MUC1: Structure, Function, and Clinic Application in Epithelial Cancers

Wenqing Chen, Zhu Zhang, Shiqing Zhang, Peili Zhu, Joshua Ka-Shun Ko, Ken Kin-Lam Yung, Wenqing Chen, Zhu Zhang, Shiqing Zhang, Peili Zhu, Joshua Ka-Shun Ko, Ken Kin-Lam Yung

Abstract

The transmembrane glycoprotein mucin 1 (MUC1) is a mucin family member that has different functions in normal and cancer cells. Owing to its structural and biochemical properties, MUC1 can act as a lubricant, moisturizer, and physical barrier in normal cells. However, in cancer cells, MUC1 often undergoes aberrant glycosylation and overexpression. It is involved in cancer invasion, metastasis, angiogenesis, and apoptosis by virtue of its participation in intracellular signaling processes and the regulation of related biomolecules. This review introduces the biological structure and different roles of MUC1 in normal and cancer cells and the regulatory mechanisms governing these roles. It also evaluates current research progress and the clinical applications of MUC1 in cancer therapy based on its characteristics.

Keywords: MUC1; MUC1 cell barrier; epithelial cancer; immunotherapy; therapeutic biomarkers; tumor oncogene.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Structure of MUC1 in normal tissues and diseased tissues. (A) The structure of MUC1 in normal tissues; (B) The structure of MUC1 in diseased tissues.
Figure 2
Figure 2
Different function of MUC1 in health or cancer tissues. (A) The function of MUC1 in normal tissues; (B) The function and its main pathways of MUC1 in cancer tissues.
Figure 3
Figure 3
Clinical applications of MUC1.

References

    1. Nath S., Mukherjee P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med. 2014;20:332–342. doi: 10.1016/j.molmed.2014.02.007.
    1. Bose M., Mukherjee P. Microbe-MUC1 Crosstalk in Cancer-Associated Infections. Trends Mol. Med. 2020;26:324–336. doi: 10.1016/j.molmed.2019.10.003.
    1. Gao T., Cen Q., Lei H. A review on development of MUC1-based cancer vaccine. Biomed. Pharmacother. 2020;132:110888. doi: 10.1016/j.biopha.2020.110888.
    1. Carson D.D. The cytoplasmic tail of MUC1: A very busy place. Sci. Signal. 2008;1:pe35. doi: 10.1126/scisignal.127pe35.
    1. Kufe D.W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer. 2009;9:874–885. doi: 10.1038/nrc2761.
    1. Joshi S., Kumar S., Bafna S., Rachagani S., Wagner K.U., Jain M., Batra S.K. Genetically engineered mucin mouse models for inflammation and cancer. Cancer Metastasis Rev. 2015;34:593–609. doi: 10.1007/s10555-015-9549-1.
    1. Van Putten J.P.M., Strijbis K. Transmembrane Mucins: Signaling Receptors at the Intersection of Inflammation and Cancer. J. Innate Immun. 2017;9:281–299. doi: 10.1159/000453594.
    1. Ballester B., Milara J., Cortijo J. The role of mucin 1 in respiratory diseases. Eur. Respir. Rev. 2021;30 doi: 10.1183/16000617.0149-2020.
    1. Dhar P., McAuley J. The Role of the Cell Surface Mucin MUC1 as a Barrier to Infection and Regulator of Inflammation. Front. Cell. Infect. Microbiol. 2019;9:117. doi: 10.3389/fcimb.2019.00117.
    1. Schroeder J.A., Thompson M.C., Gardner M.M., Gendler S.J. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J. Biol. Chem. 2001;276:13057–13064. doi: 10.1074/jbc.M011248200.
    1. Duraisamy S., Ramasamy S., Kharbanda S., Kufe D. Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 AND MUC16. Gene. 2006;373:28–34. doi: 10.1016/j.gene.2005.12.021.
    1. Ahmad R., Raina D., Trivedi V., Ren J., Rajabi H., Kharbanda S., Kufe D. MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signalling. Nat. Cell Biol. 2007;9:1419–1427. doi: 10.1038/ncb1661.
    1. Inagaki Y., Gao J., Song P., Kokudo N., Nakata M., Tang W. Clinicopathological utility of sialoglycoconjugates in diagnosing and treating colorectal cancer. World J. Gastroenterol. 2014;20:6123–6132. doi: 10.3748/wjg.v20.i20.6123.
    1. Gebregiworgis T., Purohit V., Shukla S.K., Tadros S., Chaika N.V., Abrego J., Mulder S.E., Gunda V., Singh P.K., Powers R. Glucose Limitation Alters Glutamine Metabolism in MUC1-Overexpressing Pancreatic Cancer Cells. J. Proteome Res. 2017;16:3536–3546. doi: 10.1021/acs.jproteome.7b00246.
    1. Alam M., Bouillez A., Tagde A., Ahmad R., Rajabi H., Maeda T., Hiraki M., Suzuki Y., Kufe D. MUC1-C Represses the Crumbs Complex Polarity Factor CRB3 and Downregulates the Hippo Pathway. Mol. Cancer Res. 2016;14:1266–1276. doi: 10.1158/1541-7786.MCR-16-0233.
    1. Gibier J.B., Hemon B., Fanchon M., Gaudelot K., Pottier N., Ringot B., Van Seuningen I., Glowacki F., Cauffiez C., Blum D., et al. Dual role of MUC1 mucin in kidney ischemia-reperfusion injury: Nephroprotector in early phase, but pro-fibrotic in late phase. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:1336–1349. doi: 10.1016/j.bbadis.2017.03.023.
    1. Marczynski M., Winkeljann B., Lieleg O. Biopolymers for Biomedical and Biotechnological Applications. Wiley; Hoboken, NJ, USA: 2021. Advances in Mucin Biopolymer Research: Purification, Characterization, and Applications; pp. 181–208.
    1. Kasprzak A., Adamek A. Mucins: The Old, the New and the Promising Factors in Hepatobiliary Carcinogenesis. Int. J. Mol. Sci. 2019;20:1288. doi: 10.3390/ijms20061288.
    1. Carroll-Portillo A., Lin H.C. Exploring Mucin as Adjunct to Phage Therapy. Microorganisms. 2021;9:509. doi: 10.3390/microorganisms9030509.
    1. Hattrup C.L., Gendler S.J. Structure and function of the cell surface (tethered) mucins. Annu. Rev. Physiol. 2008;70:431–457. doi: 10.1146/annurev.physiol.70.113006.100659.
    1. Syrkina M.S., Maslakova A.A., Potashnikova D.M., Veiko V.P., Vassetzky Y.S., Rubtsov M.A. Dual Role of the Extracellular Domain of Human Mucin MUC1 in Metastasis. J. Cell. Biochem. 2017;118:4002–4011. doi: 10.1002/jcb.26056.
    1. Gendler S., Taylor-Papadimitriou J., Duhig T., Rothbard J., Burchell J. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J. Biol. Chem. 1988;263:12820–12823. doi: 10.1016/S0021-9258(18)37632-4.
    1. Patton S., Gendler S.J., Spicer A.P. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim. Biophys. Acta. 1995;1241:407–423. doi: 10.1016/0304-4157(95)00014-3.
    1. Khodabakhsh F., Merikhian P., Eisavand M.R., Farahmand L. Crosstalk between MUC1 and VEGF in angiogenesis and metastasis: A review highlighting roles of the MUC1 with an emphasis on metastatic and angiogenic signaling. Cancer Cell Int. 2021;21:200. doi: 10.1186/s12935-021-01899-8.
    1. Levitin F., Stern O., Weiss M., Gil-Henn C., Ziv R., Prokocimer Z., Smorodinsky N.I., Rubinstein D.B., Wreschner D.H. The MUC1 SEA Module Is a Self-cleaving Domain. J. Biol. Chem. 2005;280:33374–33386. doi: 10.1074/jbc.M506047200.
    1. Ahmad R., Raina D., Joshi M.D., Kawano T., Ren J., Kharbanda S., Kufe D. MUC1-C oncoprotein functions as a direct activator of the nuclear factor-kappaB p65 transcription factor. Cancer Res. 2009;69:7013–7021. doi: 10.1158/0008-5472.CAN-09-0523.
    1. Kufe D.W. MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene. 2013;32:1073–1081. doi: 10.1038/onc.2012.158.
    1. Radziejewska I., Borzym-Kluczyk M., Leszczynska K. Luteolin alters MUC1 extracellular domain, sT antigen, ADAM-17, IL-8, IL-10 and NF-kappaB expression in Helicobacter pylori-infected gastric cancer CRL-1739 cells: A preliminary study. Biomed. Rep. 2021;14:19. doi: 10.3892/br.2020.1395.
    1. Beckwith D.M., Cudic M. Tumor-associated O-glycans of MUC1: Carriers of the glyco-code and targets for cancer vaccine design. Semin. Immunol. 2020;47:101389. doi: 10.1016/j.smim.2020.101389.
    1. Singh R., Bandyopadhyay D. MUC1: A target molecule for cancer therapy. Cancer Biol. Ther. 2007;6:481–486. doi: 10.4161/cbt.6.4.4201.
    1. Sousa A.M., Rei M., Freitas R., Ricardo S., Caffrey T., David L., Almeida R., Hollingsworth M.A., Santos-Silva F. Effect of MUC1/beta-catenin interaction on the tumorigenic capacity of pancreatic CD133(+) cells. Oncol. Lett. 2016;12:1811–1817. doi: 10.3892/ol.2016.4888.
    1. Martinez-Saez N., Peregrina J.M., Corzana F. Principles of mucin structure: Implications for the rational design of cancer vaccines derived from MUC1-glycopeptides. Chem. Soc. Rev. 2017;46:7154–7175. doi: 10.1039/C6CS00858E.
    1. Wang S., You L., Dai M., Zhao Y. Mucins in pancreatic cancer: A well-established but promising family for diagnosis, prognosis and therapy. J. Cell. Mol. Med. 2020;24:10279–10289. doi: 10.1111/jcmm.15684.
    1. Ligtenberg M.J., Buijs F., Vos H.L., Hilkens J. Suppression of cellular aggregation by high levels of episialin. Cancer Res. 1992;52:2318–2324.
    1. Wei X., Xu H., Kufe D. Human mucin 1 oncoprotein represses transcription of the p53 tumor suppressor gene. Cancer Res. 2007;67:1853–1858. doi: 10.1158/0008-5472.CAN-06-3063.
    1. Ilkovitch D., Carrio R., Lopez D.M. Mechanisms of antitumor and immune-enhancing activities of MUC1/sec, a secreted form of mucin-1. Immunol. Res. 2013;57:70–80. doi: 10.1007/s12026-013-8451-6.
    1. Kashyap B., Kullaa A.M. Regulation of mucin 1 expression and its relationship with oral diseases. Arch. Oral Biol. 2020;117:104791. doi: 10.1016/j.archoralbio.2020.104791.
    1. Marczynski M., Jiang K., Blakeley M., Srivastava V., Vilaplana F., Crouzier T., Lieleg O. Structural Alterations of Mucins Are Associated with Losses in Functionality. Biomacromolecules. 2021;22:1600–1613. doi: 10.1021/acs.biomac.1c00073.
    1. Martinez-Carrasco R., Argüeso P., Fini M.E. Membrane-associated mucins of the human ocular surface in health and disease. Ocul. Surf. 2021 doi: 10.1016/j.jtos.2021.03.003. in press. Epub ahead of print.
    1. Kosmerl E., Rocha-Mendoza D., Ortega-Anaya J., Jiménez-Flores R., García-Cano I. Improving Human Health with Milk Fat Globule Membrane, Lactic Acid Bacteria, and Bifidobacteria. Microorganisms. 2021;9:341. doi: 10.3390/microorganisms9020341.
    1. Brayman M., Thathiah A., Carson D.D. MUC1: A multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol. 2004;2:4. doi: 10.1186/1477-7827-2-4.
    1. Hikita S.T., Kosik K.S., Clegg D.O., Bamdad C. MUC1* mediates the growth of human pluripotent stem cells. PLoS ONE. 2008;3:e3312. doi: 10.1371/journal.pone.0003312.
    1. Johansson M.E., Sjovall H., Hansson G.C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2013;10:352–361. doi: 10.1038/nrgastro.2013.35.
    1. Yen J.H., Xu S., Park Y.S., Ganea D., Kim K.C. Higher susceptibility to experimental autoimmune encephalomyelitis in Muc1-deficient mice is associated with increased Th1/Th17 responses. Brain Behav. Immun. 2013;29:70–81. doi: 10.1016/j.bbi.2012.12.004.
    1. Wang Y.M., Ji R., Chen W.W., Huang S.W., Zheng Y.J., Yang Z.T., Qu H.P., Chen H., Mao E.Q., Chen Y., et al. Paclitaxel alleviated sepsis-induced acute lung injury by activating MUC1 and suppressing TLR-4/NF-kappaB pathway. Drug Des. Dev. Ther. 2019;13:3391–3404. doi: 10.2147/DDDT.S222296.
    1. Wang Y.M., Qi X., Gong F.C., Chen Y., Yang Z.T., Mao E.Q., Chen E.Z. Protective and predictive role of Mucin1 in sepsis-induced ALI/ARDS. Int. Immunopharmacol. 2020;83:106438. doi: 10.1016/j.intimp.2020.106438.
    1. Cascio S., Finn O.J. Intra- and Extra-Cellular Events Related to Altered Glycosylation of MUC1 Promote Chronic Inflammation, Tumor Progression, Invasion, and Metastasis. Biomolecules. 2016;6:39. doi: 10.3390/biom6040039.
    1. Haddon L., Hugh J. MUC1-mediated motility in breast cancer: A review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin. Exp. Metastasis. 2015;32:393–403. doi: 10.1007/s10585-015-9711-8.
    1. Rajabi H., Kufe D. MUC1-C Oncoprotein Integrates a Program of EMT, Epigenetic Reprogramming and Immune Evasion in Human Carcinomas. Biochim. Biophys. Acta Rev. Cancer. 2017;1868:117–122. doi: 10.1016/j.bbcan.2017.03.003.
    1. Kalra A.V., Campbell R.B. Mucin overexpression limits the effectiveness of 5-FU by reducing intracellular drug uptake and antineoplastic drug effects in pancreatic tumours. Eur. J. Cancer. 2009;45:164–173. doi: 10.1016/j.ejca.2008.10.008.
    1. Jin W., Liao X., Lv Y., Pang Z., Wang Y., Li Q., Liao Y., Ye Q., Chen G., Zhao K., et al. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death Dis. 2017;8:e2980. doi: 10.1038/cddis.2017.378.
    1. Gunda V., Souchek J., Abrego J., Shukla S.K., Goode G.D., Vernucci E., Dasgupta A., Chaika N.V., King R.J., Li S., et al. MUC1-Mediated Metabolic Alterations Regulate Response to Radiotherapy in Pancreatic Cancer. Clin. Cancer Res. 2017;23:5881–5891. doi: 10.1158/1078-0432.CCR-17-1151.
    1. Shukla S.K., Purohit V., Mehla K., Gunda V., Chaika N.V., Vernucci E., King R.J., Abrego J., Goode G.D., Dasgupta A., et al. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell. 2017;32:71–87. doi: 10.1016/j.ccell.2017.06.004.
    1. Yi F.T., Lu Q.P. Mucin 1 promotes radioresistance in hepatocellular carcinoma cells through activation of JAK2/STAT3 signaling. Oncol. Lett. 2017;14:7571–7576. doi: 10.3892/ol.2017.7119.
    1. Caffrey T., Sagar S., Thomas D., Lewallen M.E., Hollingsworth M.A., Radhakrishnan P. The glycoprotein mucin-1 negatively regulates GalNAc transferase 5 expression in pancreatic cancer. FEBS Lett. 2019;593:2751–2761. doi: 10.1002/1873-3468.13532.
    1. Malinda R.R., Zeeberg K., Sharku P.C., Ludwig M.Q., Pedersen L.B., Christensen S.T., Pedersen S.F. TGFbeta Signaling Increases Net Acid Extrusion, Proliferation and Invasion in Panc-1 Pancreatic Cancer Cells: SMAD4 Dependence and Link to Merlin/NF2 Signaling. Front. Oncol. 2020;10:687. doi: 10.3389/fonc.2020.00687.
    1. Maupin K.A., Sinha A., Eugster E., Miller J., Ross J., Paulino V., Keshamouni V.G., Tran N., Berens M., Webb C., et al. Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems. PLoS ONE. 2010;5:e13002. doi: 10.1371/journal.pone.0013002.
    1. Heldin C.H., Vanlandewijck M., Moustakas A. Regulation of EMT by TGFbeta in cancer. FEBS Lett. 2012;586:1959–1970. doi: 10.1016/j.febslet.2012.02.037.
    1. Grover P., Nath S., Nye M.D., Zhou R., Ahmad M., Mukherjee P. SMAD4-independent activation of TGF-β signaling by MUC1 in a human pancreatic cancer cell line. Oncotarget. 2018;9:6897–6910. doi: 10.18632/oncotarget.23966.
    1. Wang J., Liu G., Li Q., Wang F., Xie F., Zhai R., Guo Y., Chen T., Zhang N., Ni W., et al. Mucin1 promotes the migration and invasion of hepatocellular carcinoma cells via JNK-mediated phosphorylation of Smad2 at the C-terminal and linker regions. Oncotarget. 2015;6:19264–19278. doi: 10.18632/oncotarget.4267.
    1. Zhao P., Meng M., Xu B., Dong A., Ni G., Lu L. Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway. Cancer Biomark. 2017;20:469–476. doi: 10.3233/CBM-170297.
    1. Roy L.D., Sahraei M., Subramani D.B., Besmer D., Nath S., Tinder T.L., Bajaj E., Shanmugam K., Lee Y.Y., Hwang S.I., et al. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene. 2011;30:1449–1459. doi: 10.1038/onc.2010.526.
    1. Xu H.L., Zhao X., Zhang K.M., Tang W., Kokudo N. Inhibition of KL-6/MUC1 glycosylation limits aggressive progression of pancreatic cancer. World J. Gastroenterol. 2014;20:12171–12181. doi: 10.3748/wjg.v20.i34.12171.
    1. Sahraei M., Roy L.D., Curry J.M., Teresa T.L., Nath S., Besmer D., Kidiyoor A., Dalia R., Gendler S.J., Mukherjee P. MUC1 regulates PDGFA expression during pancreatic cancer progression. Oncogene. 2012;31:4935–4945. doi: 10.1038/onc.2011.651.
    1. Bozkaya G., Korhan P., Cokaklı M., Erdal E., Sağol O., Karademir S., Korch C., Atabey N. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis. Mol. Cancer. 2012;11:64. doi: 10.1186/1476-4598-11-64.
    1. Woo J.K., Choi Y., Oh S.H., Jeong J.H., Choi D.H., Seo H.S., Kim C.W. Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene. 2012;31:2187–2198. doi: 10.1038/onc.2011.410.
    1. Kitamoto S., Yokoyama S., Higashi M., Yamada N., Takao S., Yonezawa S. MUC1 enhances hypoxia-driven angiogenesis through the regulation of multiple proangiogenic factors. Oncogene. 2013;32:4614–4621. doi: 10.1038/onc.2012.478.
    1. Zhou R., Curry J.M., Roy L.D., Grover P., Haider J., Moore L.J., Wu S.T., Kamesh A., Yazdanifar M., Ahrens W.A., et al. A novel association of neuropilin-1 and MUC1 in pancreatic ductal adenocarcinoma: Role in induction of VEGF signaling and angiogenesis. Oncogene. 2016;35:5608–5618. doi: 10.1038/onc.2015.516.
    1. Bouillez A., Rajabi H., Pitroda S., Jin C., Alam M., Kharbanda A., Tagde A., Wong K.K., Kufe D. Inhibition of MUC1-C Suppresses MYC Expression and Attenuates Malignant Growth in KRAS Mutant Lung Adenocarcinomas. Cancer Res. 2016;76:1538–1548. doi: 10.1158/0008-5472.CAN-15-1804.
    1. Besmer D.M., Curry J.M., Roy L.D., Tinder T.L., Sahraei M., Schettini J., Hwang S.I., Lee Y.Y., Gendler S.J., Mukherjee P. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis. Cancer Res. 2011;71:4432–4442. doi: 10.1158/0008-5472.CAN-10-4439.
    1. Li Q., Wang F., Liu G., Yuan H., Chen T., Wang J., Xie F., Zhai R., Wang F., Guo Y., et al. Impact of Mucin1 knockdown on the phenotypic characteristics of the human hepatocellular carcinoma cell line SMMC-7721. Oncol. Rep. 2014;31:2811–2819. doi: 10.3892/or.2014.3136.
    1. Chen Q., Li D., Ren J., Li C., Xiao Z.X. MUC1 activates JNK1 and inhibits apoptosis under genotoxic stress. Biochem. Biophys. Res. Commun. 2013;440:179–183. doi: 10.1016/j.bbrc.2013.09.055.
    1. Senapati S., Das S., Batra S.K. Mucin-interacting proteins: From function to therapeutics. Trends Biochem. Sci. 2010;35:236–245. doi: 10.1016/j.tibs.2009.10.003.
    1. Wang J., Ni W.H., Hu K.B., Zhai X.Y., Xie F., Jie J., Zhang N.N., Jiang L.N., Yuan H.Y., Tai G.X. Targeting MUC1 and JNK by RNA interference and inhibitor inhibit the development of hepatocellular carcinoma. Cancer Sci. 2017;108:504–511. doi: 10.1111/cas.13144.
    1. Stroopinsky D., Kufe D., Avigan D. MUC1 in hematological malignancies. Leuk. Lymphoma. 2016;57:2489–2498. doi: 10.1080/10428194.2016.1195500.
    1. Deng J., Wang L., Chen H., Li L., Ma Y., Ni J., Li Y. The role of tumour-associated MUC1 in epithelial ovarian cancer metastasis and progression. Cancer Metastasis Rev. 2013;32:535–551. doi: 10.1007/s10555-013-9423-y.
    1. Wen R., Gao F., Zhou C.J., Jia Y.B. Polymorphisms in mucin genes in the development of gastric cancer. World J. Gastrointest. Oncol. 2015;7:328–337. doi: 10.4251/wjgo.v7.i11.328.
    1. Kesari M.V., Gaopande V.L., Joshi A.R., Babanagare S.V., Gogate B.P., Khadilkar A.V. Immunohistochemical study of MUC1, MUC2 and MUC5AC in colorectal carcinoma and review of literature. Indian J. Gastroenterol. 2015;34:63–67. doi: 10.1007/s12664-015-0534-y.
    1. Hazgui M., Weslati M., Boughriba R., Ounissi D., Bacha D., Bouraoui S. MUC1 and MUC5AC implication in Tunisian colorectal cancer patients. Turk. J. Med. Sci. 2021;51:309–318. doi: 10.3906/sag-2003-29.
    1. Wang S., You L., Dai M., Zhao Y. Quantitative assessment of the diagnostic role of mucin family members in pancreatic cancer: A meta-analysis. Ann. Transl. Med. 2021;9:192. doi: 10.21037/atm-20-5606.
    1. Xu F., Liu F., Zhao H., An G., Feng G. Prognostic Significance of Mucin Antigen MUC1 in Various Human Epithelial Cancers: A Meta-Analysis. Medicine (Baltimore) 2015;94:e2286. doi: 10.1097/MD.0000000000002286.
    1. Wang H., Wu T., Li M., Tao Y. Recent advances in nanomaterials for colorimetric cancer detection. J. Mater. Chem. B. 2021;9:921–938. doi: 10.1039/D0TB02163F.
    1. Rashid S., Nawaz M.H., Rehman I.u., Hayat A., Marty J.L. Dopamine/mucin-1 functionalized electro-active carbon nanotubes as a probe for direct competitive electrochemical immunosensing of breast cancer biomarker. Sens. Actuators B Chem. 2021;330 doi: 10.1016/j.snb.2020.129351.
    1. Maleki F., Rezazadeh F., Varmira K. MUC1-Targeted Radiopharmaceuticals in Cancer Imaging and Therapy. Mol. Pharm. 2021 doi: 10.1021/acs.molpharmaceut.0c01249.
    1. Li R., An Y., Jin T., Zhang F., He P. Detection of MUC1 protein on tumor cells and their derived exosomes for breast cancer surveillance with an electrochemiluminescence aptasensor. J. Electroanal. Chem. 2021;882 doi: 10.1016/j.jelechem.2021.115011.
    1. Yousefi M., Dehghani S., Nosrati R., Zare H., Evazalipour M., Mosafer J., Tehrani B.S., Pasdar A., Mokhtarzadeh A., Ramezani M. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens. Bioelectron. 2019;130:1–19. doi: 10.1016/j.bios.2019.01.015.
    1. Taylor-Papadimitriou J., Burchell J.M., Graham R., Beatson R. Latest developments in MUC1 immunotherapy. Biochem. Soc. Trans. 2018;46:659–668. doi: 10.1042/BST20170400.
    1. Haurum J.S., Arsequell G., Lellouch A.C., Wong S.Y., Dwek R.A., McMichael A.J., Elliott T. Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes. J. Exp. Med. 1994;180:739–744. doi: 10.1084/jem.180.2.739.
    1. Danielczyk A., Stahn R., Faulstich D., Loffler A., Marten A., Karsten U., Goletz S. PankoMab: A potent new generation anti-tumour MUC1 antibody. Cancer Immunol. Immunother. 2006;55:1337–1347. doi: 10.1007/s00262-006-0135-9.
    1. Bouillez A., Adeegbe D., Jin C., Hu X., Tagde A., Alam M., Rajabi H., Wong K.K., Kufe D. MUC1-C promotes the suppressive immune microenvironment in non-small cell lung cancer. Oncoimmunology. 2017;6:e1338998. doi: 10.1080/2162402X.2017.1338998.
    1. Kim M.J., Choi J.R., Tae N., Wi T.M., Kim K.M., Kim D.H., Lee E.S. Novel Antibodies Targeting MUC1-C Showed Anti-Metastasis and Growth-Inhibitory Effects on Human Breast Cancer Cells. Int. J. Mol. Sci. 2020;21:3258. doi: 10.3390/ijms21093258.
    1. Maeda T., Hiraki M., Jin C., Rajabi H., Tagde A., Alam M., Bouillez A., Hu X., Suzuki Y., Miyo M., et al. MUC1-C Induces PD-L1 and Immune Evasion in Triple-Negative Breast Cancer. Cancer Res. 2018;78:205–215. doi: 10.1158/0008-5472.CAN-17-1636.
    1. Panchamoorthy G., Jin C., Raina D., Bharti A., Yamamoto M., Adeebge D., Zhao Q., Bronson R., Jiang S., Li L., et al. Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight. 2018;3 doi: 10.1172/jci.insight.99880.
    1. Detappe A., Mathieu C., Jin C., Agius M.P., Diringer M.C., Tran V.L., Pivot X., Lux F., Tillement O., Kufe D., et al. Anti-MUC1-C Antibody-Conjugated Nanoparticles Potentiate the Efficacy of Fractionated Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2020;108:1380–1389. doi: 10.1016/j.ijrobp.2020.06.069.
    1. Wu G., Kim D., Kim J.N., Park S., Maharjan S., Koh H., Moon K., Lee Y., Kwon H.J. A Mucin1 C-terminal Subunit-directed Monoclonal Antibody Targets Overexpressed Mucin1 in Breast Cancer. Theranostics. 2018;8:78–91. doi: 10.7150/thno.21278.
    1. Wu G., Maharjan S., Kim D., Kim J.N., Park B.K., Koh H., Moon K., Lee Y., Kwon H.J. A Novel Monoclonal Antibody Targets Mucin1 and Attenuates Growth in Pancreatic Cancer Model. Int. J. Mol. Sci. 2018;19:2004. doi: 10.3390/ijms19072004.
    1. Hisatsune A., Nakayama H., Kawasaki M., Horie I., Miyata T., Isohama Y., Kim K.C., Katsuki H. Anti-MUC1 antibody inhibits EGF receptor signaling in cancer cells. Biochem. Biophys. Res. Commun. 2011;405:377–381. doi: 10.1016/j.bbrc.2011.01.029.
    1. Nabavinia M.S., Gholoobi A., Charbgoo F., Nabavinia M., Ramezani M., Abnous K. Anti-MUC1 aptamer: A potential opportunity for cancer treatment. Med. Res. Rev. 2017;37:1518–1539. doi: 10.1002/med.21462.
    1. North S.A., Graham K., Bodnar D., Venner P. A Pilot Study of the Liposomal MUC1 Vaccine BLP25 in Prostate Specific Antigen Failures After Radical Prostatectomy. J. Urol. 2006;176:91–95. doi: 10.1016/S0022-5347(06)00494-0.
    1. Hossain M.K., Wall K.A. Immunological Evaluation of Recent MUC1 Glycopeptide Cancer Vaccines. Vaccines. 2016;4:25. doi: 10.3390/vaccines4030025.
    1. Wu X., McFall-Boegeman H., Rashidijahanabad Z., Liu K., Pett C., Yu J., Schorlemer M., Ramadan S., Behren S., Westerlind U., et al. Synthesis and immunological evaluation of the unnatural beta-linked mucin-1 Thomsen-Friedenreich conjugate. Org. Biomol. Chem. 2021;19:2448–2455. doi: 10.1039/D1OB00007A.
    1. McDonald D.M., Hanna C.C., Ashhurst A.S., Corcilius L., Byrne S.N., Payne R.J. Synthesis of a Self-Adjuvanting MUC1 Vaccine via Diselenide-Selenoester Ligation-Deselenization. ACS Chem. Biol. 2018;13:3279–3285. doi: 10.1021/acschembio.8b00675.
    1. Liu L., Wang Y., Miao L., Liu Q., Musetti S., Li J., Huang L. Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Mol. Ther. 2018;26:45–55. doi: 10.1016/j.ymthe.2017.10.020.
    1. Liu Y., Wang Z., Yu F., Li M., Zhu H., Wang K., Meng M., Zhao W. The Adjuvant of alpha-Galactosylceramide Presented by Gold Nanoparticles Enhances Antitumor Immune Responses of MUC1 Antigen-Based Tumor Vaccines. Int. J. Nanomed. 2021;16:403–420. doi: 10.2147/IJN.S273883.
    1. Curry J.M., Besmer D.M., Erick T.K., Steuerwald N., Das Roy L., Grover P., Rao S., Nath S., Ferrier J.W., Reid R.W., et al. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS ONE. 2019;14:e0224309. doi: 10.1371/journal.pone.0224309.
    1. Lakshminarayanan V., Thompson P., Wolfert M.A., Buskas T., Bradley J.M., Pathangey L.B., Madsen C.S., Cohen P.A., Gendler S.J., Boons G.J. Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc. Natl. Acad. Sci. USA. 2012;109:261–266. doi: 10.1073/pnas.1115166109.
    1. Rong Y., Jin D., Wu W., Lou W., Wang D., Kuang T., Ni X., Qin X. Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine. BMC Cancer. 2009;9:191. doi: 10.1186/1471-2407-9-191.
    1. Sugiura D., Aida S., Denda-Nagai K., Takeda K., Kamata-Sakurai M., Yagita H., Irimura T. Differential effector mechanisms induced by vaccination with MUC1 DNA in the rejection of colon carcinoma growth at orthotopic sites and metastases. Cancer Sci. 2008;99:2477–2484. doi: 10.1111/j.1349-7006.2008.00967.x.
    1. Nagai K., Adachi T., Harada H., Eguchi S., Sugiyama H., Miyazaki Y. Dendritic Cell-based Immunotherapy Pulsed with Wilms Tumor 1 Peptide and Mucin 1 as an Adjuvant Therapy for Pancreatic Ductal Adenocarcinoma After Curative Resection: A Phase I/IIa Clinical Trial. Anticancer Res. 2020;40:5765–5776. doi: 10.21873/anticanres.14593.
    1. Pourjafar M., Samadi P., Saidijam M. MUC1 antibody-based therapeutics: The promise of cancer immunotherapy. Immunotherapy. 2020;12:1269–1286. doi: 10.2217/imt-2020-0019.

Source: PubMed

3
Abonnere