Association of Elevated Maternal Psychological Distress, Altered Fetal Brain, and Offspring Cognitive and Social-Emotional Outcomes at 18 Months

Yao Wu, Kristina M Espinosa, Scott D Barnett, Anushree Kapse, Jessica Lynn Quistorff, Catherine Lopez, Nickie Andescavage, Subechhya Pradhan, Yuan-Chiao Lu, Kushal Kapse, Diedtra Henderson, Gilbert Vezina, David Wessel, Adré J du Plessis, Catherine Limperopoulos, Yao Wu, Kristina M Espinosa, Scott D Barnett, Anushree Kapse, Jessica Lynn Quistorff, Catherine Lopez, Nickie Andescavage, Subechhya Pradhan, Yuan-Chiao Lu, Kushal Kapse, Diedtra Henderson, Gilbert Vezina, David Wessel, Adré J du Plessis, Catherine Limperopoulos

Abstract

Importance: Prenatal maternal psychological distress is associated with disturbances in fetal brain development. However, the association between altered fetal brain development, prenatal maternal psychological distress, and long-term neurodevelopmental outcomes is unknown.

Objective: To determine the association of fetal brain development using 3-dimensional magnetic resonance imaging (MRI) volumes, cortical folding, and metabolites in the setting of maternal psychological distress with infant 18-month neurodevelopment.

Design, setting, and participants: Healthy mother-infant dyads were prospectively recruited into a longitudinal observational cohort study from January 2016 to October 2020 at Children's National Hospital in Washington, DC. Data analysis was performed from January 2016 to July 2021.

Exposures: Prenatal maternal stress, anxiety, and depression.

Main outcomes and measures: Prenatal maternal stress, anxiety, and depression were measured using validated self-report questionnaires. Fetal brain volumes and cortical folding were measured from 3-dimensional, reconstructed T2-weighted MRI scans. Fetal brain creatine and choline were quantified using proton magnetic resonance spectroscopy. Infant neurodevelopment at 18 months was measured using Bayley Scales of Infant and Toddler Development III and Infant-Toddler Social and Emotional Assessment. The parenting stress in the parent-child dyad was measured using the Parenting Stress Index-Short Form at 18-month testing.

Results: The cohort consisted of 97 mother-infant dyads (mean [SD] maternal age, 34.79 [5.64] years) who underwent 184 fetal MRI visits (87 participants with 2 fetal studies each) with maternal psychological distress measures between 24 and 40 gestational weeks and completed follow-up infant neurodevelopmental testing. Prenatal maternal stress was negatively associated with infant cognitive performance (β = -0.51; 95% CI, -0.92 to -0.09; P = .01), and this association was mediated by fetal left hippocampal volume. In addition, prenatal maternal anxiety, stress, and depression were positively associated with all parenting stress measures at 18-month testing. Finally, fetal cortical local gyrification index and sulcal depth were negatively associated with infant social-emotional performance (local gyrification index: β = -54.62; 95% CI, -85.05 to -24.19; P < .001; sulcal depth: β = -14.22; 95% CI, -23.59 to -4.85; P = .002) and competence scores (local gyrification index: β = -24.01; 95% CI, -40.34 to -7.69; P = .003; sulcal depth: β = -7.53; 95% CI, -11.73 to -3.32; P < .001).

Conclusions and relevance: In this cohort study of 97 mother-infant dyads, fetal cortical local gyrification index and sulcal depth were associated with infant 18-month social-emotional and competence outcomes, and fetal left hippocampal volume mediated the association between prenatal maternal stress and infant cognitive outcome. These findings suggest that altered prenatal brain development in the setting of elevated maternal distress has adverse infant sociocognitive outcomes, and identifying early biomarkers associated with long-term neurodevelopment may assist in early targeted interventions.

Conflict of interest statement

Conflict of Interest Disclosures: None reported.

Figures

Figure 1.. Fetal Brain Metabolic Measures
Figure 1.. Fetal Brain Metabolic Measures
A, The spectral voxel (square) was placed in the center of a fetal brain using the anatomical image as a guidance. B, Representative spectrum shows choline and creatine peaks (parts per million [ppm]) of a fetus at 35 gestational weeks. IU indicates international units.
Figure 2.. Segmentation of the Hippocampus
Figure 2.. Segmentation of the Hippocampus
Left hippocampus (yellow) and right hippocampus (red) are shown on a 3-dimensional reconstructed T2-weighted magnetic resonance image of a fetus at 27.9 gestational weeks.

References

    1. Wu Y, Lu Y-C, Jacobs M, et al. . Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation. JAMA Netw Open. 2020;3(1):e1919940. doi:10.1001/jamanetworkopen.2019.19940
    1. Buss C, Davis EP, Muftuler LT, Head K, Sandman CA. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology. 2010;35(1):141-153. doi:10.1016/j.psyneuen.2009.07.010
    1. Wu Y, Kapse K, Jacobs M, et al. . Association of maternal psychological distress with in utero brain development in fetuses with congenital heart disease. JAMA Pediatr. 2020;174(3):e195316. doi:10.1001/jamapediatrics.2019.5316
    1. Qiu A, Anh TT, Li Y, et al. . Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Transl Psychiatry. 2015;5(2):e508. doi:10.1038/tp.2015.3
    1. McKee KA. The Effects of Prenatal Maternal Stress and Early Life Maternal Stress on Adolescent Hippocampal Morphology: Project Ice Storm. McGill University; 2018.
    1. Sandman CA, Buss C, Head K, Davis EP. Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biol Psychiatry. 2015;77(4):324-334. doi:10.1016/j.biopsych.2014.06.025
    1. Lebel C, Walton M, Letourneau N, Giesbrecht GF, Kaplan BJ, Dewey D. Prepartum and postpartum maternal depressive symptoms are related to children’s brain structure in preschool. Biol Psychiatry. 2016;80(11):859-868. doi:10.1016/j.biopsych.2015.12.004
    1. Buss C, Davis EP, Shahbaba B, Pruessner JC, Head K, Sandman CA. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc Natl Acad Sci U S A. 2012;109(20):E1312-E1319. doi:10.1073/pnas.1201295109
    1. Wen DJ, Poh JS, Ni SN, et al. . Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children. Transl Psychiatry. 2017;7(4):e1103. doi:10.1038/tp.2017.74
    1. Qiu A, Rifkin-Graboi A, Chen H, et al. . Maternal anxiety and infants’ hippocampal development: timing matters. Transl Psychiatry. 2013;3(9):e306. doi:10.1038/tp.2013.79
    1. Rifkin-Graboi A, Bai J, Chen H, et al. . Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. Biol Psychiatry. 2013;74(11):837-844. doi:10.1016/j.biopsych.2013.06.019
    1. Sarkar S, Craig MC, Dell’Acqua F, et al. . Prenatal stress and limbic-prefrontal white matter microstructure in children aged 6-9 years: a preliminary diffusion tensor imaging study. World J Biol Psychiatry. 2014;15(4):346-352. doi:10.3109/15622975.2014.903336
    1. Scheinost D, Kwon SH, Lacadie C, et al. . Prenatal stress alters amygdala functional connectivity in preterm neonates. Neuroimage Clin. 2016;12:381-388. doi:10.1016/j.nicl.2016.08.010
    1. Van den Bergh BR, Mulder EJH, Mennes M, Glover V. Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms—a review. Neurosci Biobehav Rev. 2005;29(2):237-258. doi:10.1016/j.neubiorev.2004.10.007
    1. Cruceanu C, Matosin N, Binder EB. Interactions of early-life stress with the genome and epigenome: from prenatal stress to psychiatric disorders. Curr Opin Behav Sci. 2017;14:167-171. doi:10.1016/j.cobeha.2017.04.001
    1. Laplante DP, Barr RG, Brunet A, et al. . Stress during pregnancy affects general intellectual and language functioning in human toddlers. Pediatr Res. 2004;56(3):400-410. doi:10.1203/01.PDR.0000136281.34035.44
    1. Buss C, Davis EP, Hobel CJ, Sandman CA. Maternal pregnancy-specific anxiety is associated with child executive function at 6-9 years age. Stress. 2011;14(6):665-676. doi:10.3109/10253890.2011.623250
    1. van den Bergh BRH, Dahnke R, Mennes M. Prenatal stress and the developing brain: risks for neurodevelopmental disorders. Dev Psychopathol. 2018;30(3):743-762. doi:10.1017/S0954579418000342
    1. Van Essen DC, Barch DM. The human connectome in health and psychopathology. World Psychiatry. 2015;14(2):154-157. doi:10.1002/wps.20228
    1. Jones SL, Dufoix R, Laplante DP, et al. . Larger amygdala volume mediates the association between prenatal maternal stress and higher levels of externalizing behaviors: sex specific effects in Project Ice Storm. Front Hum Neurosci. 2019;13:144. doi:10.3389/fnhum.2019.00144
    1. Davis EP, Hankin BL, Glynn LM, Head K, Kim DJ, Sandman CA. Prenatal maternal stress, child cortical thickness, and adolescent depressive symptoms. Child Dev. 2020;91(2):e432-e420. doi:10.1111/cdev.13252
    1. Thomason ME, Hect J, Waller R, et al. . Prenatal neural origins of infant motor development: associations between fetal brain and infant motor development. Dev Psychopathol. 2018;30(3):763-772. doi:10.1017/S095457941800072X
    1. van den Heuvel MI, Hect JL, Smarr BL, et al. . Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth. Sci Rep. 2021;11(1):2228. doi:10.1038/s41598-021-81681-y
    1. Middleton H, Shaw I. Distinguishing mental illness in primary care: we need to separate proper syndromes from generalised distress. BMJ. 2000;320(7247):1420-1421. doi:10.1136/bmj.320.7247.1420
    1. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385-396. doi:10.2307/2136404
    1. Andreou E, Alexopoulos EC, Lionis C, et al. . Perceived Stress Scale: reliability and validity study in Greece. Int J Environ Res Public Health. 2011;8(8):3287-3298. doi:10.3390/ijerph8083287
    1. Gholipoor P, Saboory E, Ghazavi A, et al. . Prenatal stress potentiates febrile seizure and leads to long-lasting increase in cortisol blood levels in children under 2 years old. Epilepsy Behav. 2017;72:22-27. doi:10.1016/j.yebeh.2017.04.021
    1. Spielberger CD, Sydeman SJ. State-trait anxiety inventory and state-trait anger expression inventory. In: Maruish ME, ed. The Use of Psychological Testing for Treatment Planning and Outcome Assessment. Lawrence Erlbaum Associates, Inc; 1994:292-321.
    1. Woolhouse H, Mercuri K, Judd F, Brown SJ. Antenatal mindfulness intervention to reduce depression, anxiety and stress: a pilot randomised controlled trial of the MindBabyBody program in an Australian tertiary maternity hospital. BMC Pregnancy Childbirth. 2014;14(1):369. doi:10.1186/s12884-014-0369-z
    1. Tendais I, Costa R, Conde A, Figueiredo B. Screening for depression and anxiety disorders from pregnancy to postpartum with the EPDS and STAI. Span J Psychol. 2014;17:E7. doi:10.1017/sjp.2014.7
    1. Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression: development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry. 1987;150(6):782-786. doi:10.1192/bjp.150.6.782
    1. Evans J, Heron J, Francomb H, Oke S, Golding J. Cohort study of depressed mood during pregnancy and after childbirth. BMJ. 2001;323(7307):257-260. doi:10.1136/bmj.323.7307.257
    1. Pinto TM, Caldas F, Nogueira-Silva C, Figueiredo B. Maternal depression and anxiety and fetal-neonatal growth. J Pediatr (Rio J). 2017;93(5):452-459. doi:10.1016/j.jped.2016.11.005
    1. Areias ME, Kumar R, Barros H, Figueiredo E. Comparative incidence of depression in women and men, during pregnancy and after childbirth: validation of the Edinburgh Postnatal Depression Scale in Portuguese mothers. Br J Psychiatry. 1996;169(1):30-35. doi:10.1192/bjp.169.1.30
    1. Kainz B, Steinberger M, Wein W, et al. . Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans Med Imaging. 2015;34(9):1901-1913. doi:10.1109/TMI.2015.2415453
    1. Serag A, Aljabar P, Ball G, et al. . Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Neuroimage. 2012;59(3):2255-2265. doi:10.1016/j.neuroimage.2011.09.062
    1. Rueckert D, Sonoda LI, Denton ERE, et al. . Comparison and evaluation of rigid and nonrigid registration of breast MR images. SPIE conference proceedings. May 21, 1999. Accessed March 29, 2022.
    1. Ge X, Shi Y, Li J, et al. . Development of the human fetal hippocampal formation during early second trimester. Neuroimage. 2015;119:33-43. doi:10.1016/j.neuroimage.2015.06.055
    1. Jacob FD, Habas PA, Kim K, et al. . Fetal hippocampal development: analysis by magnetic resonance imaging volumetry. Pediatr Res. 2011;69(5 pt 1):425-429. doi:10.1203/PDR.0b013e318211dd7f
    1. Li G, Wang L, Shi F, et al. . Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci. 2014;34(12):4228-4238. doi:10.1523/JNEUROSCI.3976-13.2014
    1. Yun HJ, Im K, Yang J-J, Yoon U, Lee J-M. Automated sulcal depth measurement on cortical surface reflecting geometrical properties of sulci. PLoS One. 2013;8(2):e55977. doi:10.1371/journal.pone.0055977
    1. Bayley N. Bayley Scales of Infant and Toddler Development: Bayley-III. Harcourt; 2006.
    1. Carter AS, Briggs-Gowan MJ. ITSEA: Infant-Toddler Social and Emotional Assessment Examiner’s Manual. PsychCorp; 2006.
    1. Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW; Victorian Infant Collaborative Group . Underestimation of developmental delay by the new Bayley-III Scale. Arch Pediatr Adolesc Med. 2010;164(4):352-356. doi:10.1001/archpediatrics.2010.20
    1. Briggs-Gowan MJ, Carter AS, Irwin JR, Wachtel K, Cicchetti DV. The Brief Infant-Toddler Social and Emotional Assessment: screening for social-emotional problems and delays in competence. J Pediatr Psychol. 2004;29(2):143-155. doi:10.1093/jpepsy/jsh017
    1. Thurm A, Farmer CA, Manwaring S, Swineford L. 1.10 Social-emotional and behavioral problems in toddlers with language delay. J Am Acad Child Adolesc Psychiatry. 2017;56(10):S155. doi:10.1016/j.jaac.2017.09.024
    1. Abidin RR, Abidin RR. Parenting Stress Index (PSI). Pediatric Psychology Press; 1990.
    1. Haskett ME, Ahern LS, Ward CS, Allaire JC. Factor structure and validity of the parenting stress index-short form. J Clin Child Adolesc Psychol. 2006;35(2):302-312. doi:10.1207/s15374424jccp3502_14
    1. Pérez-Padilla J, Menéndez S, Lozano O. Validity of the Parenting Stress Index Short Form in a sample of at-risk mothers. Eval Rev. 2015;39(4):428-446. doi:10.1177/0193841X15600859
    1. Barroso NE, Hungerford GM, Garcia D, Graziano PA, Bagner DM. Psychometric properties of the Parenting Stress Index-Short Form (PSI-SF) in a high-risk sample of mothers and their infants. Psychol Assess. 2016;28(10):1331-1335. doi:10.1037/pas0000257
    1. Reitman D, Currier RO, Stickle TR. A critical evaluation of the Parenting Stress Index-Short Form (PSI-SF) in a head start population. J Clin Child Adolesc Psychol. 2002;31(3):384-392. doi:10.1207/S15374424JCCP3103_10
    1. Aracena M, Gómez E, Undurraga C, Leiva L, Marinkovic K, Molina Y. Validity and reliability of the Parenting Stress Index Short Form (PSI-SF) applied to a Chilean sample. J Child Fam Stud. 2016;25(12):3554-3564. doi:10.1007/s10826-016-0520-8
    1. Lee SJ, Gopalan G, Harrington D. Validation of the Parenting Stress Index–Short Form with minority caregivers. Res Soc Work Pract. 2016;26(4):429-440. doi:10.1177/1049731514554854
    1. Lu Y-C, Kapse K, Andersen N, et al. . Association between socioeconomic status and in utero fetal brain development. JAMA Netw Open. 2021;4(3):e213526. doi:10.1001/jamanetworkopen.2021.3526
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289-300. doi:10.1111/j.2517-6161.1995.tb02031.x
    1. Jung SJ. Introduction to mediation analysis and examples of its application to real-world data. J Prev Med Public Health. 2021;54(3):166-172. doi:10.3961/jpmph.21.069
    1. Gavin NI, Gaynes BN, Lohr KN, Meltzer-Brody S, Gartlehner G, Swinson T. Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol. 2005;106(5 pt 1):1071-1083. doi:10.1097/01.AOG.0000183597.31630.db
    1. Bennett HA, Einarson A, Taddio A, Koren G, Einarson TR. Prevalence of depression during pregnancy: systematic review. Obstet Gynecol. 2004;103(4):698-709. doi:10.1097/01.AOG.0000116689.75396.5f
    1. Austin M-P, Hadzi-Pavlovic D, Leader L, Saint K, Parker G. Maternal trait anxiety, depression and life event stress in pregnancy: relationships with infant temperament. Early Hum Dev. 2005;81(2):183-190. doi:10.1016/j.earlhumdev.2004.07.001
    1. Buitelaar JK, Huizink AC, Mulder EJ, de Medina PGR, Visser GHA. Prenatal stress and cognitive development and temperament in infants. Neurobiol Aging. 2003;24(1)(suppl):S53-S60. doi:10.1016/S0197-4580(03)00050-2
    1. King S, Laplante DP. The effects of prenatal maternal stress on children’s cognitive development: Project Ice Storm. Stress. 2005;8(1):35-45. doi:10.1080/10253890500108391
    1. Evans TE, Adams HHH, Licher S, et al. . Subregional volumes of the hippocampus in relation to cognitive function and risk of dementia. Neuroimage. 2018;178:129-135. doi:10.1016/j.neuroimage.2018.05.041
    1. Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004;44(1):109-120. doi:10.1016/j.neuron.2004.08.028
    1. de Toledo-Morrell L, Dickerson B, Sullivan MP, Spanovic C, Wilson R, Bennett DA. Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer’s disease. Hippocampus. 2000;10(2):136-142. doi:10.1002/(SICI)1098-1063(2000)10:2<136::AID-HIPO2>;2-J
    1. Williams NA, Villachan-Lyra P, Marvin C, et al. . Anxiety and depression among caregivers of young children with Congenital Zika Syndrome in Brazil. Disabil Rehabil. 2021;43(15):2100-2109. doi:10.1080/09638288.2019.1692252
    1. Williams VJ, Juranek J, Cirino P, Fletcher JM. Cortical thickness and local gyrification in children with developmental dyslexia. Cereb Cortex. 2018;28(3):963-973. doi:10.1093/cercor/bhx001
    1. Sasaki M. Single-photon emission computed tomography and electroencephalography findings in children with autism spectrum disorders. In: Patel VB, Preedy VR, Martin CR, eds. Comprehensive Guide to Autism. Springer; 2014:929-945.
    1. Csernansky JG, Gillespie SK, Dierker DL, et al. . Symmetric abnormalities in sulcal patterning in schizophrenia. Neuroimage. 2008;43(3):440-446. doi:10.1016/j.neuroimage.2008.07.034
    1. McCann JC, Hudes M, Ames BN. An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring. Neurosci Biobehav Rev. 2006;30(5):696-712. doi:10.1016/j.neubiorev.2005.12.003
    1. Wu BTF, Dyer RA, King DJ, Richardson KJ, Innis SM. Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants. PLoS One. 2012;7(8):e43448. doi:10.1371/journal.pone.0043448
    1. Allen PJ. Creatine metabolism and psychiatric disorders: does creatine supplementation have therapeutic value? Neurosci Biobehav Rev. 2012;36(5):1442-1462. doi:10.1016/j.neubiorev.2012.03.005
    1. Merz EC, Monk C, Bansal R, et al. . Neonatal brain metabolite concentrations: associations with age, sex, and developmental outcomes. PLoS One. 2020;15(12):e0243255. doi:10.1371/journal.pone.0243255
    1. Lebel C, MacKinnon A, Bagshawe M, Tomfohr-Madsen L, Giesbrecht G. Elevated depression and anxiety symptoms among pregnant individuals during the COVID-19 pandemic. J Affect Disord. 2020;277:5-13. doi:10.1016/j.jad.2020.07.126
    1. Preis H, Mahaffey B, Heiselman C, Lobel M. Pandemic-related pregnancy stress and anxiety among women pregnant during the coronavirus disease 2019 pandemic. Am J Obstet Gynecol MFM. 2020;2(3):100155. doi:10.1016/j.ajogmf.2020.100155
    1. Evangelou IE, du Plessis AJ, Vezina G, Noeske R, Limperopoulos C. Elucidating metabolic maturation in the healthy fetal brain using 1H-MR spectroscopy. AJNR Am J Neuroradiol. 2016;37(2):360-366. doi:10.3174/ajnr.A4512
    1. Scott JA, Habas PA, Kim K, et al. . Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI. Int J Dev Neurosci. 2011;29(5):529-536. doi:10.1016/j.ijdevneu.2011.04.001

Source: PubMed

3
Abonnere