Exploring the acute cardiovascular effects of Floatation-REST

M C Flux, Thomas H Fine, Tate Poplin, Obada Al Zoubi, William A Schoenhals, Jesse Schettler, Hazem H Refai, Jessyca Naegele, Colleen Wohlrab, Hung-Wen Yeh, Christopher A Lowry, Jason C Levine, Ryan Smith, Sahib S Khalsa, Justin S Feinstein, M C Flux, Thomas H Fine, Tate Poplin, Obada Al Zoubi, William A Schoenhals, Jesse Schettler, Hazem H Refai, Jessyca Naegele, Colleen Wohlrab, Hung-Wen Yeh, Christopher A Lowry, Jason C Levine, Ryan Smith, Sahib S Khalsa, Justin S Feinstein

Abstract

The central nervous system (CNS) exerts a strong regulatory influence over the cardiovascular system in response to environmental demands. Floatation-REST (Reduced Environmental Stimulation Therapy) is an intervention that minimizes stimulation from the environment, yet little is known about the autonomic consequences of reducing external sensory input to the CNS. We recently found that Floatation-REST induces a strong anxiolytic effect in anxious patients while paradoxically enhancing their interoceptive awareness for cardiorespiratory sensations. To further investigate the physiologic nature of this anxiolytic effect, the present study measured acute cardiovascular changes during Floatation-REST using wireless and waterproof equipment that allowed for concurrent measurement of heart rate, heart rate variability (HRV), breathing rate, and blood pressure. Using a within-subjects crossover design, 37 clinically anxious participants with high levels of anxiety sensitivity and 20 non-anxious comparison participants were randomly assigned to undergo a 90-min session of either Floatation-REST or an exteroceptive comparison condition that entailed watching a relaxing nature film. Measures of state anxiety and serenity were collected before and after each session, while indices of autonomic activity were measured throughout each session. HRV was calculated using both time-series and frequency domain analyses. Linear mixed-effects modeling revealed a significant main effect of condition such that relative to the film condition, Floatation-REST elicited significant decreases (p < 0.001) in diastolic blood pressure, systolic blood pressure, breathing rate, and certain metrics of HRV including the standard deviation of the interbeat interval (SDNN), low-frequency HRV, and very low-frequency HRV. Heart rate showed a non-significant trend (p = 0.073) toward being lower in the float condition, especially toward the beginning of the session. The only metric that showed a significant increase during Floatation-REST was normalized high-frequency HRV (p < 0.001). The observed physiological changes were consistent across both anxious and non-anxious participants, and there were no significant group by condition interactions. Blood pressure was the only cardiac metric significantly associated with float-related reductions in state anxiety and increases in serenity. These findings suggest that Floatation-REST lowers sympathetic arousal and alters the balance of the autonomic nervous system toward a more parasympathetic state.

Clinical trial registration: [https://ichgcp.net/clinical-trials-registry/NCT03051074], identifier [NCT03051074].

Keywords: anxiety; autonomic; blood pressure; heart rate variability; interoception.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Flux, Fine, Poplin, Al Zoubi, Schoenhals, Schettler, Refai, Naegele, Wohlrab, Yeh, Lowry, Levine, Smith, Khalsa and Feinstein.

Figures

FIGURE 1
FIGURE 1
Concurrent physiological measurement during Floatation-REST (Reduced Environmental Stimulation Therapy). In order to collect physiological data during the float session, small non-invasive wireless sensors were attached to the participant. To measure heart rate, breathing rate, and HRV, a Zephyr BioPatch ECG system was attached to the chest with a layer of waterproof Tegaderm. To measure blood pressure, a QardioArm monitor was placed around the upper left arm with a waterproof cast. We also collected electroencephalography (EEG) using a wireless system that was placed on the forehead, in addition to accelerometry using accelerometers attached to each wrist; these data will be part of a separate publication. Of note, participants floated without any clothing on. The same sensors and setup were also used to collect physiological data during the film condition.
FIGURE 2
FIGURE 2
Cardiovascular effects of Floatation-REST as compared to the film condition. Mean physiological response as broken down by condition (blue = float; orange = film) across all participants for panel (A) heart rate, (B) systolic blood pressure, (C) diastolic blood pressure, (D) absolute very low frequency HRV, (E) normalized low frequency HRV, (F) normalized high frequency HRV, (G) SDNN, (H) RMSSD, and (I) breathing rate. The shaded region represents the standard error of the mean. The x-axis represents time (in minutes) since the start of the float or film. With the exception of blood pressure (which were single point measurements), data are graphed in 5-min bins such that timepoint 0 is the average from 0 to 5 min, and timepoint 75 is the average from 75 to 80 min. Significant differences were found between conditions for all variables except heart rate.
FIGURE 3
FIGURE 3
Mean change in state anxiety and serenity. Mean change scores from pre- to post-float/film were computed for each group and condition (orange = film; blue = float) for panel (A) state anxiety, and (B) serenity. Error bars represent the standard error of the mean.
FIGURE 4
FIGURE 4
Significant interactions between blood pressure and change in state anxiety and serenity. Each point represents a single blood pressure measurement for one participant, and each trend line shows the correlation between blood pressure and change in state anxiety and serenity broken down for each condition (orange = film; blue = float). Significant interactions (p < 0.001) were found between (A) state anxiety change and systolic blood pressure, (B) serenity change and systolic blood pressure, (C) state anxiety change and diastolic blood pressure, and (D) serenity change and diastolic blood pressure.

References

    1. Al Zoubi O., Misaki M., Bodurka J., Kuplicki R., Wohlrab C., Schoenhals W. A., et al. (2021). Taking the body off the mind: Decreased functional connectivity between somatomotor and default-mode networks following Floatation-REST. Hum. Brain Mapp. 42 3216–3227. 10.1002/hbm.25429
    1. Attenborough D., Fothergill A. (2006). Planet earth: Complete BBC series [DVD]. London: British Broadcasting Corporation.
    1. Becker B. E., Hildenbrand K., Whitcomb R. K., Sanders J. P. (2009). Biophysiologic effects of warm water immersion. Int. J. Aquat. Res. Educ. 3 24–37. 10.25035/ijare.03.01.04
    1. Benson H., Greenwood M. M., Klemchuk H. (1975). The relaxation response: Psychophysiologic aspects and clinical applications. Psychiatry Med. 6 87–98. 10.2190/376W-E4MT-QM6Q-H0UM
    1. Berntson G. G., Cacioppo J. T., Quigley K. S. (1993). Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 30 183–196.
    1. Caldwell L. K., Kraemer W. J., Post E. M., Volek J. S., Focht B. C., Newton R. U., et al. (2022). Acute Floatation-REST improves perceived recovery following a high-intensity resistance exercise stress in trained men. Med. Sci. Sports Exerc. 54, 1371–1381. 10.1249/MSS.0000000000002906
    1. Chalmers J. A., Quintana D. S., Abbott M. J. A., Kemp A. H. (2014). Anxiety disorders are associated with reduced heart rate variability: A meta-analysis. Front. Psychiatry 5:80. 10.3389/fpsyt.2014.00080
    1. Chen Y. F., Huang X. Y., Chien C. H., Cheng J. F. (2017). The effectiveness of diaphragmatic breathing relaxation training for reducing anxiety. Perspect. Psychiatr. Care 53 329–336. 10.1111/ppc.12184
    1. Cicolini G., Pizzi C., Palma E., Bucci M., Schioppa F., Mezzetti A., et al. (2011). Differences in blood pressure by body position (supine, fowler’s, and sitting) in hypertensive subjects. Am. J. Hypertens. 24 1073–1079. 10.1038/ajh.2011.106
    1. DeBoer R. W., Karemaker J. M., Strackee J. (1987). Hemodynamic fluctuations and baroreflex sensitivity in humans: A beat-to-beat model. Am. J. Physiol. 253 H680–H689. 10.1152/ajpheart.1987.253.3.H680
    1. Eşer İ., Khorshid L., Yapucu Güneş Ü., Demir Y. (2007). The effect of different body positions on blood pressure. J. Clin. Nurs. 16 137–140. 10.1111/j.1365-2702.2005.01494.x
    1. Feinstein J. S., Khalsa S. S., Yeh H., Al Zoubi O., Arevian A. C., Wohlrab C., et al. (2018b). The elicitation of relaxation and interoceptive awareness using floatation therapy in individuals with high anxiety sensitivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3 555–562. 10.1016/j.bpsc.2018.02.005
    1. Feinstein J. S., Khalsa S. S., Yeh H. W., Wohlrab C., Simmons W. K., Stein M. B., et al. (2018a). Examining the short-term anxiolytic and antidepressant effect of Floatation-REST. PLoS One 13:e0190292. 10.1371/journal.pone.0190292
    1. Fine T. H., Turner J. W., Jr. (1982). The effect of brief restricted environmental stimulation therapy in the treatment of essential hypertension. Behav. Res. Ther. 20 567–570. 10.1016/0005-7967(82)90035-3
    1. Fleisher L. A., Frank S. M., Sessler D. I., Cheng C., Matsukawa T., Vannier C. A. (1996). Thermoregulation and heart rate variability. Clin. Sci. 90 97–103. 10.1042/cs0900097
    1. Forgays D. G., Belinson M. J. (1986). Is flotation isolation a relaxing environment? J. Environ. Psychol. 6 19–34. 10.1016/S0272-4944(86)80032-9
    1. Ghitani N., Chesler A. T. (2019). The anatomy of the baroreceptor reflex. Cell Rep. 29 2121–2122. 10.1016/j.celrep.2019.11.031
    1. Gorman J. M., Fyer M. R., Goetz R., Askanazi J., Liebowitz M. R., Fyer A. J., et al. (1988). Ventilatory physiology of patients with panic disorder. Arch. Gen. Psychiatry 45 31–39. 10.1001/archpsyc.1988.01800250035006
    1. Grossman P., Taylor E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74 263–285. 10.1016/j.biopsycho.2005.11.014
    1. Hildenbrand K., Becker B. E., Whitcomb R., Sanders J. P. (2010). Age-dependent autonomic changes following immersion in cool, neutral, and warm water temperatures. Int. J. Aquat. Res. Educ. 4 127–146. 10.25035/ijare.04.02.04
    1. Hirsch J. A., Bishop B. (1981). Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. Am. J. Physiol. 241 H620–H629. 10.1152/ajpheart.1981.241.4.H620
    1. Ish-Shalom N., Better O. S. (1984). Volume regulation in man during neck-out immersion in a medium with high specific gravity (Dead Sea water). Isr. J. Med. Sci. 20 109–112.
    1. Jacobs G. D., Heilbronner R. L., Stanley J. M. (1984). The effects of short term flotation REST on relaxation: A controlled study. Health Psychol. 3 99–112. 10.1037/0278-6133.3.2.99
    1. Julien C. (2006). The enigma of Mayer waves: Facts and models. Cardiovasc. Res. 70 12–21. 10.1016/j.cardiores.2005.11.008
    1. Kapidžić A., Platiša M. M., Bojić T., Kalauzi A. (2014). RR interval-respiratory signal waveform modeling in human slow paced and spontaneous breathing. Respir. Physiol. Neurobiol. 203 51–59. 10.1016/j.resp.2014.08.004
    1. Kemp A. H., Quintana D. S., Gray M. A., Felmingham K. L., Brown K., Gatt J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: A review and meta-analysis. Biol. Psychiatry 67 1067–1074. 10.1016/j.biopsych.2009.12.012
    1. Khalsa S. S., Moseman S. E., Yeh H., Upshaw V., Persac B., Breese E., et al. (2020). Reduced environmental stimulation in anorexia nervosa: An early-phase clinical trial. Front. Psychol. 11:567499. 10.3389/fpsyg.2020.567499
    1. Kjellgren A., Sundequist U., Norlander T., Archer T. (2001). Effects of flotation-REST on muscle tension pain. Pain Res. Manag. 6 181–189. 10.1155/2001/768501
    1. Kleiger R. E., Stein P. K., Bigger J. T. (2005). Heart rate variability: Measurement and clinical utility. Ann. Noninvasive Electrocardiol. 10 88–101. 10.1111/j.1542-474X.2005.10101.x
    1. Kromenacker B. W., Sanova A. A., Marcus F. I., Allen J. J. B., Lane R. D. (2018). Vagal mediation of low frequency heart rate variability during slow yogic breathing. Psychosom. Med. 80 581–587. 10.1097/PSY.0000000000000603
    1. Laborde S., Mosley E., Thayer J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research - Recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 8:213. 10.3389/fpsyg.2017.00213
    1. Lee D., Farmer A., Swift C., Jackson S. (1995). Investigation of ambulatory blood pressure monitoring data editing criteria. J. Hum. Hypertens. 9 195–198.
    1. Levine J. C., Fleming R., Piedmont J. I., Cain S. M., Chen W. J. (2016). Heart rate variability and generalized anxiety disorder during laboratory-induced worry and aversive imagery. J. Affect. Disord. 205 207–215. 10.1016/j.jad.2016.07.019
    1. Lilly J. C. (1977). The deep self: The tank method of physical isolation. New York, NY: Simon and Schuster.
    1. Malik M., Camm A. J., Bigger J. T., Breithardt G., Cerutti S., Cohen R. J., et al. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17 354–381. 10.1093/oxfordjournals.eurheartj.a014868
    1. McCraty R., Shaffer F. (2015). Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 4 46–61. 10.7453/gahmj.2014.073
    1. Min S., Chang R. B., Prescott S. L., Beeler B., Joshi N. R., Strochlic D. E., et al. (2019). Arterial baroreceptors sense blood pressure through decorated aortic claws. Cell Rep. 29 2192–2201. 10.1016/j.celrep.2019.10.040
    1. Miwa C., Sugiyama Y., Mano T., Iwase S., Matsukawa T. (1997). Sympatho-vagal responses in humans to thermoneutral head-out water immersion. Aviat. Space Environ. Med. 68 1109–1114.
    1. Nakao M. (2019). Heart rate variability and perceived stress as measurements of relaxation response. J. Clin. Med. 8:1704. 10.3390/jcm8101704
    1. Nazari G., Bobos P., MacDermid J. C., Sinden K. E., Richardson J., Tang A., et al. (2018). Psychometric properties of the Zephyr bioharness device: A systematic review. BMC Sports Sci. Med. Rehabil. 10, 1–8. 10.1186/s13102-018-0094-4
    1. Netea R. T., Smits P., Lenders J. W., Thien T. (1998). Does it matter whether blood pressure measurements are taken with subjects sitting or supine? J. Hypertens. 16 263–268. 10.1097/00004872-199816030-00002
    1. Netea R., Lenders J., Smits P., Thien T. (2003). Both body and arm position significantly influence blood pressure measurement. J. Hum. Hypertens. 17 459–462. 10.1038/sj.jhh.1001573
    1. Nishimura M., Onodera S. (2001). Effects of water temperature on cardiac autonomic nervous system modulation during supine floating. J. Gravit. Physiol. 8 65–66.
    1. O’Leary D. S., Heilbronner R. L. (1990). “Floatation REST and information processing: A reaction time study,” in Restricted environmental stimulation: Theoretical and empirical developments in floatation REST, eds Suedfeld P., Turner J., Fine T. (New York, NY: Springer-Verlag; ), 113–124. 10.1007/978-1-4613-9701-4_9
    1. O’Brien E., Atkins N., Stergiou G., Karpettas N., Parati G., Asmar R., et al. (2010). European society of hypertension international protocol revision 2010 for the validation of blood pressure measuring devices in adults. Blood Press. Monit. 15 23–38. 10.1097/MBP.0b013e3283360e98
    1. Pilowsky P. M., Goodchild A. K. (2002). Baroreceptor reflex pathways and neurotransmitters: 10 Years on. J. Hypertens. 20 1675–1688. 10.1097/00004872-200209000-00002
    1. Ramshur J. T. (2010). Design, evaluation, and application of heart rate variability analysis software (HRVAS) Doctoral dissertation. Memphis, TN: University of Memphis.
    1. Rawstorn J. C., Gant N., Warren I., Doughty R. N., Lever N., Poppe K. K., et al. (2015). Measurement and data transmission validity of a multi-biosensor system for real-time remote exercise monitoring among cardiac patients. JMIR Rehabil. Assist. Technol. 2:e3633. 10.2196/rehab.3633
    1. Rottenberg J. (2007). Cardiac vagal control in depression: A critical analysis. Biol. Psychol. 74 200–211. 10.1016/j.biopsycho.2005.08.010
    1. Russell B., Woodward J. J., Mukherjee A. K., Bartlett D. W., Solomon C. (2014). Two-Electrode, impedance-based respiration determination. World patent WO 2014/189770. Geneva: World Intellectual Property Organization.
    1. Sala C., Santin E., Rescaldani M., Cuspidi C., Magrini F. (2005). What is the accuracy of clinic blood pressure measurement? Am. J. Hypertens. 18 244–248. 10.1016/j.amjhyper.2004.09.006
    1. Schelegle E. S. (2003). Functional morphology and physiology of slowly adapting pulmonary stretch receptors. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 270 11–16. 10.1002/ar.a.10004
    1. Schwartz G. E., Goetz R. R., Klein D. F., Endicott J., Gorman J. M. (1996). Tidal volume of respiration and “sighing” as indicators of breathing irregularities in panic disorder patients. Anxiety 2 145–148. 10.1002/(SICI)1522-7154(1996)2:3<145::AID-ANXI6>;2-O
    1. Selya A. S., Rose J. S., Dierker L. C., Hedeker D., Mermelstein R. J. (2012). A practical guide to calculating Cohen’s f2, a measure of local effect size, from PROC MIXED. Front. Psychol. 3:111. 10.3389/fpsyg.2012.00111
    1. Shaffer F., Ginsberg J. P. (2017). An overview of heart rate variability metrics and norms. Front. Public Health 5:258. 10.3389/fpubh.2017.00258
    1. Shurley J. T. (1960). Profound experimental sensory isolation. Am. J. Psychiatry 117 539–545. 10.1176/ajp.117.6.539
    1. Smith R., Thayer J. F., Khalsa S. S., Lane R. D. (2017). The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 75 274–296. 10.1016/j.neubiorev.2017.02.003
    1. Sollers J. J., Sanford T. A., Nabors-Oberg R., Anderson C. A., Thayer J. F. (2002). Examining changes in HRV in response to varying ambient temperature: The effects of ambient temperature on cardiovascular responses in college-aged men and women. IEEE Eng. Med. Biol. Mag. 21 30–34. 10.1109/MEMB.2002.1032636
    1. Spielberger C. D., Gorsuch R. L., Lushene R., Vagg P. R., Jacobs G. A. (1983). Manual for the state-trait anxiety inventory. Consult. Psychol.
    1. Suedfeld P., Ballard E. J., Murphy M. (1983). Water immersion and flotation: From stress experiment to stress treatment. J. Environ. Psychol. 3 147–155. 10.1016/S0272-4944(05)80153-7
    1. Taylor C. E., Willie C. K., Ainslie P. N., Tzeng Y. C. (2014). Assessment of human baroreflex function using carotid ultrasonography: What have we learnt? Acta Physiol. 211 297–313. 10.1111/apha.12302
    1. Taylor S. (2014). Anxiety sensitivity: Theory, research, and treatment of the fear of anxiety. New York, NY: Routledge. 10.4324/9781410603326
    1. Terathongkum S., Pickler R. H. (2004). Relationships among heart rate variability, hypertension, and relaxation techniques. J. Vasc. Nurs. 22 78–82. 10.1016/j.jvn.2004.06.003
    1. Turner J. W., Fine T. H., Ewy G., Sershon P., Freundlich T. (1989). The presence or absence of light during flotation restricted environmental stimulation: Effects on plasma cortisol, blood pressure, and mood. Biofeedback Self Regul. 14 291–300. 10.1007/BF00999120
    1. Van Dierendonck D., Nijenhuis J. T. E. (2005). Flotation restricted environmental stimulation therapy (REST) as a stress-management tool: A meta-analysis. Psychol. Health 20 405–412. 10.1080/08870440412331337093
    1. Victor T. A., Khalsa S. S., Simmons W. K., Feinstein J. S., Savitz J., Aupperle R. L., et al. (2018). Tulsa 1000: A naturalistic study protocol for multilevel assessment and outcome prediction in a large psychiatric sample. BMJ Open 8:e016620.
    1. Vinay A., Venkatesh D., Ambarish V. (2016). Impact of short-term practice of yoga on heart rate variability. Int. J. Yoga 9 62–66. 10.4103/0973-6131.171714
    1. Watson D., Clark L. A. (1999). The PANAS-X: Manual for the positive and negative affect schedule-expanded form. Lowa, LA: University of Iowa.
    1. Wolpe J. (1958). Psychotherapy by reciprocal inhibition. Stanford, CA: Stanford University Press.
    1. Wu S. D., Lo P. C. (2008). Inward-attention meditation increases parasympathetic activity: A study based on heart rate variability. Biomed. Res. 29 245–250. 10.2220/biomedres.29.245
    1. Yasuma F., Hayano J. I. (2004). Respiratory Sinus Arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest 125 683–690. 10.1378/chest.125.2.683
    1. Young F. L. S., Leicht A. S. (2011). Short-term stability of resting heart rate variability: Influence of position and gender. Appl. Physiol. Nutr. Metab. 36 210–218. 10.1139/h10-103
    1. Zephyr Technology (2008). White paper validity of bioharness heart rate vs 3-lead ECG. Maryland, MD: Zephyr Technology, 1–4.
    1. Zephyr Technology (2012). Bioharness 3.0 user manual. Maryland, MD: Zephyr Technology.
    1. Zephyr Technology (2016). BioPatch HP User Guide. Maryland, MD: Medtronic.
    1. Zou L., Sasaki J., Wei G. X., Huang T., Yeung A., Neto O., et al. (2018). Effects of mind–body exercises (Tai Chi/Yoga) on heart rate variability parameters and perceived stress: A systematic review with meta-analysis of randomized controlled trials. J. Clin. Med. 7:404. 10.3390/jcm7110404

Source: PubMed

3
Abonnere