The effect of exercise intensity on endothelial function in physically inactive lean and obese adults

Rachel Hallmark, James T Patrie, Zhenqi Liu, Glenn A Gaesser, Eugene J Barrett, Arthur Weltman, Rachel Hallmark, James T Patrie, Zhenqi Liu, Glenn A Gaesser, Eugene J Barrett, Arthur Weltman

Abstract

Purpose: To examine the effects of exercise intensity on acute changes in endothelial function in lean and obese adults.

Methods: Sixteen lean (BMI <25, age 23 ± 3 yr) and 10 obese (BMI >30, age 26 ± 6 yr) physically inactive adults were studied during 3 randomized admissions [control (C, no exercise), moderate-intensity exercise (M, @ lactate threshold (LT)) and high-intensity exercise (H, midway between LT and VO2peak) (30 min)]. Endothelial function was assessed by flow-mediated dilation (FMD) at baseline and 1, 2, and 4 h post-exercise.

Results: RM ANCOVA revealed significant main effects for group, time, and group x condition interaction (p<0.05). A diurnal increase in FMD was observed in lean but not obese subjects. Lean subjects exhibited greater increases in FMD than obese subjects (p = 0.0005). In the obese group a trend was observed for increases in FMD at 2- and 4-hr after M (p = 0.08). For lean subjects, FMD was significantly elevated at all time points after H. The increase in FMD after H in lean subjects (3.2 ± 0.5%) was greater than after both C (1.7 ± 0.4%, p = 0.015) and M (1.4 ± 0.4%, p = 0.002). FMD responses of lean and obese subjects significantly differed after C and H, but not after M.

Conclusion: In lean young adults, high-intensity exercise acutely enhances endothelial function, while moderate-intensity exercise has no significant effect above that seen in the absence of exercise. The FMD response of obese adults is blunted compared to lean adults. Diurnal variation should be considered when examining the effects of acute exercise on FMD.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Baseline (pre-cuff inflation) brachial artery…
Figure 1. Baseline (pre-cuff inflation) brachial artery diameter (mean±SE; * P
Figure 2. Flow mediated dilation (FMD) responses…
Figure 2. Flow mediated dilation (FMD) responses of lean subjects during the control moderate intensity and high intensity exercise conditions.
Figure 3. Flow mediated dilation (FMD) responses…
Figure 3. Flow mediated dilation (FMD) responses of obese subjects during the control moderate intensity and high intensity exercise conditions.
Statistical analyses revealed the following: No significant differences between lean and obese subjects at baseline for any condition; FMD in lean subjects increased significantly compared to baseline at 2 h and 4 h in the absence of exercise (p

References

    1. Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE (1994) Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 24: 1468–1474.
    1. Neunteufl T, Heher S, Katzenschlager R, Wolfl G, Kostner K, et al. (2000) Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain. Am J Cardiol 86: 207–210.
    1. Inaba Y, Chen JA, Bergmann SR (2010) Prediction of future cardiovascular outcomes by flow-mediated dilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging 26: 631–640.
    1. Green DJ, Maiorana A, O’Driscoll G, Taylor R (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561: 1–25.
    1. Dawson EA, Whyte GP, Black MA, Jones H, Hopkins N, et al. (2008) Changes in vascular and cardiac function after prolonged strenuous exercise in humans. J Appl Physiol 105: 1562–1568.
    1. Jones H, Green DJ, George K, Atkinson G (2010) Intermittent exercise abolishes the diurnal variation in endothelial-dependent flow-mediated dilation in humans. Am J Physiol Regul Integr Physiol 298: R427–432.
    1. McGowan CL, Levy AS, Millar PJ, Guzman JC, Morillo CA, et al. (2006) Acute vascular responses to isometric handgrip exercise and effects of training in persons medicated for hypertension. Am J Physiol Heart Circ Physiol 291: H1797–1802.
    1. Rognmo Ø, Bjørnstad TH, Kahrs C, Tjonna AE, Bye A, et al. (2008) Endothelial function in highly endurance-trained men: effects of acute exercise. J Strength Cond Res 22: 535–542.
    1. Silvestro A, Scopacasa F, Oliva G, de Cristofaro T, Iuliano L, et al. (2002) Vitamin C prevents endothelial dysfunction induced by acute exercise in patients with intermittent claudication. Atherosclerosis 165: 277–283.
    1. Currie KD, McKelvie RS, MacDonald MJ (2012) Flow-mediated dilation is acutely improved after high-intensity interval exercise. Med Sci Sports Exerc. 44: 2057–2064.
    1. Harris RA, Padilla J, Hanlon KP, Rink LD, Wallace JP (2008) The flow-mediated dilation response to acute exercise in overweight active and inactive men. Obesity 16: 578–584.
    1. Harvey PJ, Morris BL, Kubo T, Picton PE, Su WS, et al. (2005) Hemodynamic after-effects of acute dynamic exercise in sedentary normotensive postmenopausal women. J Hypertension 23: 285–292.
    1. Padilla J, Harris R, Fly A, Rink L, Wallace J (2006) The effect of acute exercise on endothelial function following a high-fat meal. Eur J Appl Physiol 98: 256–262.
    1. Zhu W, Zeng J, Yin J, Zhang F, Wu H, et al. (2010) Both flow-mediated vasodilation procedures and acute exercise improve endothelial function in obese young men. Eur J Appl Physiol. 108: 727–732.
    1. Zhu W, Zhong C, Yu Y, Li K (2007) Acute effects of hyperglycaemia with and without exercise on endothelial function in healthy young men. Eur J Appl Physiol. 99: 585–591.
    1. Etsuda H, Takase B, Uehata A, Kusano H, Hamabe A, et al. (1999) Morning attenuation of endothelium-dependent, flow-mediated dilation in healthy young men: Possible connection to morning peak of cardiac events? Clin Cardiol. 22: 417–421.
    1. Gaenzer H, Sturm W, Kirchmair R, Neumayr G, Ritsch A, et al. (2000) Circadian variation of endothelium-dependent vasodilatation of the brachial artery as a confounding factor in the evaluation of endothelial function. Atherosclerosis. 149: 227–228.
    1. Birk GK, Dawson EA, Batterham AM, Atkinson G, Cable T, et al. (2013) Effects of exercise intensity on flow mediated dilation in healthy humans. Int J Sports Med 34: 409–414.
    1. Tinken TM, Thijssen DHJ, Hopkins N, Dawson EA, Cable NT, et al. (2010) Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension 55: 312–318.
    1. Thijessen DH, Dawson EA, Black MA, Hopman MTE, Cable NT, et al. (2009) Brachial artery blood flow responses to different modalities of lower limb exercise. Med Sci Sports Exerc 41: 1072–1079.
    1. Arcaro G, Zamboni M, Rossi L, Turcato E, Covi G, et al. (1999) Body fat distribution predicts the degree of endothelial dysfunction in uncomplicated obesity. Int J Obes Related Metab Disord 23: 936–942.
    1. Brook RD, Bard RL, Rubenfire M, Ridker PM, Rajagopalan S (2001) Usefulness of visceral obesity (waist/hip ratio) in predicting vascular endothelial function in healthy overweight adults. Am J Cardiol 88: 1264–1269.
    1. Hashimoto M, Akishita M, Eto M, Kozaki K, Ako J, et al. (1998) The impairment of flow-mediated vasodilatation in obese men with visceral fat accumulation. Int J Obes 22: 477–484.
    1. McCrory MA, Gomez TD, Bernauer EM, Mole PA (1995) Evaluation of a new air displacement plethysmograph for measuring human-body composition. Med Sci Sports Exerc 27: 1686–1691.
    1. Siri W (1969) Body composition from fluid spaces and density methods. In: Brozek J, and Henschel A, editors. Techniques for measuring body composition, Washington, DC: National Academy of Sciences, National Dairy Council, 223–244.
    1. Weltman A, Snead D, Stein P, Seip R, Schurrer R, et al. (1990) Reliability and validity of a continuous incremental treadmill protocol for the determination of lactate threshold, fixed blood lactate concentrations, and VO2max. Int J Sports Med 11: 26–32.
    1. Williams MRI, Westerman RA, Kingwell BA, Paige J, Blombery PA, et al. (2001) Variations in Endothelial Function and Arterial Compliance during the Menstrual Cycle. J Clin Endocrinol Metab 86: 5389–5395.
    1. Mannion TC, Vita JA, Keaney JF Jr, Benjamin EJ, Hunter L, et al. (1998) Non-invasive assessment of brachial artery endothelial vasomotor function: the effect of cuff position on level of discomfort and vasomotor responses. Vasc Med 3: 263–267.
    1. Pyke KE, Tschakovsky ME (2005) The relationship between shear stress and flow-mediated dilatation: implications for the assessment of endothelial function. J Physiol 568: 357–369.
    1. Woodman R, Playford D, Watts G, Cheetham C, Reed C, et al. (2001) Improved analysis of brachial artery ultrasound using a novel edge-detection software system. J Appl Physiol 91: 929–937.
    1. Herrington DM, Liexang F, Drum M, Riley WA, Pusser BE, et al. (2001) Brachial flow-mediated vasodilator responses in population-based research: methods, reproducibility and effects of age, gender and baseline diameter. J Cardiovasc Risk 8: 319–328.
    1. Green D, Cheetham C, Henderson C, Weerasooriya R, O’Driscoll G (2002) Effect of cardiac pacing on forearm vascular responses and nitric oxide function. Am J Physiol Heart Circ Physiol 283: H1354–1360.
    1. Green DJ, Bilsborough W, Naylor LH, Reed C, Wright J, et al. (2005) Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise: relative contribution of nitric oxide. J Physiol 562: 617–628.
    1. Allen JD, Geaghan JP, Greenway F, Welsch MA (2003) Time course of improved flow-mediated dilation after short-term exercise training. Med Sci Sports Exerc 35: 847–853.
    1. McCord JL, Halliwill JR (2006) H1 and H2 receptors mediate postexercise hyperemia in sedentary and endurance exercise-trained men and women. J Appl Physiol 101: 1693–1701.
    1. Hickner RC, Kemeny G, Stallings HW, Manning SM, McIver KL (2006) Relationship between body composition and skeletal muscle eNOS. Int J Obes 30: 308–312.
    1. van Harmelen V, Eriksson A, Astrom G, Wahlen K, Naslund E, et al. (2008) Vascular peptide endothelin-1 links fat accumulation with alterations of visceral adipocyte lipolysis. Diabetes 57: 378–386.
    1. Bergholm R, Makimattila S, Valkonen M, Liu ML, Lahdenpera S, et al. (1999) Intense physical training decreases circulating antioxidants and endothelium-dependent vasodilation in vivo. Atherosclerosis 145: 341–349.
    1. Vincent HK, Morgan JW, Vincent KR (2004) Obesity exacerbates oxidative stress levels after acute exercise. Med Sci Sports Exerc 36: 772–779.
    1. Thijssen DHJ, Black MA, Pyke KE, Padilla J, Atkinson G, et al. (2011) Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol 300: H2–12.
    1. Pyke KE, Tschakovsky ME (2007) Peak vs. total reactive hyperemia: which determines the magnitude of flow-mediated dilation? J Appl Physiol 102: 1510–1519.
    1. Thijssen DHJ, Dawson EA, Black MA, Hopman MTE, Cable NT, et al. (2008) Heterogeneity in conduit artery function in humans: impact of arterial size. Am J Physiol Heart Circ Physiol 295: H1927–1934.
    1. Harris RA, Padilla J, Rink LD, Wallace JP (2006) Variability of flow-mediated dilation measurements with repetitive reactive hyperemia. Vasc Med 11: 1–6.
    1. Lippincott MF, Carlow A, Desai A, Blum A, Rodrigo M, et al. (2008) Relation of endothelial function to cardiovascular risk in women with sedentary occupations and without known cardiovascular disease. Am J Cardiol 102: 348–352.

Source: PubMed

3
Abonnere