Serum Procalcitonin and Peripheral Venous Lactate for Predicting Dengue Shock and/or Organ Failure: A Prospective Observational Study

Vipa Thanachartwet, Varunee Desakorn, Duangjai Sahassananda, Akanitt Jittmittraphap, Nittha Oer-Areemitr, Sathaporn Osothsomboon, Manoon Surabotsophon, Anan Wattanathum, Vipa Thanachartwet, Varunee Desakorn, Duangjai Sahassananda, Akanitt Jittmittraphap, Nittha Oer-Areemitr, Sathaporn Osothsomboon, Manoon Surabotsophon, Anan Wattanathum

Abstract

Background: Currently, there are no biomarkers that can predict the incidence of dengue shock and/or organ failure, although the early identification of risk factors is important in determining appropriate management to reduce mortality. Therefore, we sought to determine the factors associated with dengue shock and/or organ failure and to evaluate the prognostic value of serum procalcitonin (PCT) and peripheral venous lactate (PVL) levels as biomarkers of dengue shock and/or organ failure.

Methodology/principal findings: A prospective observational study was conducted among adults hospitalized for confirmed viral dengue infection at the Hospital for Tropical Diseases in Bangkok, Thailand between October 2013 and July 2015. Data, including baseline characteristics, clinical parameters, laboratory findings, serum PCT and PVL levels, management, and outcomes, were recorded on pre-defined case report forms. Of 160 patients with dengue, 128 (80.0%) patients had dengue without shock or organ failure, whereas 32 (20.0%) patients developed dengue with shock and/or organ failure. Using a stepwise multivariate logistic regression analysis, PCT ≥0.7 ng/mL (odds ratio [OR]: 4.80; 95% confidence interval [CI]: 1.60-14.45; p = 0.005) and PVL ≥2.5 mmol/L (OR: 27.99, 95% CI: 8.47-92.53; p <0.001) were independently associated with dengue shock and/or organ failure. A combination of PCT ≥0.7 ng/mL and PVL ≥2.5 mmol/L provided good prognostic value for predicting dengue shock and/or organ failure, with an area under the receiver operating characteristics curve of 0.83 (95% CI: 0.74-0.92), a sensitivity of 81.2% (95% CI: 63.6-92.8%), and a specificity of 84.4% (95% CI: 76.9-90.2%). Dengue shock patients with non-clearance of PCT and PVL expired during hospitalization.

Conclusions/significance: PCT ≥0.7 ng/mL and PVL ≥2.5 mmol/L were independently associated with dengue shock and/or organ failure. The combination of PCT and PVL levels could be used as prognostic biomarkers for the prediction of dengue shock and/or organ failure.

Conflict of interest statement

All authors have declared that no competing interests exist in this study. Roche Diagnostics (Thailand) Ltd. provided Elecsys BRAHMS PCT as a gift for this study. All authors have declared that the Roche Diagnostics (Thailand) Ltd. had no role in study design, data collection and/or analysis, the decision to publish, or preparation of the manuscript.

Figures

Fig 1. Flow diagram showing the recruitment…
Fig 1. Flow diagram showing the recruitment of study patients.
ELISA, enzyme-linked immunosorbent assay; RT-PCR, reverse-transcriptase polymerase chain reaction.
Fig 2. Serum procalcitonin and peripheral venous…
Fig 2. Serum procalcitonin and peripheral venous lactate at admission in dengue patients.
(A) Serum procalcitonin levels among patients with and without dengue shock and/or organ failure. (B) Peripheral venous lactate levels among patients with and without dengue shock and/or organ failure. Data are presented as box and whisker plots with median (horizontal line), interquartile range (box), maximum value within 1.5 of interquartile range (whiskers), outliers (circles), and extreme outliers (asterisks).
Fig 3. Receiver operating characteristic curves for…
Fig 3. Receiver operating characteristic curves for serum procalcitonin and peripheral venous lactate in the prediction of dengue shock and/or organ failure at admission.
(A) The area under the receiver operating characteristic curve (AUROC) for serum procalcitonin at admission was 0.69 (95% confidence interval [95% CI]: 0.59–0.80). (B) The AUROC for peripheral venous lactate at admission was 0.78 (95% CI: 0.68–0.88). (C) The AUROC for a combined bioscore at admission was 0.83 (95% CI: 0.74–0.92). (D) The AUROC for the number of warning signs at admission was 0.77 (95% CI: 0.68–0.87).
Fig 4. Daily changes in serum procalcitonin…
Fig 4. Daily changes in serum procalcitonin and peripheral venous lactate during hospitalization.
(A) Changes in average serum procalcitonin (ng/mL) levels among patients with and without dengue shock and/or organ failure by survival status. (B) Changes in peripheral venous lactate (mmol/L) levels among patients with and without dengue shock and/or organ failure by survival status. Data are presented as box and whisker plots with median (horizontal line), interquartile range (box), and maximum value within 1.5 of interquartile range (whiskers).

References

    1. World Health Organization. Dengue: Guidelines for diagnosis, treatment, prevention and control Geneva: World Health Organization; 2009. Available at:
    1. World Health Organization. Global strategy for dengue prevention and control 2012–2020 Geneva: World Health Organization; 2012. Available at:
    1. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8: S7–S16. 10.1038/nrmicro2460
    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496: 504–507. 10.1038/nature12060
    1. Halstead SB. Is there an inapparent dengue explosion? Lancet. 1999;353: 1100–1101.
    1. Wali JP, Biswas A, Handa R, Aggarwal P, Wig N, Dwivedi SN. Dengue haemorrhagic fever in adults: a prospective study of 110 cases. Trop Doct. 1999;29: 27–30.
    1. Guzmán MG, Kourí G, Valdés L, Bravo J, Vázquez S, Halstead SB. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev Panam Salud Publica. 2002;11: 223–227.
    1. Horstick O, Jaenisch T, Martinez E, Kroeger A, See, Farrar J, et al. Comparing the usefulness of the 1997 and 2009 WHO dengue case classification: a systematic literature review. Am J Trop Med Hyg. 2014;91: 621–634. 10.4269/ajtmh.13-0676
    1. Yacoub S, Mongkolsapaya J, Screaton G. The pathogenesis of dengue. Curr Opin Infect Dis. 2013;26: 284–289. 10.1097/QCO.0b013e32835fb938
    1. St. John AL, Abraham SN, Gubler DJ. Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nat Rev Microbiol. 2013;11: 420–426. 10.1038/nrmicro3030
    1. Guzman MG, Harris E. Dengue. Lancet 2015;385: 453–465. 10.1016/S0140-6736(14)60572-9
    1. Halstead SB. Controversies in dengue pathogenesis. Paediatr Int Child Health. 2012;32 Suppl 1: 5–9. 10.1179/2046904712Z.00000000045
    1. Huy NT, Van Giang T, Thuy DH, Kikuchi M, Hien TT, Zamora J, et al. Factors associated with dengue shock syndrome: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2013;7: e2412 10.1371/journal.pntd.0002412
    1. Meisner M. Update on procalcitonin measurements. Ann Lab Med. 2014;34: 263–73. 10.3343/alm.2014.34.4.263
    1. Liu HH, Guo JB, Geng Y, Su L. Procalcitonin: present and future. Ir J Med Sci. 2015;184: 597–605. 10.1007/s11845-015-1327-0
    1. Wacker C, Prkno A, Brunkhorst FM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13: 426–435. 10.1016/S1473-3099(12)70323-7
    1. Lubell Y, Blacksell SD, Dunachie S, Tanganuchitcharnchai A, Althaus T, Watthanaworawit W, et al. Performance of C-reactive protein and procalcitonin to distinguish viral from bacterial and malarial causes of fever in Southeast Asia. BMC Infect Dis. 2015;15: 511 10.1186/s12879-015-1272-6
    1. Meisner M, Tschaikowsky K, Palmaers T, Schmidt J. Comparison of procalcitonin (PCT) and C-reactive protein (CRP) plasma concentrations at different SOFA scores during the course of sepsis and MODS. Crit Care. 1999;3: 45–50.
    1. Clec'h C, Ferriere F, Karoubi P, Fosse JP, Cupa M, Hoang P, et al. Diagnostic and prognostic value of procalcitonin in patients with septic shock. Crit Care Med. 2004;32: 1166–1169.
    1. Ingram PR, Inglis T, Moxon D, Speers D. Procalcitonin and C-reactive protein in severe 2009 H1N1 influenza infection. Intensive Care Med. 2010;36: 528–532. 10.1007/s00134-009-1746-3
    1. Mikkelsen ME, Miltiades AN, Gaieski DF, Goyal M, Fuchs BD, Shah CV, et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med. 2009;37: 1670–1677. 10.1097/CCM.0b013e31819fcf68
    1. Thanachartwet V, Oer-Areemitr N, Chamnanchanunt S, Sahassananda D, Jittmittraphap A, Suwannakudt P, et al. Identification of clinical factors associated with severe dengue among Thai adults: a prospective study. BMC Infect Dis. 2015;15: 420 10.1186/s12879-015-1150-2
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335: 806–808.
    1. Korevaar DA, van Enst WA, Spijker R, Bossuyt PM, Hooft L. Reporting quality of diagnostic accuracy studies: a systematic review and meta-analysis of investigations on adherence to STARD. Evid Based Med. 2014;19: 47–54. 10.1136/eb-2013-101637
    1. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30: 545–551.
    1. Reynes JM, Ong S, Mey C, Ngan C, Hoyer S, Sall AA. Improved molecular detection of dengue virus serotype 1 variants. J Clin Microbiol. 2003;41: 3864–3867.
    1. Vorndam V, Beltran M. Enzyme-linked immunosorbent assay-format microneutralization test for dengue viruses. Am J Trop Med Hyg. 2002;66: 208–212.
    1. Putnak JR, de la Barrera R, Burgess T, Pardo J, Dessy F, Gheysen D, et al. Comparative evaluation of three assays for measurement of dengue virus neutralizing antibodies. Am J Trop Med Hyg. 2008;79: 115–122.
    1. Innis BL, Nisalak A, Nimmannitya S, Kusalerdchariya S, Chongswasdi V, Suntayakorn S, et al. An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am J Trop Med Hyg. 1989;40: 418–427.
    1. Aung KL, Thanachartwet V, Desakorn V, Chamnanchanunt S, Sahassananda D, Chierakul W, et al. Factors associated with severe clinical manifestation of dengue among adults in Thailand. Southeast Asian J Trop Med Public Health. 2013;44: 602–612.
    1. Gibot S, Béné MC, Noel R, Massin F, Guy J, Cravoisy A, et al. Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med. 2012;186: 65–71. 10.1164/rccm.201201-0037OC
    1. Simmons CP, Farrar JJ, Nguyen VV, Wills B. Dengue. N Engl J Med 2012;366: 1423–1432. 10.1056/NEJMra1110265
    1. Thein TL, Gan VC, Lye DC, Yung CF, Leo YS. Utilities and limitations of the World Health Organization 2009 warning signs for adult dengue severity. PLoS Negl Trop Dis. 2013;7: e2023 10.1371/journal.pntd.0002023
    1. Leo YS, Gan VC, Ng EL, Hao Y, Ng LC, Pok KY, et al. Utility of warning signs in guiding admission and predicting severe disease in adult dengue. BMC Infect Dis. 2013;13: 498 10.1186/1471-2334-13-498
    1. Thanachartwet V, Wattanathum A, Oer-areemitr N, Jittmittraphap A, Sahassananda D, Monpassorn C, Surabotsophon M, Desakorn V. Diagnostic accuracy of peripheral venous lactate and the 2009 WHO warning signs for identifying severe dengue in Thai adults: a prospective observational study. BMC Infect Dis. 2016;16: 46 10.1186/s12879-016-1386-5
    1. Liu D, Su L, Han G, Yan P, Xie L. Prognostic value of procalcitonin in adult patients with sepsis: a systematic review and meta-analysis. PLoS One. 2015;10: e0129450 10.1371/journal.pone.0129450
    1. Branche AR, Walsh EE, Vargas R, Hulbert B, Formica MA, Baran A, et al. Serum procalcitonin measurement and viral testing to guide antibiotic use for respiratory infections in hospitalized adults: a randomized controlled trial. J Infect Dis. 2015;212: 1692–1700. 10.1093/infdis/jiv252
    1. Gendrel D, Raymond J, Coste J, Moulin F, Lorrot M, Guérin S, et al. Comparison of procalcitonin with C-reactive protein, interleukin 6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr Infect Dis J. 1999;18: 875–881.
    1. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000;181: 2–9.
    1. Murgue B, Roche C, Chungue E, Deparis X. Prospective study of the duration and magnitude of viraemia in children hospitalised during the 1996–1997 dengue-2 outbreak in French Polynesia. J Med Virol. 2000;60: 432–438.
    1. Meisner M, Schmidt J, Hüttner H, Tschaikowsky K. The natural elimination rate of procalcitonin in patients with normal and impaired renal function. Intensive Care Med. 2000;26 Suppl 2: S212–S216. 10.1007/BF02900740
    1. Rey C, Los Arcos M, Concha A, Medina A, Prieto S, Martinez P, et al. Procalcitonin and C-reactive protein as markers of systemic inflammatory response syndrome severity in critically ill children. Intensive Care Med. 2007;33: 477–484.
    1. See KC, Phua J, Yip HS, Yeo LL, Lim TK. Identification of concurrent bacterial infection in adult patients with dengue. Am J Trop Med Hyg. 2013;89: 804–810. 10.4269/ajtmh.13-0197
    1. Premaratna R, Dissanayake D, Silva FH, Dassanayake M, de Silva HJ. Secondary bacteraemia in adult patients with prolonged dengue fever. Ceylon Med J. 2015;60: 10–12. 10.4038/cmj.v60i1.7165
    1. Leo YS, Thein TL, Fisher DA, Low JG, Oh HM, Narayanan RL, et al. Confirmed adult dengue deaths in Singapore: 5-year multi-center retrospective study. BMC Infect Dis. 2011;11: 123 10.1186/1471-2334-11-123
    1. de Wolf HK, Gunnewiek JK, Berk Y, van den Ouweland J, de Metz M. Comparison of a new procalcitonin assay from roche with the established method on the brahms kryptor. Clin Chem. 2009;55(5): 1043–1044. 10.1373/clinchem.2008.117655
    1. Fink MP. Cytopathic hypoxia. Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit Care Clin. 2002;18: 165–175.
    1. Belikova I, Lukaszewicz AC, Faivre V, Damoisel C, Singer M, Payen D. Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit Care Med. 2007;35: 2702–2708.
    1. El-Bacha T, Midlej V, Pereira da Silva AP, Silva da Costa L, Benchimol M, Galina A, et al. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochim Biophys Acta. 2007;1772: 1158–1166.
    1. Hottz ED, Oliveira MF, Nunes PC, Nogueira RM, Valls-de-Souza R, Da Poian AT, et al. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost. 2013;11: 951–962. 10.1111/jth.12178
    1. Puskarich MA, Trzeciak S, Shapiro NI, Albers AB, Heffner AC, Kline JA, et al. Whole blood lactate kinetics in patients undergoing quantitative resuscitation for severe sepsis and septic shock. Chest. 2013;143: 1548–1553. 10.1378/chest.12-0878

Source: PubMed

3
Abonnere