Ultrasound Imaging of the Superficial Fascia in the Upper Limb: Arm and Forearm

Carmelo Pirri, Nina Pirri, Diego Guidolin, Veronica Macchi, Raffaele De Caro, Carla Stecco, Carmelo Pirri, Nina Pirri, Diego Guidolin, Veronica Macchi, Raffaele De Caro, Carla Stecco

Abstract

The superficial fascia has received much attention in recent years due to its important role of compartmentalizing the subcutaneous tissue. Ultrasound (US) imaging, owing to its high definition, provides the possibility of better visualizing and measuring its thickness. The aim of this study was to measure and compare, with US imaging, the thickness of superficial fascia in the arm and forearm in different regions/levels. An observational study has been performed using US imaging to measure superficial fascia thickness in the anterior and posterior regions at different levels in a sample of 30 healthy volunteers. The results for superficial fascia thickness revealed statistically significant differences (p < 0.0001) in the arm between the anterior and posterior regions; in terms of forearm, some statistically significant differences were found between regions/levels. However, in the posterior region/levels of the arm, the superficial fascia was thicker (0.53 ± 0.10 mm) than in the forearm (0.41 ± 0.10 mm); regarding the anterior regions/levels, the superficial fascia of the arm (0.40 ± 0.10 mm) was not statistically different than the forearm (0.40 ± 0.12 mm). In addition, the intra-rater reliability was good (ICC2,k: 0.88). US helps to visualize and assess the superficial fascia inside the subcutaneous tissue, improving the diagnosis of fascial dysfunction, and one of the Us parameters to reliably assess is the thickness in different regions and levels.

Keywords: reliability; subcutaneous tissue; superficial fascia; thickness; ultrasonography.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The probe position during the ultrasound (US) imaging assessment of the superficial fascia. (A): the anterior region of the forearm (Ant 1); (B) for adequate scans and to reduce surface pressure on the skin, the ultra-sonographer used suitable amounts of gel (*), and the US beam was kept perpendicular to the fascial layers.
Figure 2
Figure 2
Ultrasound (US) images of the superficial fascia of: the anterior region of the arm (A) and of the forearm (C); the posterior region of the arm (B) and of the forearm (D). Anterior regions (A,C) at levels Ant 1 (a,e) and Ant 2 (b,f). Posterior regions (B,D) at levels Post 1 (c,g) and Post 2 (d,h). Probe: black rectangle; Red dashes: superficial fascia.
Figure 3
Figure 3
Ultrasound thickness measurements of the superficial fascia of the arm.
Figure 4
Figure 4
Ultrasound thickness measurements of the superficial fascia of the forearm.
Figure 5
Figure 5
Ultrasound thickness measurements of the superficial fascia of the arm and forearm at different regions/levels.

References

    1. Novais C.S., Carvalho J., Valença-Filipe R., Rebelo M., Peres H., Costa-Ferreira A. Abdominoplasty with Scarpa Fascia Preservation: Randomized Controlled Trial with Assessment of Scar Quality and Cutaneous Sensibility. Plast. Reconstr. Surg. 2020;146:156e–164e. doi: 10.1097/PRS.0000000000007024.
    1. Stecco C. Functional Atlas of the Human Fascial System. Elsevier Health Sciences; Edinburgh, UK: 2015.
    1. Koshima I., Inagawa K., Jitsuiki Y., Tsuda K., Moriguchi T., Watanabe A. Scarpa’s adipofascial flap for repair of wide scalp defects. Ann. Plast. Surg. 1996;36:88–92. doi: 10.1097/00000637-199601000-00018.
    1. Koshima I., Saeda S. Inferior epigastric artery skin flaps without rectus abdominis muscle. Br. J. Plast. Surg. 1989;42:645–648. doi: 10.1016/0007-1226(89)90075-1.
    1. Odobescu A., Keith J.N. Preshaping DIEP Flaps: Simplifying and Optimizing Breast Reconstruction Aesthetics. Plast. Reconstr. Surg. 2021;147:1059–1061. doi: 10.1097/PRS.0000000000007889.
    1. Stecco C., Pirri C., Fede C., Fan C., Giordani F., Stecco L., Foti C., De Caro R. Dermatome and fasciatome. Clin. Anat. 2019;32:896–902. doi: 10.1002/ca.23408.
    1. Fede C., Porzionato A., Petrelli L., Fan C., Pirri C., Biz C., De Caro R., Stecco C. Fascia and soft tissues innervation in the human hip and their possible role in post-surgical pain. J. Orthop. Res. 2020;38:1646–1654. doi: 10.1002/jor.24665.
    1. Pirri C., Stecco C., Petrelli L., De Caro R., Özçakar L. Reappraisal on the Superficial Fascia in the Subcutaneous Tissue: Ultrasound and Histological Images Speaking Louder Than Words. Plast. Reconstr. Surg. 2022;150:244e–245e. doi: 10.1097/PRS.0000000000009224.
    1. Pirri C., Fede C., Petrelli L., Guidolin D., Fan C., De Caro R., Stecco C. An anatomical comparison of the fasciae of the thigh: A macroscopic, microscopic and ultrasound imaging study. J. Anat. 2021;238:999–1009. doi: 10.1111/joa.13360.
    1. Özçakar L., Kara M., Chang K.V., Çarl A.B., Akkaya N., Tok F., Chen W.S., Wang T.G., Tekin L., Ulaşl A.M., et al. Nineteen reasons why physiatrists should do musculoskeletal ultrasound: EURO-MUSCULUS/USPRM recommendations. Am. J. Phys. Med. Rehabil. 2015;94:e45–e49. doi: 10.1097/PHM.0000000000000223.
    1. Pirri C., Stecco C., Fede C., Macchi V., Özçakar L. Ultrasound Imaging of the Fascial Layers: You See (Only) What You Know. J. Ultrasound Med. 2020;39:827–828. doi: 10.1002/jum.15148.
    1. Pirri C., Stecco A., Fede C., De Caro R., Stecco C., Özçakar L. Ultrasound imaging of a scar on the knee: Sonopalpation for fascia and subcutaneous tissues. Eur. J. Transl. Myol. 2020;30:8909. doi: 10.4081/ejtm.2019.8909.
    1. Pirri C., Stecco C., Pirri N., De Caro R., Özçakar L. Ultrasound examination for a heel scar: Seeing/treating the painful superficial fascia. Med. Ultrason. 2022;24:255–256. doi: 10.11152/mu-3689.
    1. Pirri C., Guidolin D., Fede C., Macchi V., De Caro R., Stecco C. Ultrasound Imaging of Brachial and Antebrachial Fasciae. Diagnostics. 2021;11:2261. doi: 10.3390/diagnostics11122261.
    1. Pirri C., Fede C., Stecco A., Guidolin D., Fan C., De Caro R., Stecco C. Ultrasound Imaging of Crural Fascia and Epimysial Fascia Thicknesses in Basketball Players with Previous Ankle Sprains Versus Healthy Subjects. Diagnostics. 2021;11:177. doi: 10.3390/diagnostics11020177.
    1. Von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008;61:344–349. doi: 10.1016/j.jclinepi.2007.11.008.
    1. General Assembly of the World Medical Association World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053.
    1. Cohen J. Things I have learned (so far) Am. Psychol. 1990;45:1304–1312. doi: 10.1037/0003-066X.45.12.1304.
    1. Koo T.K., Li M.Y. A guideline of selecting and reporting Intraclass Correlation Coefficients for reliability research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Abu-Hijleh M.F., Roshier A.L., Al-Shboul Q., Dharap A.S., Harris P.F. The membranous layer of superficial fascia: Evidence for its widespread distribution in the body. Surg. Radiol. Anat. 2006;28:606–619. doi: 10.1007/s00276-006-0142-8.
    1. McCarthy C.L. Ultrasound of Normal and Injured Ligaments and Retinacula of the Hand. Semin. Musculoskelet. Radiol. 2020;24:83–100. doi: 10.1055/s-0039-3402051.
    1. Pirri C., Fede C., Petrelli L., Guidolin D., Fan C., De Caro R., Stecco C. Elastic Fibres in the subcutaneous tissue: Is there a difference between superficial and muscular fascia? A cadaver study. Skin Res. Technol. 2022;28:21–27. doi: 10.1111/srt.13084.
    1. Pirri C., Todros S., Fede C., Pianigiani S., Fan C., Foti C., Stecco C., Pavan P. Inter-rater reliability and variability of ultrasound measurements of abdominal muscles and fasciae thickness. Clin. Anat. 2019;32:948–960. doi: 10.1002/ca.23435.
    1. Fan C., Fede C., Pirri C., Guidolin D., Biz C., Macchi V., De Caro R., Stecco C. Quantitative Evaluation of the Echo Intensity. of Paraneural Area and Myofascial Structure around Median Nerve in Carpal Tunnel Syndrome. Diagnostics. 2020;10:914. doi: 10.3390/diagnostics10110914.
    1. Blaak E.E., van Baak M.A., Kemerink G.J., Pakbiers M.T., Heidendal G.A., Saris W.H. Beta-adrenergic stimulation and abdominal subcutaneous fat blood flow in lean, obese, and reduced-obese subjects. Metabolism. 1995;44:183–187. doi: 10.1016/0026-0495(95)90262-7.
    1. Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013;9:191–200. doi: 10.5114/aoms.2013.33181.
    1. van der Valk E.S., van den Akker E.L.T., Savas M., Kleinendorst L., Visser J.A., Van Haelst M.M., Sharma A.M., van Rossum E.F.C. A comprehensive diagnostic approach to detect underlying causes of obesity in adults. Obes. Rev. 2019;20:795–804. doi: 10.1111/obr.12836.
    1. Luong Q., Huang J., Lee K.Y. Deciphering White Adipose Tissue Heterogeneity. Biology. 2019;8:23. doi: 10.3390/biology8020023.
    1. Casabona G., Frank K., Koban K.C., Schenck T.L., Lopez V.P., Webb K.L., Hamade H., Freytag D.L., Green J.B., Cotofana S. Influence of Age, Sex, and Body Mass Index on the Depth of the Superficial Fascia in the Face and Neck. Dermatol. Surg. 2019;45:1365–1373. doi: 10.1097/DSS.0000000000001909.
    1. Wilke J., Schleip R., Yucesoy C.A., Banzer W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J. Appl. Physiol. 2018;124:234–244. doi: 10.1152/japplphysiol.00565.2017.
    1. Maas H. Significance of epimuscular myofascial force transmission under passive muscle conditions. J. Appl. Physiol. 2019;126:1465–1473. doi: 10.1152/japplphysiol.00631.2018.
    1. Guidry R.F., McCarthy M.E., Straughan D.M., St Hilaire H., Schuster J.D., Dancisak M., Lindsey J.T. Ultrasound Imaging of the Superficial Fascial System Can Predict the Subcutaneous Strength of Abdominal Tissue Using Mean Gray Value Quantification. Plast. Reconstr. Surg. 2020;145:1173–1181. doi: 10.1097/PRS.0000000000006737.
    1. Usunier B., Benderitter M., Tamarat R., Chapel A. Management of fibrosis: The mesenchymal stromal cells breakthrough. Stem Cells Int. 2014;2014:340257. doi: 10.1155/2014/340257.
    1. Sun K., Tordjman J., Clement K., Scherer P.E. Fibrosis and adipose tissue dysfunction. Cell Metab. 2013;18:470–477. doi: 10.1016/j.cmet.2013.06.016.
    1. Crewe C., An Y.A., Scherer P.E. The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. J. Clin. Investig. 2017;127:74–82. doi: 10.1172/JCI88883.
    1. Chabot K., Gauthier M.S., Garneau P.Y., Rabasa-Lhoret R. Evolution of subcutaneous adipose tissue fibrosis after bariatric surgery. Diabetes Metab. 2017;43:125–133. doi: 10.1016/j.diabet.2016.10.004.
    1. Bel Lassen P., Charlotte F., Liu Y., Bedossa P., Le Naour G., Tordjman J., Poitou C., Bouillot J.L., Genser L., Zucker J.D., et al. The FAT Score, a Fibrosis Score of Adipose Tissue: Predicting Weight-Loss Outcome After Gastric Bypass. J. Clin. Endocrinol. Metab. 2017;102:2443–2453. doi: 10.1210/jc.2017-00138.

Source: PubMed

3
Abonnere