Prevention of Diabetes and Cardiovascular Disease in Obesity

Lucia La Sala, Antonio E Pontiroli, Lucia La Sala, Antonio E Pontiroli

Abstract

Obesity is one of the major risk factors for the development of both impaired glucose tolerance (IGT, or prediabetes) and type 2 diabetes (T2D), and its prevalence worldwide drives toward an increased rate of cardiovascular morbidity and mortality. Given the estimations of the World Health Organization (WHO) and the recommendation of the Diabetes Prevention Program (DPP), where IGT and diabetes are considered as risk factors for the development of cardiovascular complications and obesity, the development of diabetes should be treated because of its potential reversibility. In this view, several interventions such as diet, lifestyle changes, and pharmacological treatment are effective, including bariatric metabolic surgery (BMS), which is the most incisive way to efficiently lower body weight. In this review, we sought to summarize some of the major aspects linked to diabetes prevention in overweight/obesity, focusing on the use of surgery; we also attempted to elucidate molecular pathways involved in a variety of obesity-induced processes able to favor the progression of chronic diseases, such as diabetes and its complications.

Keywords: CVD; T2D; atherosclerosis; cardiovascular complications; diabetes; inflammation; metabolic syndrome; microRNA; obesity; prevention.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
Major contributors of T2D/Obesity driving toward to dysregulation of target tissues.

References

    1. Abarca-Gómez L., Abdeen Z., Hamid Z.A., Abu-Rmeileh N.M., Acosta-Cazares B., Acuin C., Adams R.J., Aekplakorn W., Afsana K., Aguilar-Salinas C., et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
    1. Schnurr T.M., Jakupović H., Carrasquilla G.D., Ängquist L., Grarup N., Sørensen T.I.A., Tjønneland A., Overvad K., Pedersen O., Hansen T., et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: A case-cohort study. Diabetology. 2020;63:1324–1332. doi: 10.1007/s00125-020-05140-5.
    1. Prospective Studies Collaboration Body-mass index and cause-specific mortality in 900,000 adults: Collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–1096. doi: 10.1016/S0140-6736(09)60318-4.
    1. Pontiroli A.E., Pizzocri P., Librenti M.C., Vedani P., Marchi M., Cucchi E., Orena C., Paganelli M., Giacomelli M., Ferla G., et al. Laparoscopic adjustable gastric banding for the treatment of morbid (grade 3) obesity and its metabolic complications: A three-year study. J. Clin. Endocrinol. Metab. 2002;87:3555–3561. doi: 10.1210/jcem.87.8.8708.
    1. Fuller J.H., Shipley M.J., Rose G., Jarrett R.J., Keen H. Mortality from coronary heart disease and stroke in relation to degree of glycaemia: The Whitehall study. BMJ. 1983;287:867–870. doi: 10.1136/bmj.287.6396.867.
    1. Twig G., Afek A., Derazne E., Tzur D., Cukierman-Yaffe T., Gerstein H.C., Tirosh A. Diabetes risk among overweight and obese metabolically healthy young adults. Diabetes Care. 2014;37:2989–2995. doi: 10.2337/dc14-0869.
    1. Bjerregaard L.G., Jensen B.W., Ängquist L., Osler M., Sørensen T.I.A., Baker J.L. Change in overweight from childhood to early adulthood and risk of Type 2 diabetes. N. Engl. J. Med. 2018;378:1302–1312. doi: 10.1056/NEJMoa1713231.
    1. Knowler W.C., Barrett-Connor E., Fowler S.E., Hamman R.F., Lachin J.M., Walker E.A., Nathan D.M. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002;346:393–403. doi: 10.1056/nejmoa012512.
    1. Lindström J., Ilanne-Parikka P., Peltonen M., Aunola S., Eriksson J.G., Hemiö K., Hämäläinen H., Härkönen P., Keinänen-Kiukaanniemi S., Laakso M., et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: Follow-up of the Finnish Diabetes Prevention Study. Lancet. 2006;368:1673–1679. doi: 10.1016/S0140-6736(06)69701-8.
    1. Hermanides J., Cohn D.M., Devries J.H., Kamphuisen P.W., Huijgen R., Meijers J.C.M., Hoekstra J.B.L., Buller H.R. Venous thrombosis is associated with hyperglycemia at diagnosis: A case-control study. J. Thromb. Haemost. 2009;7:945–949. doi: 10.1111/j.1538-7836.2009.03442.x.
    1. La Sala L., Prattichizzo F., Ceriello A. The link between diabetes and atherosclerosis. Eur. J. Prev. Cardiol. 2019;26:15–24. doi: 10.1177/2047487319878373.
    1. Jonk A.M., Houben A.J.H.M., De Jongh R.T., Serné E.H., Schaper N.C., Stehouwer C.D.A. Microvascular Dysfunction in Obesity: A potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology. 2007;22:252–260. doi: 10.1152/physiol.00012.2007.
    1. Avogaro A., De Kreutzenberg S.V. Mechanisms of endothelial dysfunction in obesity. Clin. Chim. Acta. 2005;360:9–26. doi: 10.1016/j.cccn.2005.04.020.
    1. Stapleton P.A., James M.E., Goodwill A.G., Frisbee J.C. Obesity and vascular dysfunction. Pathophysiology. 2008;15:79–89. doi: 10.1016/j.pathophys.2008.04.007.
    1. Roden M., Price T.B., Perseghin G., Petersen K.F., Rothman D.L., Cline G.W., Shulman G.I. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Investig. 1996;97:2859–2865. doi: 10.1172/JCI118742.
    1. De Nigris V., Pujadas G., La Sala L., Testa R., Genovese S., Ceriello A. Short-term high glucose exposure impairs insulin signaling in endothelial cells. Cardiovasc. Diabetol. 2015;14:114. doi: 10.1186/s12933-015-0278-0.
    1. Saltiel A.R., Kahn C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nat. Cell Biol. 2001;414:799–806. doi: 10.1038/414799a.
    1. Lamia K.A., Storch K.-F., Weitz C.J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA. 2008;105:15172–15177. doi: 10.1073/pnas.0806717105.
    1. McHill A.W., Melanson E.L., Higgins J., Connick E., Moehlman T.M., Stothard E.R., Wright K.P. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc. Natl. Acad. Sci. USA. 2014;111:17302–17307. doi: 10.1073/pnas.1412021111.
    1. Kalsbeek A., Yi C.-X., La Fleur S.E., Fliers E. The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol. Metab. 2010;21:402–410. doi: 10.1016/j.tem.2010.02.005.
    1. Turek F.W., Joshu C., Kohsaka A., Lin E., Ivanova G., McDearmon E., Laposky A., Losee-Olson S., Easton A., Jensen D.R., et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science. 2005;308:1043–1045. doi: 10.1126/science.1108750.
    1. Shimba S., Ishii N., Ohta Y., Ohno T., Watabe Y., Hayashi M., Wada T., Aoyagi T., Tezuka M. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl. Acad. Sci. USA. 2005;102:12071–12076. doi: 10.1073/pnas.0502383102.
    1. Rudic R.D., McNamara P., Curtis A.-M., Boston R.C., Panda S., HogenEsch J.B., Fitzgerald G.A. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2:e377. doi: 10.1371/journal.pbio.0020377.
    1. Kaneko K., Yamada T., Tsukita S., Takahashi K., Ishigaki Y., Oka Y., Katagiri H. Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res. 2009;1263:58–68. doi: 10.1016/j.brainres.2008.12.071.
    1. Yang Q., Graham T.E., Mody N., Preitner F., Peroni O.D., Zabolotny J.M., Kotani K., Quadro L., Kahn B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nat. Cell Biol. 2005;436:356–362. doi: 10.1038/nature03711.
    1. Vieira E., Ruano E.G., Figueroa A.L.C., Aranda G., Momblan D., Carmona F., Gomis R., Vidal J., Hanzu F.A. Altered clock gene expression in obese visceral adipose tissue is associated with metabolic syndrome. PLoS ONE. 2014;9:e111678. doi: 10.1371/journal.pone.0111678.
    1. Solt L.A., Wang Y., Banerjee S., Hughes T., Kojetin D.J., Lundasen T., Shin Y., Liu J., Cameron M.D., Noel R., et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nat. Cell Biol. 2012;485:62–68. doi: 10.1038/nature11030.
    1. Sitaula S., Billon C., Kamenecka T.M., Solt L.A., Burris T.P. Suppression of atherosclerosis by synthetic REV-ERB agonist. Biochem. Biophys. Res. Commun. 2015;460:566–571. doi: 10.1016/j.bbrc.2015.03.070.
    1. La Sala L., Cattaneo M., De Nigris V., Pujadas G., Testa R., Bonfigli A.R., Genovese S., Ceriello A. Oscillating glucose induces microRNA-185 and impairs an efficient antioxidant response in human endothelial cells. Cardiovasc. Diabetol. 2016;15:71. doi: 10.1186/s12933-016-0390-9.
    1. La Sala L., Mrakic-Sposta S., Micheloni S., Prattichizzo F., Ceriello A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc. Diabetol. 2018;17:1–14. doi: 10.1186/s12933-018-0748-2.
    1. La Sala L., Mrakic-Sposta S., Tagliabue E., Prattichizzo F., Micheloni S., Sangalli E., Specchia C., Uccellatore A.C., Lupini S., Spinetti G., et al. Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D. Cardiovasc. Diabetol. 2019;18:1–12. doi: 10.1186/s12933-019-0824-2.
    1. La Sala L., Pujadas G., De Nigris V., Canivell S., Novials A., Genovese S., Ceriello A. Oscillating glucose and constant high glucose induce endoglin expression in endothelial cells: The role of oxidative stress. Acta Diabetol. 2014;52:505–512. doi: 10.1007/s00592-014-0670-3.
    1. Sharma A., Rizky L., Stefanovic N., Tate M., Ritchie R.H., Ward K.W., De Haan J.B. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction. Cardiovasc. Diabetol. 2017;16:33. doi: 10.1186/s12933-017-0513-y.
    1. He M., Siow R., Sugden D., Gao L., Cheng X., Mann G. Induction of HO-1 and redox signaling in endothelial cells by advanced glycation end products: A role for Nrf2 in vascular protection in diabetes. Nutr. Metab. Cardiovasc. Dis. 2010;21:277–285. doi: 10.1016/j.numecd.2009.12.008.
    1. Leiter L.A., Ceriello A., Davidson J.A., Hanefeld M., Monnier L., Owens D., Tajima N., Tuomilehto J. Postprandial glucose regulation: New data and new implications. Clin. Ther. 2005;27:S42–S56. doi: 10.1016/j.clinthera.2005.11.020.
    1. Ellulu M.S., Patimah I., Khaza’Ai H., Rahmat A., Abed Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017;4:851–863. doi: 10.5114/aoms.2016.58928.
    1. Galkina E., Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 2009;27:165–197. doi: 10.1146/annurev.immunol.021908.132620.
    1. Catalán V., Gómez-Ambrosi J., Rotellar F., Silva C., Rodríguez A., Salvador J., Gil M., Cienfuegos J.A., Frühbeck G. Validation of endogenous control genes in human adipose tissue: Relevance to obesity and obesity-associated Type 2 diabetes mellitus. Horm. Metab. Res. 2007;39:495–500. doi: 10.1055/s-2007-982502.
    1. Luft V.C., Schmidt M.I., Pankow J.S., Couper D., Ballantyne C., Young J.H., Duncan B.B. Chronic inflammation role in the obesity-diabetes association: A case-cohort study. Diabetol. Metab. Syndr. 2013;5:31. doi: 10.1186/1758-5996-5-31.
    1. Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science. 1993;259:87–91. doi: 10.1126/science.7678183.
    1. Gao Z., Hwang D., Bataille F., Lefevre M., York D., Quon M.J., Ye J. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J. Biol. Chem. 2002;277:48115–48121. doi: 10.1074/jbc.M209459200.
    1. Shoelson S.E., Lee J., Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity-and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord. 2003;27:S49–S52. doi: 10.1038/sj.ijo.0802501.
    1. Green E.A., Eynon E.E., Flavell R.A. Local expression of TNFalpha in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity. 1998;9:733–743. doi: 10.1016/S1074-7613(00)80670-6.
    1. Steppan C.M., Bailey S.T., Bhat S., Brown E.J., Banerjee R.R., Wright C.M., Patel H.R., Ahima R.S., Lazar M.A. The hormone resistin links obesity to diabetes. Nat. Cell Biol. 2001;409:307–312. doi: 10.1038/35053000.
    1. Vandanmagsar B., Youm Y.-H., Ravussin A., Galgani J.E., Stadler K., Mynatt R.L., Ravussin E., Stephens J.M., Dixit V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011;17:179–188. doi: 10.1038/nm.2279.
    1. McGeary S.E., Lin K.S., Shi C.Y., Pham T.M., Bisaria N., Kelley G.M., Bartel D.P. The biochemical basis of microRNA targeting efficacy. Science. 2019;366:eaav1741. doi: 10.1126/science.aav1741.
    1. La Sala L., Tagliabue E., De Candia P., Prattichizzo F., Ceriello A. One-hour plasma glucose combined with skin autofluorescence identifies subjects with pre-diabetes: The DIAPASON study. BMJ Open Diabetes Res. Care. 2020;8:e001331. doi: 10.1136/bmjdrc-2020-001331.
    1. De Candia P., Spinetti G., Specchia C., Sangalli E., La Sala L., Uccellatore A., Lupini S., Genovese S., Matarese G., Ceriello A. A unique plasma microRNA profile defines type 2 diabetes progression. PLoS ONE. 2017;12:e0188980. doi: 10.1371/journal.pone.0188980.
    1. Mysore R., Zhou Y., Sädevirta S., Savolainen-Peltonen H., Haridas P.N., Soronen J., Leivonen M., Sarin A.-P., Fischer-Posovszky P., Wabitsch M., et al. MicroRNA-192* impairs adipocyte triglyceride storage. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2016;1861:342–351. doi: 10.1016/j.bbalip.2015.12.019.
    1. Belarbi Y., Mejhert N., Lorente-Cebrián S., Dahlman I., Arner P., Rydén M., Kulyté A. MicroRNA-193b controls adiponectin production in human white adipose tissue. J. Clin. Endocrinol. Metab. 2015;100:E1084–E1088. doi: 10.1210/jc.2015-1530.
    1. Párrizas M., Brugnara L., Esteban Y., González-Franquesa A., Canivell S., Murillo S., Gordillo-Bastidas E., Cussó R., Cadefau J.A., García-Roves P.M., et al. Circulating miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise intervention. J. Clin. Endocrinol. Metab. 2015;100:E407–E415. doi: 10.1210/jc.2014-2574.
    1. Jimenez-Lucena R., Alcala-Diaz J.F., Roncero-Ramos I., Lopez-Moreno J., Camargo A., Gomez-Delgado F., Quintana-Navarro G.M., Vals-Delgado C., Rodriguez-Cantalejo F., Luque A.R.M., et al. MiRNAs profile as biomarkers of nutritional therapy for the prevention of Type 2 diabetes mellitus: From the CORDIOPREV study. Clin. Nutr. 2020 doi: 10.1016/j.clnu.2020.06.035.
    1. Mingrone G., Panunzi S., De Gaetano A., Guidone C., Iaconelli A., Leccesi L., Nanni G., Pomp A., Castagneto M., Ghirlanda G., et al. Bariatric surgery versus conventional medical therapy for Type 2 diabetes. N. Engl. J. Med. 2012;366:1577–1585. doi: 10.1056/NEJMoa1200111.
    1. Matsuyama H., Suzuki H.I. Systems and synthetic microRNA biology: From biogenesis to disease pathogenesis. Int. J. Mol. Sci. 2019;21:132. doi: 10.3390/ijms21010132.
    1. Kuryłowicz A., Wicik Z., Owczarz M., Jonas M.I., Kotlarek M., Świerniak M., Lisik W., Jonas M., Noszczyk B., Puzianowska-Kuźnicka M. NGS reveals molecular pathways affected by obesity and weight loss-related changes in miRNA levels in adipose tissue. Int. J. Mol. Sci. 2017;19:66. doi: 10.3390/ijms19010066.
    1. Wu Q., Li J.V., Seyfried F., Le Roux C.W., Ashrafian H., Athanasiou T., Fenske W., Darzi A., Nicholson J.K., Holmes E., et al. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery. Int. J. Obes. 2015;39:1126–1134. doi: 10.1038/ijo.2015.33.
    1. Hubal M.J., Nadler E.P., Ferrante S.C., Barberio M.D., Suh J.-H., Wang J., Dohm G.L., Pories W.J., Mietus-Snyder M., Freishtat R.J. Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity. 2017;25:102–110. doi: 10.1002/oby.21709.
    1. Bae Y., Kim Y., Lee H., Kim H., Jeon J.S., Noh H., Han D.C., Ryu S., Kwon S.H. Bariatric surgery alters microRNA content of circulating exosomes in patients with obesity. Obesity. 2019;27:264–271. doi: 10.1002/oby.22379.
    1. Alkandari A., Ashrafian H., Sathyapalan T., Darzi A., Holmes E., Athanasiou T., Atkin S.L., Gooderham N.J. Bariatric surgery modulates urinary levels of microRNAs involved in the regulation of renal function. Front. Endocrinol. 2019;10:319. doi: 10.3389/fendo.2019.00319.
    1. Wang Y., Wang D.-S., Cheng Y.-S., Jia B.-L., Yu G., Yin X.-Q., Wang Y. Expression of microRNA-448 and SIRT1 and prognosis of obese Type 2 diabetic mellitus patients after laparoscopic bariatric surgery. Cell. Physiol. Biochem. 2018;45:935–950. doi: 10.1159/000487287.
    1. Said M.A., Verweij N., Van Der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK biobank study. JAMA Cardiol. 2018;3:693–702. doi: 10.1001/jamacardio.2018.1717.
    1. Oluwagbemigun K., Buyken A.E., Alexy U., Schmid M., Herder C., Nöthlings U. Developmental trajectories of body mass index from childhood into late adolescence and subsequent late adolescence–young adulthood cardiometabolic risk markers. Cardiovasc. Diabetol. 2019;18:1–14. doi: 10.1186/s12933-019-0813-5.
    1. Frayling T.M., Timpson N.J., Weedon M.N., Zeggini E., Freathy R.M., Lindgren C.M., Perry J.R.B., Elliott K.S., Lango H., Rayner N.W., et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–894. doi: 10.1126/science.1141634.
    1. Zeggini E., Weedon M.N., Lindgren C.M., Frayling T.M., Elliott K.S., Lango H., Timpson N.J., Perry J.R.B., Rayner N.W., Freathy R.M., et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–1341. doi: 10.1126/science.1142364.
    1. Frayling T.M. Genome–wide association studies provide new insights into type 2 diabetes aetiology. Nat. Rev. Genet. 2007;8:657–662. doi: 10.1038/nrg2178.
    1. Kim A.Y., Park Y.J., Pan X., Shin K.C., Kwak S.-H., Bassas A.F., Sallam R.M., Park K.S., Alfadda A.A., Xu A., et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat. Commun. 2015;6:7585. doi: 10.1038/ncomms8585.
    1. Castellano-Castillo D., Queipo-Ortuño M.I., Sanchez-Alcoholado L., Ramos-Molina B., Alcaide-Torres J., Morcillo S., Ocaña-Wilhelmi L., Tinahones F., Queipo-Ortuño M.I., Cardona F. Altered adipose tissue DNA methylation status in metabolic syndrome: Relationships between global DNA methylation and specific methylation at adipogenic, lipid metabolism and inflammatory candidate genes and metabolic variables. J. Clin. Med. 2019;8:87. doi: 10.3390/jcm8010087.
    1. Dick K.J., Nelson C.P., Tsaprouni L., Sandling J.K., Aïssi D., Wahl S., Meduri E., Morange P.-E., Gagnon F., Grallert H., et al. DNA methylation and body-mass index: A genome-wide analysis. Lancet. 2014;383:1990–1998. doi: 10.1016/S0140-6736(13)62674-4.
    1. Hidalgo B., Irvin M.R., Sha J., Zhi D., Aslibekyan S., Absher D., Tiwari H.K., Kabagambe E.K., Ordovas J.M., Arnett D.K. Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the genetics of lipid lowering drugs and diet network study. Diabetes. 2013;63:801–807. doi: 10.2337/db13-1100.
    1. Larsen L.H., Echwald S.M., Sørensen T.I.A., Andersen T., Wulff B.S., Pedersen O. Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with Juvenile-onset obesity. J. Clin. Endocrinol. Metab. 2005;90:219–224. doi: 10.1210/jc.2004-0497.
    1. Altshuler D., Hirschhorn J.N., Klannemark M., Lindgren C.M., Vohl M.-C., Nemesh J., Lane C.R., Schaffner S.F., Bolk S., Brewer C., et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 2000;26:76–80. doi: 10.1038/79216.
    1. Gloyn A.L., Weedon M.N., Owen K.R., Turner M.J., Knight B.A., Hitman G., Walker M., Levy J.C., Sampson M., Halford S., et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52:568–572. doi: 10.2337/diabetes.52.2.568.
    1. McCarthy M.I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 2010;363:2339–2350. doi: 10.1056/NEJMra0906948.
    1. Voight B.F., Scott L.J., Steinthorsdottir V., Morris A.P., Dina C., Welch R.P., Zeggini E., Huth C., Aulchenko Y.S., The MAGIC Investigators et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 2010;42:579–589. doi: 10.1038/ng.609.
    1. Small K.S., Hedman Å.K., Grundberg E., Nica A.C., Thorleifsson G., Kong A., Thorsteindottir U., Shin S.-Y., Richards H.B., Soranzo N., et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat. Genet. 2011;43:561–564. doi: 10.1038/ng1011-1040c.
    1. Nicoletti C.F., Cortes-Oliveira C., Noronha N.Y., Pinhel M.A.S., Dantas W.S., Jácome A., Marchini J.S., Gualano B., Crujeiras A.B., Nonino C.B. DNA methylation pattern changes following a short-term hypocaloric diet in women with obesity. Eur. J. Clin. Nutr. 2020;74:1345–1353. doi: 10.1038/s41430-020-0660-1.
    1. Sziráki A., Tyshkovskiy A., Gladyshev V.N. Global remodeling of the mouse DNA methylome during aging and in response to calorie restriction. Aging Cell. 2018;17:e12738. doi: 10.1111/acel.12738.
    1. Wiebe N., Stenvinkel P., Tonelli M. Associations of chronic inflammation, insulin resistance, and severe obesity with mortality, myocardial infarction, cancer, and chronic pulmonary disease. JAMA Netw. Open. 2019;2:e1910456. doi: 10.1001/jamanetworkopen.2019.10456.
    1. Kenchaiah S., Evans J.C., Levy D., Wilson P.W., Benjamin E.J., Larson M.G., Kannel W.B., Vasan R.S. Obesity and the risk of heart failure. N. Engl. J. Med. 2002;347:305–313. doi: 10.1056/NEJMoa020245.
    1. Manson J.E., Colditz G.A., Stampfer M.J., Willett W.C., Rosner B., Monson R.R., Speizer F.E., Hennekens C.H. A prospective study of obesity and risk of coronary heart disease in women. N. Engl. J. Med. 1990;322:882–889. doi: 10.1056/NEJM199003293221303.
    1. Calle E.E., Thun M.J., Petrelli J.M., Rodriguez C., Heath C.W. Body-mass index and mortality in a prospective cohort of U.S. adults. N. Engl. J. Med. 1999;341:1097–1105. doi: 10.1056/NEJM199910073411501.
    1. Unamuno X., Gómez-Ambrosi J., Rodríguez A., Becerril S., Frühbeck G., Catalán V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Investig. 2018;48:e12997. doi: 10.1111/eci.12997.
    1. Nathan D.M., Genuth S., Lachin J., Cleary P., Crofford O., Davis M., Rand L., Siebert C., Diabetes Control and Complications Trial Research Group The Effect of Intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993;329:977–986. doi: 10.1056/nejm199309303291401.
    1. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352:837–853. doi: 10.1016/S0140-6736(98)07019-6.
    1. Bendor C.D., Bardugo A., Pinhas-Hamiel O., Afek A., Twig G. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc. Diabetol. 2020;19:1–14. doi: 10.1186/s12933-020-01052-1.
    1. Sun Y., Liu B., Snetselaar L.G., Wallace R.B., Caan B.J., Rohan T.E., Neuhouser M.L., Shadyab A.H., Chlebowski R.T., Manson J.E., et al. Association of normal-weight central obesity with all-cause and cause-specific mortality among postmenopausal women. JAMA Netw. Open. 2019;2:e197337. doi: 10.1001/jamanetworkopen.2019.7337.
    1. Eckel N., Meidtner K., Kalle-Uhlmann T., Stefan N., Schulze M.B. Metabolically healthy obesity and cardiovascular events: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2015;23:956–966. doi: 10.1177/2047487315623884.
    1. Lee Y.-B., Kim D.H., Kim S.M., Kim N.H., Choi K.M., Baik S.H., Park Y.G., Han K., Yoo H.J. Hospitalization for heart failure incidence according to the transition in metabolic health and obesity status: A nationwide population-based study. Cardiovasc. Diabetol. 2020;19:1–11. doi: 10.1186/s12933-020-01051-2.
    1. Jiang L., Shi K., Guo Y.-K., Ren Y., Li Z.-L., Xia C.-C., Li L., Liu X., Xie L.-J., Gao Y., et al. The additive effects of obesity on myocardial microcirculation in diabetic individuals: A cardiac magnetic resonance first-pass perfusion study. Cardiovasc. Diabetol. 2020;19:1–13. doi: 10.1186/s12933-020-01028-1.
    1. Fumagalli C., Maurizi N., Day S.M., Ashley E.A., Michels M., Colan S.D., Jacoby D., Marchionni N., Vincent-Tompkins J., Ho C.Y., et al. Association of Obesity with Adverse Long-term Outcomes in Hypertrophic Cardiomyopathy. JAMA Cardiol. 2019;5:1–8. doi: 10.1001/jamacardio.2019.4268.
    1. Linssen P.B.C., Veugen M.G.J., Henry R.M.A., Van Der Kallen C.J.H., Kroon A.A., Schram M.T., Rocca H.-P.B.-L., Stehouwer C.D.A. Associations of (pre)diabetes with right ventricular and atrial structure and function: The Maastricht Study. Cardiovasc. Diabetol. 2020;19:1–12. doi: 10.1186/s12933-020-01055-y.
    1. Kim M.K., Han K., Koh E.S., Kim E.S., Lee M.-K., Nam G.E., Kwon H.-S. Weight change and mortality and cardiovascular outcomes in patients with new-onset diabetes mellitus: A nationwide cohort study. Cardiovasc. Diabetol. 2019;18:1–12. doi: 10.1186/s12933-019-0838-9.
    1. Pagidipati N.J., Zheng Y., Green J.B., McGuire D.K., Mentz R.J., Shah S., Aschner P., Delibasi T., Rodbard H.W., Westerhout C.M., et al. Association of obesity with cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease: Insights from TECOS. Am. Hear J. 2020;219:47–57. doi: 10.1016/j.ahj.2019.09.016.
    1. Mahajan R., Stokes M., Elliott A., Munawar D.A., Khokhar K.B., Thiyagarajah A., Hendriks J., Linz D., Gallagher C., Kaye D., et al. Complex interaction of obesity, intentional weight loss and heart failure: A systematic review and meta-analysis. Heart. 2019;106:58–68. doi: 10.1136/heartjnl-2019-314770.
    1. Tsatsoulis A., Paschou S.A. Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Curr. Obes. Rep. 2020;9:109–120. doi: 10.1007/s13679-020-00375-0.
    1. Silveira E.A., Kliemann N., Noll M., Sarrafzadegan N., De Oliveira C. Visceral obesity and incident cancer and cardiovascular disease: An integrative review of the epidemiological evidence. Obes. Rev. 2020 doi: 10.1111/obr.13088.
    1. Henriksson H., Henriksson P., Tynelius P., Ekstedt M., Berglind D., Labayen I., Ruiz J.R., Lavie C.J., Ortega F.B. Cardiorespiratory fitness, muscular strength, and obesity in adolescence and later chronic disability due to cardiovascular disease: A cohort study of 1 million men. Eur. Heart J. 2020;41:1503–1510. doi: 10.1093/eurheartj/ehz774.
    1. Merlotti C., Morabito A., Ceriani V., Pontiroli A.E. Prevention of type 2 diabetes in obese at-risk subjects: A systematic review and meta-analysis. Acta Diabetol. 2014;51:853–863. doi: 10.1007/s00592-014-0624-9.
    1. Merlotti C., Morabito A., Pontiroli A.E. Prevention of type 2 diabetes; a systematic review and meta-analysis of different intervention strategies. Diabetes Obes. Metab. 2014;16:719–727. doi: 10.1111/dom.12270.
    1. Prattichizzo F., La Sala L., Rydén L., Marx N., Ferrini M., Valensi P., Ceriello A. Glucose-lowering therapies in patients with type 2 diabetes and cardiovascular diseases. Eur. J. Prev. Cardiol. 2019;26:73–80. doi: 10.1177/2047487319880040.
    1. Bays H.E., Weinstein R., Law G., Canovatchel W. Canagliflozin: Effects in overweight and obese subjects without diabetes mellitus. Obesity. 2013;22:1042–1049. doi: 10.1002/oby.20663.
    1. Lundkvist P., Pereira M.J., Katsogiannos P., Sjöström C.D., Johnsson E., Eriksson J.W. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: S ustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes. Metab. 2017;19:1276–1288. doi: 10.1111/dom.12954.
    1. Lundkvist P., Sjöström C.D., Amini S., Pereira M.J., Johnsson E., Eriksson J.W. Dapagliflozin once-daily and exenatide once-weekly dual therapy: A 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diabetes Obes. Metab. 2016;19:49–60. doi: 10.1111/dom.12779.
    1. Le Roux C.W., Astrup A., Fujioka K., Greenway F.L., Lau D.C.W., Van Gaal L., Ortiz R.M.V., Wilding J., Skjøth T.V., Manning L.S., et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: A randomised, double-blind trial. Lancet. 2017;389:1399–1409. doi: 10.1016/S0140-6736(17)30069-7.
    1. Guardado-Mendoza R., Salazar-López S.S., Álvarez-Canales M.F.D.L.L., Vázquez D.F., Martínez-López Y.E., Jiménez-Ceja L.M., Suarez E., Angulo-Romero F., Evia-Viscarra M.L., De Oca-Loyola M.L.M., et al. The combination of linagliptin, metformin and lifestyle modification to prevent type 2 diabetes (PRELLIM). A randomized clinical trial. Metabolism. 2020;104:154054. doi: 10.1016/j.metabol.2019.154054.
    1. Pollack R.M., Donath M.Y., Leroith D., Leibowitz G. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care. 2016;39:S244–S252. doi: 10.2337/dcS15-3015.
    1. Everett B.M., Donath M.Y., Pradhan A.D., Thuren T., Pais P., Nicolau J.C., Glynn R.J., Libby P., Ridker P.M. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 2018;71:2392–2401. doi: 10.1016/j.jacc.2018.03.002.
    1. Cameron A.R., Morrison V.L., Levin D., Mohan M., Forteath C., Beall C., McNeilly A.D., Balfour D.J.K., Savinko T., Wong A.K.F., et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res. 2016;119:652–665. doi: 10.1161/CIRCRESAHA.116.308445.
    1. Borzouei S., Sheikh V., Ghasemi M., Zamani A., Telikani Z., Zareighane Z., Salehi I., Mozayanimonfared A., Amirzargar M.A., Alahgholi-Hajibehzad M. Anti-inflammatory effect of combined sitagliptin and vitamin d3 on cytokines profile in patients with type 2 diabetes mellitus. J. Interf. Cytokine Res. 2019;39:293–301. doi: 10.1089/jir.2018.0144.
    1. Foschi D., Sorrentino L., Tubazio I., Vecchio C., Vago T., Bevilacqua M., Rizzi A., Corsi F. Ileal interposition coupled with duodenal diverted sleeve gastrectomy versus standard medical treatment in type 2 diabetes mellitus obese patients: Long-term results of a case–control study. Surg. Endosc. 2018;33:1553–1563. doi: 10.1007/s00464-018-6443-2.
    1. Gloy V.L., Briel M., Bhatt D.L., Kashyap S.R., Schauer P.R., Mingrone G., Bucher H.C., Nordmann A.J. Bariatric surgery versus non-surgical treatment for obesity: A systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934. doi: 10.1136/bmj.f5934.
    1. Boido A., Ceriani V., Cetta F., Lombardi F., Pontiroli A.E. Bariatric surgery and prevention of cardiovascular events and mortality in morbid obesity: Mechanisms of action and choice of surgery. Nutr. Metab. Cardiovasc. Dis. 2015;25:437–443. doi: 10.1016/j.numecd.2015.01.011.
    1. Merlotti C., Ceriani V., Morabito A., Pontiroli A.E. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: A critical review and meta-analysis. Int. J. Obes. 2017;41:672–682. doi: 10.1038/ijo.2017.31.
    1. Camastra S., Muscelli E., Gastaldelli A., Holst J.J., Astiarraga B., Baldi S., Nannipieri M., Ciociaro D., Anselmino M., Mari A., et al. Long-term effects of bariatric surgery on meal disposal and beta-cell function in diabetic and nondiabetic patients. Diabetes. 2013;62:3709–3717. doi: 10.2337/db13-0321.
    1. Astiarraga B., Gastaldelli A., Muscelli E., Baldi S., Camastra S., Mari A., Papadia F., Camerini G., Adami G., Scopinaro N., et al. Biliopancreatic diversion in nonobese patients with type 2 diabetes: Impact and mechanisms. J. Clin. Endocrinol. Metab. 2013;98:2765–2773. doi: 10.1210/jc.2013-1476.
    1. Look Ahead Research Group Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: A post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016;4:913–921. doi: 10.1016/S2213-8587(16)30162-0.
    1. Nathan D.M., Barrett-Connor E., Crandall J., Edelstein S.L., Goldberg R., Horton E.S., Knowler W., Mather K.J., Orchard T.J., Pi-Sunyer X., et al. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3:866–875. doi: 10.1016/s2213-8587(15)00291-0.
    1. Gong Q., Zhang P., Wang J., Ma J., An Y., Chen Y., Zhang B., Feng X., Li H., Chen X., et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019;7:452–461. doi: 10.1016/S2213-8587(19)30093-2.
    1. Lindström J., Peltonen M., Eriksson J.G., Ilanne-Parikka P., Aunola S., Keinänen-Kiukaanniemi S., Uusitupa M., Tuomilehto J., Finnish Diabetes Prevention Study (DPS) Improved lifestyle and decreased diabetes risk over 13 years: Long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS) Diabetology. 2012;56:284–293. doi: 10.1007/s00125-012-2752-5.
    1. Peradze N., Farr O.M., Perakakis N., Lázaro I., Sala-Vila A., Mantzoros C.S. Short-term treatment with high dose liraglutide improves lipid and lipoprotein profile and changes hormonal mediators of lipid metabolism in obese patients with no overt type 2 diabetes mellitus: A randomized, placebo-controlled, cross-over, double-blind clinical trial. Cardiovasc. Diabetol. 2019;18:141. doi: 10.1186/s12933-019-0945-7.
    1. Sjöström L., Peltonen M., Jacobson P., Sjöström C.D., Karason K., Wedel H., Ahlin S., Anveden Å., Bengtsson C., Bergmark G., et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65. doi: 10.1001/jama.2011.1914.
    1. Carlsson L.M.S., Sjöholm K., Karlsson C., Jacobson P., Andersson-Assarsson J.C., Svensson P.-A., Larsson I., Hjorth S., Neovius M., Taube M., et al. Long-term incidence of microvascular disease after bariatric surgery or usual care in patients with obesity, stratified by baseline glycaemic status: A post-hoc analysis of participants from the Swedish Obese Subjects study. Lancet Diabetes Endocrinol. 2017;5:271–279. doi: 10.1016/S2213-8587(17)30061-X.
    1. Pontiroli A.E., Zakaria A.S., Mantegazza E., Morabito A., Saibene A., Mozzi E., Micheletto G. Long-term mortality and incidence of cardiovascular diseases and type 2 diabetes in diabetic and nondiabetic obese patients undergoing gastric banding: A controlled study. Cardiovasc. Diabetol. 2016;15:1–9. doi: 10.1186/s12933-016-0347-z.
    1. Pontiroli A.E., Ceriani V., Sarro G., Micheletto G., Giovanelli A., Zakaria A.S., Fanchini M., Osio C., Nosari I., Veronelli V.A., et al. Incidence of diabetes mellitus, cardiovascular diseases, and cancer in patients undergoing malabsorptive surgery (biliopancreatic diversion and biliointestinal bypass) vs medical treatment. Obes. Surg. 2018;29:935–942. doi: 10.1007/s11695-018-3601-5.
    1. Pontiroli A.E., Ceriani V., Tagliabue E., Zakaria A.S., Veronelli A., Folli F., Zanoni I. Bariatric surgery, compared to medical treatment, reduces morbidity at all ages but does not reduce mortality in patients aged <43 years, especially if diabetes mellitus is present: A post hoc analysis of two retrospective cohort studies. Acta Diabetol. 2019;57:323–333. doi: 10.1007/s00592-019-01433-3.
    1. Williamson D.F., Thompson T.J., Thun M., Flanders D., Pamuk E., Byers T. Intentional weight loss and mortality among overweight individuals with diabetes. Diabetes Care. 2000;23:1499–1504. doi: 10.2337/diacare.23.10.1499.
    1. Pontiroli A.E., Morabito A. Long-term prevention of mortality in morbid obesity through bariatric surgery. A systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann. Surg. 2011;253:484–487. doi: 10.1097/SLA.0b013e31820d98cb.
    1. Pontiroli A.E., Zakaria A.S., Fanchini M., Osio C., Tagliabue E., Micheletto G., Saibene A., Folli F. A 23-year study of mortality and development of co-morbidities in patients with obesity undergoing bariatric surgery (laparoscopic gastric banding) in comparison with medical treatment of obesity. Cardiovasc. Diabetol. 2018;17:161. doi: 10.1186/s12933-018-0801-1.
    1. Ceriani V., Sarro G., Micheletto G., Giovanelli A., Zakaria A.S., Fanchini M., Osio C., Nosari I., Morabito A., Pontiroli A.E., et al. Long-term mortality in obese subjects undergoing malabsorptive surgery (biliopancreatic diversion and biliointestinal bypass) versus medical treatment. Int. J. Obes. 2018;43:1147–1153. doi: 10.1038/s41366-018-0244-5.
    1. Davidson L.E., Adams T.D., Kim J., Jones J.L., Hashibe M., Taylor D., Mehta T., McKinlay R., Simper S.C., Smith S.C., et al. Association of patient age at gastric bypass surgery with long-term all-cause and cause-specific mortality. JAMA Surg. 2016;151:631–637. doi: 10.1001/jamasurg.2015.5501.
    1. Pontiroli A.E., Ceriani V., Tagliabue E. Compared with Controls, bariatric surgery prevents long-term mortality in Persons with obesity only above median age of cohorts: A systematic review and meta-analysis. Obes. Surg. 2020;30:2487–2496. doi: 10.1007/s11695-020-04530-3.
    1. Blundell J.E., Dulloo A.G., Salvador J., Frühbeck G. Beyond BMI—Phenotyping the obesities. Obes. Facts. 2014;7:322–328. doi: 10.1159/000368783.
    1. Toplak H., Woodward E., Yumuk V., Oppert J.-M., Halford J.C., Frühbeck G. 2014 EASO position statement on the use of anti-obesity drugs. Obes. Facts. 2015;8:166–174. doi: 10.1159/000430801.

Source: PubMed

3
Abonnere