Lithium's effects on therapeutic targets and MRI biomarkers in Parkinson's disease: A pilot clinical trial

Thomas Guttuso Jr, Rachel Shepherd, Luciana Frick, M Laura Feltri, Valerie Frerichs, Murali Ramanathan, Robert Zivadinov, Niels Bergsland, Thomas Guttuso Jr, Rachel Shepherd, Luciana Frick, M Laura Feltri, Valerie Frerichs, Murali Ramanathan, Robert Zivadinov, Niels Bergsland

Abstract

Background: Lithium has a wide range of neuroprotective actions, has been effective in Parkinson's disease (PD) animal models and may account for the decreased risk of PD in smokers.

Methods: This open-label pilot clinical trial randomized 16 PD patients to "high-dose" (n = 5, lithium carbonate titrated to achieve serum level of 0.4-0.5 mmol/L), "medium-dose" (n = 6, 45 mg/day lithium aspartate) or "low-dose" (n = 5, 15 mg/day lithium aspartate) lithium therapy for 24-weeks. Peripheral blood mononuclear cell (PBMC) mRNA expression of nuclear receptor-related-1 (Nurr1) and superoxide dismutase-1 (SOD1) were assessed by qPCR in addition to other PD therapeutic targets. Two patients from each group received multi-shell diffusion MRI scans to assess for free water (FW) changes in the dorsomedial nucleus of the thalamus and nucleus basalis of Meynert, which reflect cognitive decline in PD, and the posterior substantia nigra, which reflects motor decline in PD.

Results: Two of the six patients receiving medium-dose lithium therapy withdrew due to side effects. Medium-dose lithium therapy was associated with the greatest numerical increases in PBMC Nurr1 and SOD1 expression (679% and 127%, respectively). Also, medium-dose lithium therapy was the only dosage associated with mean numerical decreases in brain FW in all three regions of interest, which is the opposite of the known longitudinal FW changes in PD.

Conclusion: Medium-dose lithium aspartate therapy was associated with engagement of blood-based therapeutic targets and improvements in MRI disease-progression biomarkers but was poorly tolerated in 33% of patients. Further PD clinical research is merited examining lithium's tolerability, effects on biomarkers and potential disease-modifying effects.

Keywords: Biomarker; Clinical trial; Cognition; Free water; Lithium; Progression.

Conflict of interest statement

Authors’ Conflicts of Interest for previous 12 months: Thomas Guttuso, Jr.: President of e3 Pharmaceuticals, Inc. Support from UCB for clinical trial patient enrollment. Rachel Shepherd: None. Luciana Frick: None. Laura Feltri: None. Valerie Frerichs: None. Murali Ramanathan: None. Robert Zivadinov: Received personal compensation from Bristol Myers Squibb, EMD Serono, Sanofi, Novartis, Sanofi, 415 Capital, Mapi Pharma and Janssen for speaking and consultant fees. He received financial support for research activities from Bristol Myers Squibb, Sanofi, Novartis, EMDSerono, V-WAVE Medical, Mapi Pharma, CorEvitas and Protembis. Niels Bergsland: None.

© 2023 The Authors.

Figures

Fig. 1
Fig. 1
Individual patient changes in FW after 24 weeks of high, medium or low-dose lithium therapy. FW: free water, DMN-T: dorsomedial nucleus of the thalamus, nbM: nucleus basalis of Meynert, pSN: posterior substantia nigra.

References

    1. Aarsland D., Kurz M.W. The epidemiology of dementia associated with Parkinson disease. J. Neurol. Sci. 2010;289:18–22.
    1. Aarsland D., Larsen J.P., Tandberg E., Laake K. Predictors of nursing home placement in Parkinson's disease: a population-based, prospective study. J. Am. Geriatr. Soc. 2000;48:938–942.
    1. Andersson J.L., Skare S., Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20:870–888.
    1. Andersson J.L.R., Sotiropoulos S.N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–1078.
    1. Arpin D.J., Mitchell T., Archer D.B., Burciu R.G., Chu W.T., Gao H., Guttuso T., Hess C.W., Lai S., Malaty I.A., McFarland N.R., Pasternak O., Price C.C., Shukla A.W., Wu S.S., Okun M.S., Vaillancourt D.E. Diffusion magnetic resonance imaging detects progression in Parkinson's disease: a placebo-controlled trial of rasagiline. Mov. Disord. 2021
    1. Arraf Z., Amit T., Youdim M.B., Farah R. Lithium and oxidative stress lessons from the MPTP model of Parkinson's disease. Neurosci. Lett. 2012;516:57–61.
    1. Burciu R.G., Ofori E., Archer D.B., Wu S.S., Pasternak O., Okun M.S., Vaillancourt D.E. Progression marker of Parkinson's disease: a 4-year multisite imaging study. Brain. 2017;140:2183–2192.
    1. Chu Y., Kompoliti K., Cochran E.J., Mufson E.J., Kordower J.H. Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J. Comp. Neurol. 2002;450:203–214.
    1. Chu Y., Le W., Kompoliti K., Jankovic J., Mufson E.J., Kordower J.H. Nurr1 in Parkinson's disease and related disorders. J. Comp. Neurol. 2006;494:495–514.
    1. Coffey C.E., Ross D.R., Massey E.W., Olanow C.W. Dyskinesias associated with lithium therapy in parkinsonism. Clin. Neuropharmacol. 1984;7:223–229.
    1. Decressac M., Volakakis N., Bjorklund A., Perlmann T. NURR1 in Parkinson disease--from pathogenesis to therapeutic potential. Nat. Rev. Neurol. 2013;9:629–636.
    1. Decressac M., Kadkhodaei B., Mattsson B., Laguna A., Perlmann T., Bjorklund A. Alpha-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci. Transl. Med. 2012;4 163ra156.
    1. Dong H., Zhang X., Dai X., Lu S., Gui B., Jin W., Zhang S., Zhang S., Qian Y. Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway. J. Neuroinflamm. 2014;11:140.
    1. Dorsey E.R., Bloem B.R. The Parkinson pandemic-a call to action. JAMA Neurol. 2018;75:9–10.
    1. Eickhoff S.B., Stephan K.E., Mohlberg H., Grefkes C., Fink G.R., Amunts K., Zilles K. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25:1325–1335.
    1. Febo M., Perez P.D., Ceballos-Diaz C., Colon-Perez L.M., Zeng H., Ofori E., Golde T.E., Vaillancourt D.E., Chakrabarty P. Diffusion magnetic resonance imaging-derived free water detects neurodegenerative pattern induced by interferon-gamma. Brain Struct. Funct. 2020;225:427–439.
    1. Fischl B., van der Kouwe A., Destrieux C., Halgren E., Segonne F., Salat D.H., Busa E., Seidman L.J., Goldstein J., Kennedy D., Caviness V., Makris N., Rosen B., Dale A.M. Automatically parcellating the human cerebral cortex. Cereb. Cortex. 2004;14:11–22.
    1. Greve D.N., Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;48:63–72.
    1. Guttuso T., Jr., Russak E., De Blanco M.T., Ramanathan M. Could high lithium levels in tobacco contribute to reduced risk of Parkinson's disease in smokers? J. Neurol. Sci. 2019;397:179–180.
    1. Guttuso T., Jr., Sirica D., Tosun D., Zivadinov R., Pasternak O., Weintraub D., Baglio F., Bergsland N. Thalamic dorsomedial nucleus free water correlates with cognitive decline in Parkinson's disease. Mov. Disord. 2022;37:490–501.
    1. Hely M.A., Reid W.G., Adena M.A., Halliday G.M., Morris J.G. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov. Disord. 2008;23:837–844.
    1. Hou L., Xiong N., Liu L., Huang J., Han C., Zhang G., Li J., Xu X., Lin Z., Wang T. Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement. BMC Neurosci. 2015;16:82.
    1. Hoy A.R., Koay C.G., Kecskemeti S.R., Alexander A.L. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage. 2014;103:323–333.
    1. Iglesias J.E., Insausti R., Lerma-Usabiaga G., Bocchetta M., Van Leemput K., Greve D.N., van der Kouwe A., Alzheimer's Disease Neuroimaging I., Fischl B., Caballero-Gaudes C., Paz-Alonso P.M. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage. 2018;183:314–326.
    1. Jeon S.G., Yoo A., Chun D.W., Hong S.B., Chung H., Kim J.I., Moon M. The critical role of Nurr1 as a mediator and therapeutic target in Alzheimer's disease-related pathogenesis. Aging Dis. 2020;11:705–724.
    1. Kim Y.H., Rane A., Lussier S., Andersen J.K. Lithium protects against oxidative stress-mediated cell death in alpha-synuclein-overexpressing in vitro and in vivo models of Parkinson's disease. J. Neurosci. Res. 2011;89:1666–1675.
    1. Klein A., Andersson J., Ardekani B.A., Ashburner J., Avants B., Chiang M.C., Christensen G.E., Collins D.L., Gee J., Hellier P., Song J.H., Jenkinson M., Lepage C., Rueckert D., Thompson P., Vercauteren T., Woods R.P., Mann J.J., Parsey R.V. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage. 2009;46:786–802.
    1. Lawson R.A., Yarnall A.J., Duncan G.W., Breen D.P., Khoo T.K., Williams-Gray C.H., Barker R.A., Collerton D., Taylor J.P., Burn D.J., group I-Ps Cognitive decline and quality of life in incident Parkinson's disease: the role of attention. Park. Relat. Disord. 2016;27:47–53.
    1. Le W., Conneely O.M., Zou L., He Y., Saucedo-Cardenas O., Jankovic J., Mosier D.R., Appel S.H. Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice. Exp. Neurol. 1999;159:451–458.
    1. Leyhe T., Eschweiler G.W., Stransky E., Gasser T., Annas P., Basun H., Laske C. Increase of BDNF serum concentration in lithium treated patients with early Alzheimer's disease. J. Alzheimers Dis. 2009;16:649–656.
    1. Li T., Yang Z., Li S., Cheng C., Shen B., Le W. Alterations of NURR1 and cytokines in the peripheral blood mononuclear cells: combined biomarkers for Parkinson's disease. Front. Aging Neurosci. 2018;10:392.
    1. Li X., Friedman A.B., Zhu W., Wang L., Boswell S., May R.S., Davis L.L., Jope R.S. Lithium regulates glycogen synthase kinase-3beta in human peripheral blood mononuclear cells: implication in the treatment of bipolar disorder. Biol. Psychiatry. 2007;61:216–222.
    1. Lieu C.A., Dewey C.M., Chinta S.J., Rane A., Rajagopalan S., Batir S., Kim Y.H., Andersen J.K. Lithium prevents parkinsonian behavioral and striatal phenotypes in an aged parkin mutant transgenic mouse model. Brain Res. 2014;1591:111–117.
    1. Lin C.H., Yang S.Y., Horng H.E., Yang C.C., Chieh J.J., Chen H.H., Liu B.H., Chiu M.J. Plasma alpha-synuclein predicts cognitive decline in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry. 2017;88:818–824.
    1. Lin X., Parisiadou L., Sgobio C., Liu G., Yu J., Sun L., Shim H., Gu X.L., Luo J., Long C.X., Ding J., Mateo Y., Sullivan P.H., Wu L.G., Goldstein D.S., Lovinger D., Cai H. Conditional expression of Parkinson's disease-related mutant alpha-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J. Neurosci. 2012;32:9248–9264.
    1. Nag M. Effect of chlorpromazine, imipramine and lithium on MAO-A and MAO-B activity in rat brain mitochondria. Indian J. Exp. Biol. 2004;42:941–944.
    1. Nunes M.A., Viel T.A., Buck H.S. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer's disease. Curr. Alzheimer Res. 2013;10:104–107.
    1. Ofori E., Pasternak O., Planetta P.J., Li H., Burciu R.G., Snyder A.F., Lai S., Okun M.S., Vaillancourt D.E. Longitudinal changes in free-water within the substantia nigra of Parkinson's disease. Brain. 2015;138:2322–2331.
    1. Pasternak O., Shenton M.E., Westin C.F. Estimation of extracellular volume from regularized multi-shell diffusion MRI. Med. Image Comput. Comput. Assist. Interv. 2012;15:305–312.
    1. Pasternak O., Sochen N., Gur Y., Intrator N., Assaf Y. Free water elimination and mapping from diffusion MRI. Magn. Reson. Med. 2009;62:717–730.
    1. Saijo K., Winner B., Carson C.T., Collier J.G., Boyer L., Rosenfeld M.G., Gage F.H., Glass C.K. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137:47–59.
    1. Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J., Rubinsztein D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005;170:1101–1111.
    1. Schrag A., Jahanshahi M., Quinn N. What contributes to quality of life in patients with Parkinson's disease? J. Neurol. Neurosurg. Psychiatry. 2000;69:308–312.
    1. Schulz J., Pagano G., Fernandez Bonfante J.A., Wilson H., Politis M. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson's disease. Brain. 2018;141:1501–1516.
    1. Smith S.M., De Stefano N., Jenkinson M., Matthews P.M. Normalized accurate measurement of longitudinal brain change. J. Comput. Assist. Tomogr. 2001;25:466–475.
    1. Struewing I.T., Barnett C.D., Tang T., Mao C.D. Lithium increases PGC-1alpha expression and mitochondrial biogenesis in primary bovine aortic endothelial cells. FEBS J. 2007;274:2749–2765.
    1. Tomlinson C.L., Stowe R., Patel S., Rick C., Gray R., Clarke C.E. Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Mov. Disord. 2010;25:2649–2653.
    1. Torshin I.Y., Gromova O.A., Ostrenko K.S., Filimonova M.V., Gogoleva I.V., Demidov V.I., Kalacheva A.G. Lithium ascorbate as a promising neuroprotector: fundamental and experimental studies of an organic lithium salt. Molecules. 2022:27.
    1. Volakakis N., Kadkhodaei B., Joodmardi E., Wallis K., Panman L., Silvaggi J., Spiegelman B.M., Perlmann T. NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection. Proc. Natl. Acad. Sci. USA. 2010;107:12317–12322.
    1. Yang J., Archer D.B., Burciu R.G., Muller M., Roy A., Ofori E., Bohnen N.I., Albin R.L., Vaillancourt D.E. Multimodal dopaminergic and free-water imaging in Parkinson's disease. Park. Relat. Disord. 2019;62:10–15.
    1. Yang Y.X., Latchman D.S. Nurr1 transcriptionally regulates the expression of alpha-synuclein. Neuroreport. 2008;19:867–871.
    1. Youdim M.B., Arraf Z. Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax. Neuropharmacology. 2004;46:1130–1140.
    1. Zetterstrom R.H., Williams R., Perlmann T., Olson L. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Mol. Brain Res. 1996;41:111–120.
    1. Zhang L., Cen L., Qu S., Wei L., Mo M., Feng J., Sun C., Xiao Y., Luo Q., Li S., Yang X., Xu P. Enhancing beta-catenin activity via GSK3beta inhibition protects PC12 cells against rotenone toxicity through Nurr1 induction. PLoS One. 2016;11
    1. Zhao Q., Liu H., Cheng J., Zhu Y., Xiao Q., Bai Y., Tao J. Neuroprotective effects of lithium on a chronic MPTP mouse model of Parkinson's disease via regulation of alphasynuclein methylation. Mol. Med. Rep. 2019;19:4989–4997.

Source: PubMed

3
Abonnere