y, Roem JL, Greenberg JH, Weidemann DK, Sabbisetti VS, et al. . Variability in CKD Biomarker Studies: Soluble Urokinase Plasminogen Activator Receptor (suPAR) and Kidney Disease Progression in the Chronic Kidney Disease in Children (CKiD) Study. Kidney Med (2021) 3:712–21.e1. doi: 10.1016/j.xkme.2021.04.007
    1. Winnicki W, Sunder-Plassmann G, Sengölge G, Handisurya A, Herkner H, Kornauth C, et al. . Diagnostic and Prognostic Value of Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) in Focal Segmental Glomerulosclerosis and Impact of Detection Method. Sci Rep (2019) 9:13783. doi: 10.1038/s41598-019-50405-8
    1. Joshi A, Mayr M. In Aptamers They Trust: The Caveats of the SOMAscan Biomarker Discovery Platform From SomaLogic. Circulation (2018) 138:2482–5. doi: 10.1161/CIRCULATIONAHA.118.036823

Source: PubMed

3
Abonnere