Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study

Mario Imburgia, Silvia Logozzo, Uli Hauschild, Giovanni Veronesi, Carlo Mangano, Francesco Guido Mangano, Mario Imburgia, Silvia Logozzo, Uli Hauschild, Giovanni Veronesi, Carlo Mangano, Francesco Guido Mangano

Abstract

Background: Until now, only a few studies have compared the ability of different intraoral scanners (IOS) to capture high-quality impressions in patients with dental implants. Hence, the aim of this study was to compare the trueness and precision of four IOS in a partially edentulous model (PEM) with three implants and in a fully edentulous model (FEM) with six implants.

Methods: Two gypsum models were prepared with respectively three and six implant analogues, and polyether-ether-ketone cylinders screwed on. These models were scanned with a reference scanner (ScanRider®), and with four IOS (CS3600®, Trios3®, Omnicam®, TrueDefinition®); five scans were taken for each model, using each IOS. All IOS datasets were loaded into reverse-engineering software, where they were superimposed on the reference model, to evaluate trueness, and superimposed on each other within groups, to determine precision. A detailed statistical analysis was carried out.

Results: In the PEM, CS3600® had the best trueness (45.8 ± 1.6μm), followed by Trios3® (50.2 ± 2.5μm), Omnicam® (58.8 ± 1.6μm) and TrueDefinition® (61.4 ± 3.0μm). Significant differences were found between CS3600® and Trios3®, CS3600® and Omnicam®, CS3600® and TrueDefinition®, Trios3® and Omnicam®, Trios3® and TrueDefinition®. In the FEM, CS3600® had the best trueness (60.6 ± 11.7μm), followed by Omnicam® (66.4 ± 3.9μm), Trios3® (67.2 ± 6.9μm) and TrueDefinition® (106.4 ± 23.1μm). Significant differences were found between CS3600® and TrueDefinition®, Trios3® and TrueDefinition®, Omnicam® and TrueDefinition®. For all scanners, the trueness values obtained in the PEM were significantly better than those obtained in the FEM. In the PEM, TrueDefinition® had the best precision (19.5 ± 3.1μm), followed by Trios3® (24.5 ± 3.7μm), CS3600® (24.8 ± 4.6μm) and Omnicam® (26.3 ± 1.5μm); no statistically significant differences were found among different IOS. In the FEM, Trios3® had the best precision (31.5 ± 9.8μm), followed by Omnicam® (57.2 ± 9.1μm), CS3600® (65.5 ± 16.7μm) and TrueDefinition® (75.3 ± 43.8μm); no statistically significant differences were found among different IOS. For CS3600®, For CS3600®, Omnicam® and TrueDefinition®, the values obtained in the PEM were significantly better than those obtained in the FEM; no significant differences were found for Trios3®.

Conclusions: Significant differences in trueness were found among different IOS; for each scanner, the trueness was higher in the PEM than in the FEM. Conversely, the IOS did not significantly differ in precision; for CS3600®, Omnicam® and TrueDefinition®, the precision was higher in the PEM than in the FEM. These findings may have important clinical implications.

Keywords: Accuracy; Intraoral scanners; Oral implants; Precision; Trueness.

Figures

Fig. 1
Fig. 1
Two different gypsum models were prepared: a partially edentulous maxilla, with three implant analogues in positions #23, #24 and #26, and a fully edentulous maxilla, with the same implant analogues in positions #11, #14, #16, #21, #24 and #26
Fig. 2
Fig. 2
Four different IOS (CS 3600®, Carestream, Rochester, NY, USA; Trios 3®, 3-Shape, Copenhagen, Denmark; Cerec Omnicam®, Sirona Dental System GmbH, Bensheim, Germany; True Definition®, 3M Espe, S. Paul, MN, USA) were compared in this study, with the purpose to investigate their trueness and precision in oral implantology
Fig. 3
Fig. 3
Trueness in the partially edentulous maxilla, occlusal view. The best single result obtained with each device were: (a) CS 3600® 44 ± 44 μm; (b) Trios 3® 48 ± 52 μm; (c) Cerec Omnicam® 57 ± 66 μm; (d) True Definition® 57 ± 52 μm
Fig. 4
Fig. 4
Trueness in the fully edentulous maxilla, occlusal view. The best single result obtained with each device were: (a) CS 3600® 50 ± 81 μm; (b) Trios 3® 57 ± 89 μm; (c) Cerec Omnicam® 63 ± 87 μm; (d) True Definition® 84 ± 89 μm
Fig. 5
Fig. 5
Precision in the partially edentulous maxilla, occlusal view. The best single result obtained with each device were: (a) CS 3600® 19 ± 50 μm; (b) Trios 3® 21 ± 42 μm; (c) Cerec Omnicam® 25 ± 53 μm; (d) True Definition® 15 ± 28 μm
Fig. 6
Fig. 6
Precision in the fully edentulous maxilla, occlusal view. The best single result obtained with each device were: (a) CS 3600® 51 ± 75 μm; (b) Trios 3® 24 ± 45 μm; (c) Cerec Omnicam® 50 ± 74 μm; (d) True Definition® 42 ± 44 μm

References

    1. Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems - a current overview. Int J Comput Dent. 2015;18(2):101–129.
    1. Ting-Shu S, Jian S. Intraoral Digital Impression Technique: A Review. J Prosthodont. 2015;24(4):313–321. doi: 10.1111/jopr.12218.
    1. Logozzo S, Zanetti EM, Franceschini G, Kilpela A, Makynen A. Recent advances in dental optics – Part I: 3D intraoral scanners for restorative dentistry. Optic Lasers Eng. 2014;54(3):203–221. doi: 10.1016/j.optlaseng.2013.07.017.
    1. Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients' perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014;14((10):7.
    1. Wismeijer D, Mans R, van Genuchten M, Reijers HA. Patients' preferences when comparing analogue implant impressions using a polyether impression material versus digital impressions (Intraoral Scan) of dental implants. Clin Oral Implants Res. 2014;25(10):1113–1118. doi: 10.1111/clr.12234.
    1. Means CR, Flenniken IE. Gagging--a problem in prosthetic dentistry. J Prosthet Dent. 1970;23(6):614–620. doi: 10.1016/0022-3913(70)90224-6.
    1. Joda T, Lenherr P, Dedem P, Kovaltschuk I, Bragger U, Zitzmann NU. Time efficiency, difficulty, and operator's preference comparing digital and conventional implant impressions: a randomized controlled trial. Clin Oral Implants Res. 2016 Sep 5. doi:10.1111/clr.1298. [Epub ahead of print]
    1. Park HR, Park JM, Chun YS, Lee KN, Kim M. Changes in views on digital intraoral scanners among dental hygienists after training in digital impression taking. BMC Oral Health. 2015;15(1):7. doi: 10.1186/1472-6831-15-7.
    1. Joda T, Bragger U. Time-efficiency analysis comparing digital and conventional workflows for implant crowns: a prospective clinical crossover trial. Int J Oral Maxillofac Implants. 2015;30((5):1047–1053. doi: 10.11607/jomi.3963.
    1. Joda T, Bragger U. Digital vs. conventional implant prosthetic workflows: a cost/time analysis. Clin Oral Implants Res Sep 2. doi:10.1111/clr.12476. [Epub ahead of print]
    1. Zhang F, Suh KJ, Lee KM. Validity of Intraoral Scans Compared with Plaster Models: An In-Vivo Comparison of Dental Measurements and 3D Surface Analysis. PLoS One. 2016;11(6):e0157713. doi: 10.1371/journal.pone.0157713.
    1. Tsirogiannis P, Reissmann DR, Heydecke G. Evaluation of the marginal fit of single-unit, complete-coverage ceramic restorations fabricated after digital and conventional impressions: A systematic review and meta-analysis. J Prosthet Dent. 2016 Apr 6. pii: S0022-3913(16)00139-6. doi:10.1016/j.prosdent.2016.01.028. [Epub ahead of print]
    1. Almeidae Silva JS, Erdelt K, Edelhoff D, Araújo E, Stimmelmayr M, Vieira LC, Güth JF. Marginal and internal fit of four-unit zirconia fixed dental prostheses based on digital and conventional impression techniques. Clin Oral Investig. 2014;18(2):515–523. doi: 10.1007/s00784-013-0987-2.
    1. Ender A, Zimmermann M, Attin T, Mehl A. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clin Oral Investig. 2016;20(7):1495–1504. doi: 10.1007/s00784-015-1641-y.
    1. Ender A, Attin T, Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J Prosthet Dent. 2016;115(3):313–320. doi: 10.1016/j.prosdent.2015.09.011.
    1. Lanis A, Álvarez Del Canto O. The combination of digital surface scanners and cone beam computed tomography technology for guided implant surgery using 3Shape implant studio software: a case history report. Int J Prosthodont. 2015;28(2):169–178. doi: 10.11607/ijp.4148.
    1. Vasudavan S, Sullivan SR, Sonis AL. Comparison of intraoral 3D scanning and conventional impressions for fabrication of orthodontic retainers. J Clin Orthod. 2010;44(8):495–497.
    1. Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013;109(2):121–128. doi: 10.1016/S0022-3913(13)60028-1.
    1. Mangano FG, Veronesi G, Hauschild U, Mijiritsky E, Mangano C. Trueness and Precision of Four Intraoral Scanners in Oral Implantology: A Comparative in Vitro Study. PLoS One. 2016;11(9):e0163107. doi: 10.1371/journal.pone.0163107.
    1. Patzelt SB, Emmanouilidi A, Stampf S, Strub JR, Att W. Accuracy of full-arch scans using intraoral scanners. Clin Oral Investig. 2014;18(6):1687–1694. doi: 10.1007/s00784-013-1132-y.
    1. Güth JF, Edelhoff D, Schweiger J, Keul C. A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin Oral Investig. 2016;20(7):1487–1494. doi: 10.1007/s00784-015-1626-x.
    1. Renne W, Ludlow M, Fryml J, Schurch Z, Mennito A, Kessler R, Lauer A. Evaluation of the accuracy of 7 digital scanners: An in vitro analysis based on 3-dimensional comparisons. J Prosthet Dent. 2016 Dec 23. pii: S0022-3913(16)30514-5. doi:10.1016/j.prosdent.2016.09.024. [Epub ahead of print]
    1. Güth JF, Runkel C, Beuer F, Stimmelmayr M, Edelhoff D, Keul C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin Oral Investig. 2016 Jul 12. [Epub ahead of print]
    1. Nedelcu RG, Persson AS. Scanning accuracy and precision in 4 intraoral scanners: an in vitro comparison based on 3-dimensional analysis. J Prosthet Dent. 2014;112(6):1461–1471. doi: 10.1016/j.prosdent.2014.05.027.
    1. Patzelt SB, Vonau S, Stampf S, Att W. Assessing the feasibility and accuracy of digitizing edentulous jaws. J Am Dent Assoc. 2013;144(8):914–920. doi: 10.14219/jada.archive.2013.0209.
    1. van der Meer WJ, Andriessen FS, Wismeijer D, Ren Y. Application of intra-oral dental scanners in the digital workflow of implantology. PLoS One. 2012;7(8):e43312. doi: 10.1371/journal.pone.0043312.
    1. Ajioka H, Kihara H, Odaira C, Kobayashi T, Kondo H. Examination of the Position Accuracy of Implant Abutments Reproduced by Intra-Oral Optical Impression. PLoS One. 2016;11(10):e0164048. doi: 10.1371/journal.pone.0164048.
    1. Chew AA, Esguerra RJ, Teoh KH, Wong KM, Ng SD, Tan KB. Three-Dimensional Accuracy of Digital Implant Impressions: Effects of Different Scanners and Implant Level. Int J Oral Maxillofac Implants. 2017;32(1):70–80. doi: 10.11607/jomi.4942.
    1. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60(1):12–19. doi: 10.1016/j.jpor.2015.10.001.
    1. van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3–12. doi: 10.1016/j.dental.2011.10.014.
    1. Mangano F, Shibli JA, Fortin T. Digital Dentistry: New Materials and Techniques. Int J Dent. 2016;2016:5261247.
    1. Su TS, Sun J. Comparison of repeatability between intraoral digital scanner and extraoral digital scanner: An in-vitro study. J Prosthod Res. 2015;59(4):236–242. doi: 10.1016/j.jpor.2015.06.002.
    1. Joda T, Brägger U, Gallucci G. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients. Int J Oral Maxillofac Implants. 2015;30(2):330–337. doi: 10.11607/jomi.3852.
    1. Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77. doi: 10.11607/jomi.2014suppl.g1.4.
    1. Joda T, Ferrari M, Gallucci GO, Wittneben JG, Brägger U. Digital technology in fixed implant prosthodontics. Periodontol. 2017;73(1):178–192. doi: 10.1111/prd.12164.
    1. Zarone F, Ferrari M, Mangano FG, Leone R, Sorrentino R. “Digitally Oriented Materials”: Focus on Lithium Disilicate Ceramics. Int J Dent. 2016;2016:9840594. doi:10.1155/2016/9840594.
    1. Chochlidakis KM, Papaspyridakos P, Geminiani A, Chen CJ, Feng IJ, Ercoli C. Digital versus conventional impressions for fixed prosthodontics: A systematic review and meta-analysis. J Prosthet Dent. 2016;116(2):184–190. doi: 10.1016/j.prosdent.2015.12.017.
    1. Vandeweghe S, Vervack V, Dierens M, De Bruyn H. Accuracy of digital impressions of multiple dental implants: an in vitro study. Clin Oral Implants Res. 2016 May 6. doi:10.1111/clr.12853. [Epub ahead of print]
    1. Papaspyridakos P, Chen CJ, Gallucci GO, Doukoudakis A, Weber HP, Chronopoulos V. Accuracy of implant impressions for partially and completely edentulous patients: a systematic review. Int J Oral Maxillofac Implants. 2014;29(4):836–845. doi: 10.11607/jomi.3625.
    1. Ahlholm P, Sipilä K, Vallittu P, Jakonen M, Kotiranta U. Digital Versus Conventional Impressions in Fixed Prosthodontics: A Review. J Prosthodont. 2016 Aug 2. doi:10.1111/jopr.12527. [Epub ahead of print]

Source: PubMed

3
Abonnere