Validation of the Liverpool Elbow Score for evaluation of elbow stiffness

Ziyang Sun, Cunyi Fan, Ziyang Sun, Cunyi Fan

Abstract

Background: The Liverpool Elbow Score (LES) has been widely used to assess the outcomes of total elbow replacement in various conditions. However, there have been no published validation studies on LES for patients with stiff elbows undergoing arthrolysis. The purpose of this study was to find out whether LES could be equally applied to evaluate joint function in patients with elbow stiffness.

Methods: A total of 63 patients with elbow stiffness were included in this retrospective validation study. The LES combines a nine-item patient-answered questionnaire (PAQ) and a six-item clinical assessment score (CAS), and can also be divided to evaluate two different parameters: elbow motion capacity (EMC) and elbow-related symptoms (ERS). Construct validity was assessed by correlating LES with previously validated scoring systems, and Spearman correlation coefficients (SCCs) were calculated. Effect size (ES) and standardized response mean (SRM) were calculated to determine responsiveness.

Results: There were no ceiling or floor effects in the target population. Good-to-excellent validity was determined based on total score (0.45-0.89), PAQ (0.42-0.88), CAS (0.35-0.60), EMC (0.46-0.86), and ERS (0.36-0.59). High responsiveness (ES/SRM) was observed in total score (2.80/2.24), PAQ (2.34/1.78), CAS (2.90/2.34), EMC (2.92/2.35), and ERS (0.55/0.52).

Conclusion: Our results suggest that the LES is a valid elbow-specific scoring system that can be used to evaluate joint function in patients with elbow stiffness, though some items included had some weakness either.

Keywords: Elbow stiffness; Liverpool elbow score; Responsiveness; Scoring systems; Validation; Validity.

Conflict of interest statement

Ethics approval and consent to participate

The Ethics Committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital concluded that no approval is necessary for study based on its retrospective design. Data were analyzed anonymously; all patients approved the results of this study by oral consent. The oral consent approval was documented in the patients’ files. This was approved by the Ethics Committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital. All clinical investigations were conducted in accordance with the guidelines of the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The components of the Liverpool Elbow Score

References

    1. Ranganathan K, Loder S, Agarwal S, Wong VW, Forsberg J, Davis TA, Wang S, James AW, Levi B. Heterotopic ossification: basic-science principles and clinical correlates. J Bone Joint Surg Am. 2015;97(13):1101–1111. doi: 10.2106/JBJS.N.01056.
    1. Hildebrand KA, Zhang M, Befus AD, Salo PT, Hart DA. A myofibroblast-mast cell-neuropeptide axis of fibrosis in post-traumatic joint contractures: an in vitro analysis of mechanistic components. J Orthop Res. 2014;32(10):1290–1296. doi: 10.1002/jor.22676.
    1. Doornberg JN, Bosse T, Cohen MS, Jupiter JB, Ring D, Kloen P. Temporary presence of myofibroblasts in human elbow capsule after trauma. J Bone Joint Surg Am. 2014;96(5):e36. doi: 10.2106/JBJS.M.00388.
    1. Longo UG, Franceschi F, Loppini M, Maffulli N, Denaro V. Rating systems for evaluation of the elbow. Br Med Bull. 2008;87:131–161. doi: 10.1093/bmb/ldn023.
    1. Smith MV, Calfee RP, Baumgarten KM, Brophy RH, Wright RW. Upper extremity-specific measures of disability and outcomes in orthopaedic surgery. J Bone Joint Surg Am. 2012;94(3):277–285. doi: 10.2106/JBJS.J.01744.
    1. Sathyamoorthy P, Kemp GJ, Rawal A, Rayner V, Frostick SP. Development and validation of an elbow score. Rheumatology (Oxford, England) 2004;43(11):1434–1440. doi: 10.1093/rheumatology/keh367.
    1. Dawson J, Doll H, Boller I, Fitzpatrick R, Little C, Rees J, Carr A. Comparative responsiveness and minimal change for the Oxford elbow score following surgery. Qual Life Res Int J Qual Life Asp Treat Care Rehab. 2008;17(10):1257–1267.
    1. Ashmore AM, Gozzard C, Blewitt N. Use of the Liverpool elbow score as a postal questionnaire for the assessment of outcome after total elbow arthroplasty. J Shoulder Elb Surg. 2007;16(3 Suppl):S55–S58. doi: 10.1016/j.jse.2006.08.008.
    1. Amirfeyz R, Blewitt N. Mid-term outcome of GSB-III total elbow arthroplasty in patients with rheumatoid arthritis and patients with post-traumatic arthritis. Arch Orthop Trauma Surg. 2009;129(11):1505–1510. doi: 10.1007/s00402-009-0876-y.
    1. Munoz-Mahamud E, Fernandez-Valencia JA, Riba J. Plate osteosynthesis for severe olecranon fractures. J Orthop Surg (Hong Kong) 2010;18(1):80–84. doi: 10.1177/230949901001800118.
    1. Reising K, Hauschild O, Strohm PC, Suedkamp NP. Stabilisation of articular fractures of the distal humerus: early experience with a novel perpendicular plate system. Injury. 2009;40(6):611–617. doi: 10.1016/j.injury.2008.12.018.
    1. Kalogrianitis S, Sinopidis C, El Meligy M, Rawal A, Frostick SP. Unlinked elbow arthroplasty as primary treatment for fractures of the distal humerus. J Shoulder Elb Surg. 2008;17(2):287–292. doi: 10.1016/j.jse.2007.06.011.
    1. Beirer M, Friese H, Lenich A, Cronlein M, Sandmann GH, Biberthaler P, Kirchhoff C, Siebenlist S. The elbow self-assessment score (ESAS): development and validation of a new patient-reported outcome measurement tool for elbow disorders. Knee Surg, Sports Traumatol, Arthrosc. 2017;25(7):2230–2236. doi: 10.1007/s00167-015-3647-z.
    1. Chen H, Ji X, Zhang W, Zhang Y, Zhang L, Tang P. Validation of the simplified Chinese (mainland) version of the disability of the arm, shoulder, and hand questionnaire (DASH-CHNPLAGH) J Orthop Surg Res. 2015;10:76. doi: 10.1186/s13018-015-0216-6.
    1. Li L, Wang HM, Shen Y. Chinese SF-36 health survey: translation, cultural adaptation, validation, and normalisation. J Epidemiol Community Health. 2003;57(4):259–263. doi: 10.1136/jech.57.4.259.
    1. Guillemin F. Cross-cultural adaptation and validation of health status measures. Scand J Rheumatol. 1995;24(2):61–63. doi: 10.3109/03009749509099285.
    1. Guillemin F, Bombardier C, Beaton D. Cross-cultural adaptation of health-related quality of life measures: literature review and proposed guidelines. J Clin Epidemiol. 1993;46(12):1417–1432. doi: 10.1016/0895-4356(93)90142-N.
    1. Yu S, Chen M, Fan C. Team Approach: Elbow Contracture Due to Heterotopic Ossification. JBJS reviews. 2017;5(1) 10.2106/JBJS.RVW.16.00008.
    1. Barrett P, Kline P. The Observation to Variable Ratio in Factor Analysis. 1981.
    1. Terwee CB, Bot SD, de Boer MR, van der Windt DA, Knol DL, Dekker J, Bouter LM, de Vet HC. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60(1):34–42. doi: 10.1016/j.jclinepi.2006.03.012.
    1. The B, Reininga IH, El Moumni M, Eygendaal D. Elbow-specific clinical rating systems: extent of established validity, reliability, and responsiveness. J Shoulder Elb Surg. 2013;22(10):1380–1394. doi: 10.1016/j.jse.2013.04.013.
    1. Beaton DE, Katz JN, Fossel AH, Wright JG, Tarasuk V, Bombardier C. Measuring the whole or the parts? Validity, reliability, and responsiveness of the disabilities of the arm, shoulder and hand outcome measure in different regions of the upper extremity. J Hand Ther. 2001;14(2):128–146. doi: 10.1016/S0894-1130(01)80043-0.
    1. Dawson J, Doll H, Boller I, Fitzpatrick R, Little C, Rees J, Jenkinson C, Carr AJ. The development and validation of a patient-reported questionnaire to assess outcomes of elbow surgery. J Bone Joint Surg Br Vol. 2008;90(4):466–473. doi: 10.1302/0301-620X.90B4.20290.
    1. SooHoo NF, McDonald AP, Seiler JG, 3rd, McGillivary GR. Evaluation of the construct validity of the DASH questionnaire by correlation to the SF-36. J Hand Surg. 2002;27(3):537–541. doi: 10.1053/jhsu.2002.32964.
    1. Morrey BF, Adams RA. Semiconstrained arthroplasty for the treatment of rheumatoid arthritis of the elbow. J Bone Joint Surg Am. 1992;74(4):479–490. doi: 10.2106/00004623-199274040-00003.
    1. Evans JP, Smith CD, Fine NF, Porter I, Gangannagaripalli J, Goodwin VA, Valderas JM. Clinical rating systems in elbow research-a systematic review exploring trends and distributions of use. J Shoulder Elbow Surg. 2018;27:e98–e106. doi: 10.1016/j.jse.2017.12.027.
    1. Kazis LE, Anderson JJ, Meenan RF. Effect sizes for interpreting changes in health status. Med Care. 1989;27(3 Suppl):S178–S189. doi: 10.1097/00005650-198903001-00015.
    1. Peolsson A, Vavruch L, Hedlund R. Long-term randomised comparison between a carbon fibre cage and the Cloward procedure in the cervical spine. Eur Spine J. 2007;16(2):173–178. doi: 10.1007/s00586-006-0067-2.
    1. McHorney CA, Tarlov AR. Individual-patient monitoring in clinical practice: are available health status surveys adequate? Qual Life Res Int J Qual Life Asp Treat Care Rehab. 1995;4(4):293–307.
    1. Kim SJ, Basur MS, Park CK, Chong S, Kang YG, Kim MJ, Jeong JS, Kim TK. Crosscultural adaptation and validation of the Korean version of the new knee society knee scoring system. Clin Orthop Relat Res. 2017;475(6):1629–1639. doi: 10.1007/s11999-017-5307-8.
    1. Revicki D, Hays RD, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61(2):102–109. doi: 10.1016/j.jclinepi.2007.03.012.
    1. Vishwanathan K, Alizadehkhaiyat O, Kemp GJ, Frostick SP. Responsiveness of the Liverpool elbow score in elbow arthroplasty. J Shoulder Elb Surg. 2013;22(3):312–317. doi: 10.1016/j.jse.2012.09.003.
    1. de Vet HC, Terwee CB, Ostelo RW, Beckerman H, Knol DL, Bouter LM. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change. Health Qual Life Outcomes. 2006;4:54. doi: 10.1186/1477-7525-4-54.
    1. Siemiatycki J. A comparison of mail, telephone, and home interview strategies for household health surveys. Am J Public Health. 1979;69(3):238–245. doi: 10.2105/AJPH.69.3.238.
    1. Beaton DE, Richards RR. Measuring function of the shoulder. A cross-sectional comparison of five questionnaires. J Bone Joint Surg Am. 1996;78(6):882–890. doi: 10.2106/00004623-199606000-00011.
    1. Patrick DL, Deyo RA. Generic and disease-specific measures in assessing health status and quality of life. Med Care. 1989;27(3 Suppl):S217–S232. doi: 10.1097/00005650-198903001-00018.
    1. Capuano L, Poulain S, Hardy P, Longo UG, Denaro V, Maffulli N. No correlation between physicians administered elbow rating systems and patient's satisfaction. J Sports Med Phys Fitness. 2011;51(2):255–259.
    1. Shahgholi L, Bengtson KA, Bishop AT, Shin AY, Spinner RJ, Basford JR, Kaufman KR. A comparison of manual and quantitative elbow strength testing. Am J Phys Med Rehab. 2012;91(10):856–862. doi: 10.1097/PHM.0b013e31825f14f9.
    1. Werle S, Goldhahn J, Drerup S, Simmen BR, Sprott H, Herren DB. Age- and gender-specific normative data of grip and pinch strength in a healthy adult Swiss population. J Hand Surg Eur Vol. 2009;34(1):76–84. doi: 10.1177/1753193408096763.
    1. Cai J, Wang W, Yan H, Sun Y, Chen W, Chen S, Fan C. Complications of open elbow Arthrolysis in post-traumatic elbow stiffness: a systematic review. PLoS One. 2015;10(9):e0138547. doi: 10.1371/journal.pone.0138547.
    1. Elliott TE, Renier CM, Palcher JA. Chronic pain, depression, and quality of life: correlations and predictive value of the SF-36. Pain Med (Malden, Mass) 2003;4(4):331–339. doi: 10.1111/j.1526-4637.2003.03040.x.
    1. Doornberg JN, Ring D, Fabian LM, Malhotra L, Zurakowski D, Jupiter JB. Pain dominates measurements of elbow function and health status. J Bone Joint Surg Am. 2005;87(8):1725–1731.
    1. Organization WH. International classification of functioning, Disability and Health (ICF). In: Kirch W, ed. Encyclopedia of Public Health. Dordrecht: Springer Netherlands. 2008:217–20.

Source: PubMed

3
Abonnere