Validity, Reliability, and Usefulness of My Jump 2 App for Measuring Vertical Jump in Primary School Children

Špela Bogataj, Maja Pajek, Vedran Hadžić, Slobodan Andrašić, Johnny Padulo, Nebojša Trajković, Špela Bogataj, Maja Pajek, Vedran Hadžić, Slobodan Andrašić, Johnny Padulo, Nebojša Trajković

Abstract

There is a persistent need in sport science for developing a measuring tool that is affordable, portable, and easy to use. We aimed to examine the concurrent validity and test-retest reliability of the My Jump 2 app compared to a validated OptoJump instrument for measuring jump performance during the squat jump (SJ), countermovement jump (CMJ), and CMJ free arms (CMJAM) in primary school children. A total of 48 participants (11-14 years age), volunteered to participate in this research. The jumps were recorded with a validated OptoJump photoelectric cell system and a concurrent device (iPhone X through My Jump 2 app) at the same time. The participants repeated the testing procedure after two weeks to assess the reliability of the measurements (ICC). Systematic bias between sessions and tools was evaluated using the paired samples t-test and Bland and Altman analysis. High test-retest reliability (ICC > 0.89) was observed for all measures' in-between conditions. Very large correlations in the total sample were observed between the My Jump 2 app and OptoJump for SJ (r = 0.97, p = 0.001), CMJ (r = 0.97, p = 0.001), and CMJAM (r = 0.99, p = 0.001). Bland and Altman's plot depicting limits of agreement for the total sample between the OptoJump and My Jump 2 show that the majority of data points are within the 95% CIs. The results of this study suggest that My Jump 2 is a valid, reliable, and useful tool for measuring jump performance in primary school children.

Keywords: assessment; jumping ability; physical education; testing; young adolescents.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Take-off and landing phase frames on the My Jump 2 app.
Figure 2
Figure 2
Level of agreement (Bland–Altman) with 95% limits of agreement (dashed lines) and the mean difference (solid line) between My Jump 2 and the OptoJump for SJ in the whole sample.
Figure 3
Figure 3
Level of agreement (Bland–Altman) with 95% limits of agreement (dashed lines) and the mean difference (solid line) between My Jump 2 and the OptoJump for CMJ in the whole sample.
Figure 4
Figure 4
Level of agreement (Bland–Altman) with 95% limits of agreement (dashed lines) and the mean difference (solid line) between My Jump 2 and the OptoJump for CMJAM in the whole sample.

References

    1. Ruiz J.R., Ortega F.B., Gutierrez A., Meusel D., Sjöström M., Castillo M.J. Health-related fitness assessment in childhood and adolescence: A European approach based on the AVENA, EYHS and HELENA studies. J. Public Health. 2006;14:269–277. doi: 10.1007/s10389-006-0059-z.
    1. Ruiz J.R., Castro-Piñero J., Artero E.G., Ortega F.B., Sjöström M., Suni J., Castillo M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009;43:909–923. doi: 10.1136/bjsm.2008.056499.
    1. Nwimo I.O., Orji S.A. Physical Fitness among School Children: Review of Empirical Studies and Implications for Physical and Health Education. J. Tour. Hosp. Sport. 2015;10:2312–5179.
    1. Padulo J., Bragazzi N.L., De Giorgio A., Grgantov Z., Prato S., Ardigò L.P. The Effect of Physical Activity on Cognitive Performance in an Italian Elementary School: Insights from a Pilot Study Using Structural Equation Modeling. Front. Physiol. 2019;10:202. doi: 10.3389/fphys.2019.00202.
    1. Ojo A.L. Teaching Physical Education in Nigerian Secondary Schools is a Barrier: An Implication for Future Generation, a Case Study of Ado Metropolis Secondary Schools in Ekiti State, Nigeria. Int. J. Educ. Learn. Dev. 2015;3:38–53.
    1. Ortega F.B., Ruiz J.R., Castillo M.J., Sjöström M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2007;32:1–11. doi: 10.1038/sj.ijo.0803774.
    1. World Health Organization . Physical Activity: Global Recommendations on Physical Activity for Health Consequences of Physical Inactivity. WHO Regional Office for Europe; Geneva, Switzerland: 2015.
    1. Watkins C.M., Barillas S.R., Wong M.A., Archer D.C., Dobbs I.J., Lockie R.G., Coburn J.W., Tran T.T., Brown L. Determination of Vertical Jump as a Measure of Neuromuscular Readiness and Fatigue. J. Strength Cond. Res. 2017;31:3305–3310. doi: 10.1519/JSC.0000000000002231.
    1. Spiteri T., Binetti M., Scanlan A.T., Dalbo V.J., Dolci F., Specos C. Physical Determinants of Division 1 Collegiate Basketball, Women’s National Basketball League, and Women’s National Basketball Association Athletes: With Reference to Lower-Body Sidedness. J. Strength Cond. Res. 2019;33:159–166. doi: 10.1519/JSC.0000000000001905.
    1. Yingling V., Castro D.A., Duong J.T., Malpartida F.J., Usher J.R., Jenny O. The reliability of vertical jump tests between the Vertec and My Jump phone application. PeerJ. 2018;6:e4669. doi: 10.7717/peerj.4669.
    1. De Siati F., Laffaye G., Gatta G., Iacono A.D., Ardigò L.P., Padulo J. Neuromuscular and technical abilities related to age in water-polo players. J. Sports Sci. 2015;34:1466–1472. doi: 10.1080/02640414.2015.1119298.
    1. Aragón L.F. Evaluation of Four Vertical Jump Tests: Methodology, Reliability, Validity, and Accuracy. Meas. Phys. Educ. Exerc. Sci. 2000;4:215–228. doi: 10.1207/S15327841MPEE0404_2.
    1. Acero R.M., Del Olmo M.F., Sanchez J.A., Otero X.L., Aguado X., Rodríguez F.A. Reliability of squat and countermovement jump tests in children 6 to 8 years of age. Pediatr. Exerc. Sci. 2011;23:151–160. doi: 10.1123/pes.23.1.151.
    1. Casartelli N., Müller R., Maffiuletti N.A. Validity and Reliability of the Myotest Accelerometric System for the Assessment of Vertical Jump Height. J. Strength Cond. Res. 2010;24:3186–3193. doi: 10.1519/JSC.0b013e3181d8595c.
    1. Glatthorn J.F., Gouge S., Nussbaumer S., Stauffacher S., Impellizzeri F.M., Maffiuletti N.A. Validity and Reliability of Optojump Photoelectric Cells for Estimating Vertical Jump Height. J. Strength Cond. Res. 2011;25:556–560. doi: 10.1519/JSC.0b013e3181ccb18d.
    1. Requena B., Requena F., García I., de Villarreal E.S.S., Pääsuke M. Reliability and validity of a wireless microelectromechanicals based system (Keimove TM) for measuring vertical jumping performance. J. Sports Sci. Med. 2012;11:115–122.
    1. Haynes T., Bishop C., Antrobus M., Brazier J. The validity and reliability of the My Jump 2 app for measuring the reactive strength index and drop jump performance. J. Sports Med. Phys. Fit. 2019;59:253–258. doi: 10.23736/S0022-4707.18.08195-1.
    1. Driller M., Tavares F., McMaster D., O’Donnell S. Assessing a smartphone application to measure counter-movement jumps in recreational athletes. Int. J. Sports Sci. Coach. 2017;12:661–664. doi: 10.1177/1747954117727846.
    1. Cabral R., Venâncio P.E.M., Medeiros A.R., Claudino J.G., Jiménez-Reyes P., Boullosa D. The validity and reliability of the “My Jump App” for measuring jump height of the elderly. PeerJ. 2018;6:e5804. doi: 10.7717/peerj.5804.
    1. Balsalobre-Fernández C., Glaister M., Lockey R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci. 2015;33:1574–1579. doi: 10.1080/02640414.2014.996184.
    1. Carlos-Vivas J., Martin-Martinez J.P., A Hernandez-Mocholi M., Perez-Gomez J. Validation of the iPhone app using the force platform to estimate vertical jump height. J. Sports Med. Phys. Fit. 2016;58:227–232.
    1. Gallardo-Fuentes F., Gallardo-Fuentes J., Ramirez-Campillo R., Balsalobre-Fernández C., Martínez C., Caniuqueo A., Cañas R., Banzer W., LoTurco I., Nakamura F.Y., et al. Intersession and Intrasession Reliability and Validity of the My Jump App for Measuring Different Jump Actions in Trained Male and Female Athletes. J. Strength Cond. Res. 2016;30:2049–2056. doi: 10.1519/JSC.0000000000001304.
    1. Coswig V.S., Silva A.D.A.C.E., Barbalho M., De Faria F.R., Nogueira C., Borges M., Buratti J.R., Vieira I.B., López-Román F.J., Gorla J.I., et al. Assessing the Validity of the MyJump2 App for Measuring Different Jumps in Professional Cerebral Palsy Football Players: An Experimental Study. JMIR mHealth uHealth. 2019;7:e11099. doi: 10.2196/11099.
    1. Bešlija T., Čular D., Kezić A., Tomljanović M., Ardigò L.P., Dhabhi W., Padulo J. Height-based model for the categorization of athletes in combat sports. Eur. J. Sport Sci. 2020:1–10. doi: 10.1080/17461391.2020.1744735.
    1. Attia A., Dhahbi W., Chaouachi A., Padulo J., Wong D., Chamari K. Measurement errors when estimating the vertical jump height with flight time using photocell devices: The example of Optojump. Biol. Sport. 2016;34:63–70. doi: 10.5114/biolsport.2017.63735.
    1. Samozino P., Morin J.-B., Hintzy F., Belli A. A simple method for measuring force, velocity and power output during squat jump. J. Biomech. 2008;41:2940–2945. doi: 10.1016/j.jbiomech.2008.07.028.
    1. Gheller R.G., Pupo J.D., Ache-Dias J., Detanico D., Padulo J., Dos Santos S.G. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps. Hum. Mov. Sci. 2015;42:71–80. doi: 10.1016/j.humov.2015.04.010.
    1. Padulo J., Tiloca A., Powell D., Granatelli G., Bianco A., Paoli A. EMG amplitude of the biceps femoris during jumping compared to landing movements. SpringerPlus. 2013;2:520. doi: 10.1186/2193-1801-2-520.
    1. Holsgaard-Larsen A., Caserotti P., Puggaard L., Aagaard P. Reproducibility and relationship of single-joint strength vs multi-joint strength and power in aging individuals. Scand. J. Med. Sci. Sports. 2006;17:43–53. doi: 10.1111/j.1600-0838.2006.00560.x.
    1. Laffaye G., Choukou M.A., Benguigui N., Padulo J. Age-and gender-related development of stretch shortening cycle during a sub-maximal hopping task. Biol. Sport. 2015;33:29–35.
    1. Bosco C., Luhtanen P., Komi P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983;50:273–282. doi: 10.1007/BF00422166.
    1. Hopkins W.G., Schabort E.J., Hawley J.A. Reliability of power in physical performance tests. Sports Med. 2001;31:211–234. doi: 10.2165/00007256-200131030-00005.
    1. Hopkins W. Reliability from consecutive pairs of trials (Excel spreadsheet). A new view of statistics. : Internet Society for Sport Science—Open Access Library. Internet Soc. Sports Sci. 2007;11:23–36.
    1. Koo T., Li M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Buchheit M., Lefebvre B., Laursen P.B., Ahmaidi S. Reliability, Usefulness, and Validity of the 30–15 Intermittent Ice Test in Young Elite Ice Hockey Players. J. Strength Cond. Res. 2011;25:1457–1464. doi: 10.1519/JSC.0b013e3181d686b7.
    1. Hopkins W. How to Interpret Changes in an Athletic Performance Test. Sportscience. 2004;8:1–7.
    1. Bland J.M., Altman D. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet. 1986;327:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Taylor M., Cohen D., Voss C., Sandercock G.R.H. Vertical jumping and leg power normative data for English school children aged 10–15 years. J. Sports Sci. 2010;28:867–872. doi: 10.1080/02640411003770212.
    1. Payne N., Gledhill N., Katzmarzyk P.T., Jamnik V.K., Keir P.J. Canadian Musculoskeletal Fitness Norms. Can. J. Appl. Physiol. 2000;25:430–442. doi: 10.1139/h00-028.
    1. Rogers S.A., Hassmén P., Hunter A., Alcock A., Crewe S.T., Strauts J.A., Gilleard W., Weissensteiner J.R. The Validity and Reliability of the MyJump2 Application to Assess Vertical Jumps in Trained Junior Athletes. Meas. Phys. Educ. Exerc. Sci. 2018;23:1–9. doi: 10.1080/1091367X.2018.1517088.
    1. Stanton R., Wintour S.-A., Kean C.O. Validity and intra-rater reliability of MyJump app on iPhone 6s in jump performance. J. Sci. Med. Sport. 2017;20:518–523. doi: 10.1016/j.jsams.2016.09.016.
    1. Choukou M.A., Laffaye G., Taiar R. Reliability and validity of an accele-rometric system for assessing vertical jumping performance. Biol. Sport. 2014;31:55–62. doi: 10.5604/20831862.1086733.
    1. Buckthorpe M.W., Morris J., Folland J.P. Validity of vertical jump measurement devices. J. Sports Sci. 2012;30:63–69. doi: 10.1080/02640414.2011.624539.
    1. Markovic G., Dizdar D., Jukic I., Cardinale M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004;18:551–555.
    1. Castagna C., Ganzetti M., Ditroilo M., Giovannelli M., Rocchetti A., Manzi V. Concurrent Validity of Vertical Jump Performance Assessment Systems. J. Strength Cond. Res. 2013;27:761–768. doi: 10.1519/JSC.0b013e31825dbcc5.
    1. Ayán-Pérez C., Cancela-Carral J.M., Lago-Ballesteros J., Martínez-Lemos I. Reliability of Sargent Jump Test in 4-to 5-Year-Old Children. Percept. Mot. Skills. 2016;124:39–57. doi: 10.1177/0031512516676174.
    1. Leard J.S., Cirillo M.A., Katsnelson E., Kimiatek D.A., Miller T.W., Trebincevic K., Garbalosa J.C. Validity of two alternative systems for measuring vertical jump height. J. Strength Cond. Res. 2007;21:1296–1299.
    1. Nuzzo J.L., Anning J.H., Scharfenberg J.M. The Reliability of Three Devices Used for Measuring Vertical Jump Height. J. Strength Cond. Res. 2011;25:2580–2590. doi: 10.1519/JSC.0b013e3181fee650.
    1. Young W. Laboratory strength assessment of athletes. New Stud. Athl. 2006;10:89–96.
    1. Lees A., Vanrenterghem J., Clercq D. De Understanding how an arm swing enhances performance in the vertical jump. J. Biomech. 2004;37:1929–1940. doi: 10.1016/j.jbiomech.2004.02.021.
    1. Hara M., Shibayama A., Arakawa H., Fukashiro S. Effect of arm swing direction on forward and backward jump performance. J. Biomech. 2008;41:2806–2815. doi: 10.1016/j.jbiomech.2008.07.002.
    1. Bučar M., Čuk I., Pajek J., Karacsony I., Leskošek B. Reliability and validity of judging in women’s artistic gymnastics at University Games 2009. Eur. J. Sport Sci. 2012;12:207–215. doi: 10.1080/17461391.2010.551416.
    1. Bort-Roig J., Gilson N.D., Puig-Ribera A., Contreras R.S., Trost S.G. Measuring and Influencing Physical Activity with Smartphone Technology: A Systematic Review. Sports Med. 2014;44:671–686. doi: 10.1007/s40279-014-0142-5.

Source: PubMed

3
Abonnere