Gut Microbiota Interventions for the Management of Obesity: A Literature Review

Vikram Jeet Singh Gill, Suha Soni, Manasi Shringarpure, Anusheel, Sushant Bhardwaj, Narendra Kumar Yadav, Ankit Patel, Avaniben Patel, Vikram Jeet Singh Gill, Suha Soni, Manasi Shringarpure, Anusheel, Sushant Bhardwaj, Narendra Kumar Yadav, Ankit Patel, Avaniben Patel

Abstract

The gut microbiota (GM) has been recognized as an important factor in the development of metabolic diseases such as obesity; it has been reported that the composition of the GM differs in obese and lean subjects, suggesting that microbiota dysbiosis can contribute to changes in body weight. Dysbiosis occurs due to an imbalance in the composition of gut bacteria, changes in the metabolic process, or changes in the distribution of microbiota within the gut. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT). Microbial manipulation may help with preventing or treating weight gain and associated comorbidities. Approaches to this may range from dietary manipulation, which is suitable to treat the individual's microflora, to probiotics, prebiotics, synbiotics, and fecal microbiota transplant (FMT).

Keywords: dysbiosis; gut; gut microbiome; gut microbiota; intestinal microbiota; metabolism; microbiota; obesity; probiotics and microbiome; scfa.

Conflict of interest statement

The authors have declared that no competing interests exist.

Copyright © 2022, Gill et al.

Figures

Figure 1. Changes in intestinal microbiota due…
Figure 1. Changes in intestinal microbiota due to different triggers ultimately affecting weight storage and metabolic health in mice
Adapted from [16] HFD: high-fat diet; LPL: lipoprotein lipase

References

    1. The gut microbiome in obesity. Tseng CH, Wu CY. J Formos Med Assoc. 2019;118:0–9.
    1. Convergence between biological, behavioural and genetic determinants of obesity. Ghosh S, Bouchard C. Nat Rev Genet. 2017;18:731–748.
    1. The gut microbiota and obesity: from correlation to causality. Zhao L. Nat Rev Microbiol. 2013;11:639–647.
    1. Minireview: gut microbiota: the neglected endocrine organ. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Mol Endocrinol. 2014;28:1221–1238.
    1. The gut microbiota and host health: a new clinical frontier. Marchesi JR, Adams DH, Fava F, et al. Gut. 2016;65:330–339.
    1. Current understanding of the human microbiome. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Nat Med. 2018;24:392–400.
    1. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Musso G, Gambino R, Cassader M. Diabetes Care. 2010;33:2277–2284.
    1. The role of gut microbiota in mediating obesity and diabetes mellitus. Pitocco D, Di Leo M, Tartaglione L, et al. Eur Rev Med Pharmacol Sci. 2020;24:1548–1562.
    1. Type 2 diabetes mellitus associated with obesity (diabesity). The central role of gut microbiota and its translational applications. Ortega MA, Fraile-Martínez O, Naya I, et al. Nutrients. 2020;12:2749.
    1. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. Everard A, Matamoros S, Geurts L, Delzenne NM, Cani PD. mBio. 2014;5:0–14.
    1. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Virtue AT, McCright SJ, Wright JM, et al. Sci Transl Med. 2019;11:1892.
    1. Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling. Hui S, Liu Y, Huang L, et al. Int J Obes (Lond) 2020;44:1678–1690.
    1. Gut microbiota mediates the effects of curcumin on enhancing Ucp1-dependent thermogenesis and improving high-fat diet-induced obesity. Han Z, Yao L, Zhong Y, et al. Food Funct. 2021;12:6558–6575.
    1. Uncoupling protein-1 expression does not protect mice from diet-induced obesity. Wang H, Willershäuser M, Li Y, et al. Am J Physiol Endocrinol Metab. 2021;320:0–45.
    1. Adipose tissue uncoupling protein 1 levels and function are increased in a mouse model of developmental obesity induced by maternal exposure to high-fat diet. Bytautiene Prewit E, Porter C, La Rosa M, et al. J Dev Orig Health Dis. 2018;9:401–408.
    1. Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Gastroenterology. 2021;160:573–599.
    1. Richness of human gut microbiome correlates with metabolic markers. Le Chatelier E, Nielsen T, Qin J, et al. Nature. 2013;500:541–546.
    1. Gut microbiome and metabolic syndrome. Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Diabetes Metab Syndr. 2016;10:0–7.
    1. Gut microbiota orchestrates energy homeostasis during cold. Chevalier C, Stojanović O, Colin DJ, et al. Cell. 2015;163:1360–1374.
    1. Microbial degradation of complex carbohydrates in the gut. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Gut Microbes. 2012;3:289–306.
    1. Gut microbiota functions: metabolism of nutrients and other food components. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Eur J Nutr. 2018;57:1–24.
    1. The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Moreno-Navarrete JM, Fernandez-Real JM. Rev Endocr Metab Disord. 2019;20:387–397.
    1. Are probiotic really safe for humans? Zawistowska-Rojek A, Tyski S. Pol J Microbiol. 2018;67:251–258.
    1. The safety of probiotics. Snydman DR. Clin Infect Dis. 2008;46:0–11.
    1. Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Imperial IC, Ibana JA. Front Microbiol. 2016;7:1983.
    1. Lactobacillus rhamnosus GG bacteremia associated with probiotic use in a child with short gut syndrome. De Groote MA, Frank DN, Dowell E, Glode MP, Pace NR. Pediatr Infect Dis J. 2005;24:278–280.
    1. Safety of probiotics: translocation and infection. Liong MT. Nutr Rev. 2008;66:192–202.
    1. Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Abe F, Muto M, Yaeshima T, Iwatsuki K, Aihara H, Ohashi Y, Fujisawa T. Anaerobe. 2010;16:131–136.
    1. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Cannon JP, Lee TA, Bolanos JT, Danziger LH. Eur J Clin Microbiol Infect Dis. 2005;24:31–40.
    1. Lactobacillus casei subsp. rhamnosus sepsis in a patient with ulcerative colitis. Farina C, Arosio M, Mangia M, Moioli F. J Clin Gastroenterol. 2001;33:251–252.
    1. Breakthrough Lactobacillus rhamnosus GG bacteremia associated with probiotic use in an adult patient with severe active ulcerative colitis: case report and review of the literature. Meini S, Laureano R, Fani L, Tascini C, Galano A, Antonelli A, Rossolini GM. Infection. 2015;43:777–781.
    1. Recurrent Lactobacillus bacteremia in a patient with leukemia. Ambesh P, Stroud S, Franzova E, Gotesman J, Sharma K, Wolf L, Kamholz S. J Investig Med High Impact Case Rep. 2017;5:2324709617744233.
    1. The human gut microbiota: metabolism and perspective in obesity. Gomes AC, Hoffmann C, Mota JF. Gut Microbes. 2018;9:308–325.
    1. The human gut microbiome - a potential controller of wellness and disease. Kho ZY, Lal SK. Front Microbiol. 2018;9:1835.
    1. Gut microbiota, the immune system, and diet influence the neonatal gut-brain axis. Sherman MP, Zaghouani H, Niklas V. Pediatr Res. 2015;77:127–135.
    1. Current understanding of dysbiosis in disease in human and animal models. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Inflamm Bowel Dis. 2016;22:1137–1150.
    1. Structure, function and diversity of the healthy human microbiome. Human Microbiome Project Consortium. Nature. 2012;486:207–214.
    1. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GA, Gasbarrini A, Mele MC. Microorganisms. 2019;7:14.
    1. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R. Nutrients. 2020;12:1474.
    1. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Verdam FJ, Fuentes S, de Jonge C, et al. Obesity (Silver Spring) 2013;21:0–15.
    1. The role of gut microbiota in immune homeostasis and autoimmunity. Wu HJ, Wu E. Gut Microbes. 2012;3:4–14.
    1. The gut microbiota and its relationship to diet and obesity: new insights. Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shanahan F, O'Toole PW, Cotter PD. Gut Microbes. 2012;3:186–202.
    1. Microbial ecology: human gut microbes associated with obesity. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Nature. 2006;444:1022–1023.
    1. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Agus A, Clément K, Sokol H. Gut. 2021;70:1174–1182.
    1. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Parada Venegas D, De la Fuente MK, Landskron G, et al. Front Immunol. 2019;10:277.
    1. Microbiota and SCFA in lean and overweight healthy subjects. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD. Obesity (Silver Spring) 2010;18:190–195.
    1. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Tidjani Alou M, Lagier JC, Raoult D. Hum Microbiome J. 2016;1:3–11.
    1. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Murphy EA, Velazquez KT, Herbert KM. Curr Opin Clin Nutr Metab Care. 2015;18:515–520.
    1. Low-FODMAP diet for treatment of irritable bowel syndrome. Magge S, Lembo A. Gastroenterol Hepatol (N Y) 2012;8:739–745.
    1. Genetics and pathogenesis of inflammatory bowel disease. Khor B, Gardet A, Xavier RJ. Nature. 2011;474:307–317.
    1. Fungal-type dysbiosis of the gut: the occurrence of fungal diseases and the response to challenge with yeasty and mould-containing foods. Eaton KK, Howard MA. J Nutr Environ Med. 1998;8:247–255.
    1. Relapsing clostridium difficile enterocolitis cured by rectal infusion of homologous faeces. Schwan A, Sjölin S, Trottestam U, Aronsson B. Lancet. 1983;2:845.
    1. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Gibson GR, Roberfroid MB. J Nutr. 1995;125:1401–1412.
    1. Effects of supplementation with rice husk powder and rice bran on inflammatory factors in overweight and obese adults following an energy-restricted diet: a randomized controlled trial. Edrisi F, Salehi M, Ahmadi A, Fararoei M, Rusta F, Mahmoodianfard S. Eur J Nutr. 2018;57:833–843.
    1. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Nicolucci AC, Hume MP, Martínez I, Mayengbam S, Walter J, Reimer RA. Gastroenterology. 2017;153:711–722.
    1. Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Hume MP, Nicolucci AC, Reimer RA. Am J Clin Nutr. 2017;105:790–799.
    1. The role of probiotics and prebiotics in the prevention and treatment of obesity. Cerdó T, García-Santos JA, G Bermúdez M, Campoy C. Nutrients. 2019;11:635.
    1. Dietary fiber and prebiotics and the gastrointestinal microbiota. Holscher HD. Gut Microbes. 2017;8:172–184.
    1. Fecal microbiota transplantation: review and update. Wang JW, Kuo CH, Kuo FC, et al. J Formos Med Assoc. 2019;118:0–31.
    1. Fecal microbiota transplantation in disease therapy. Antushevich H. Clin Chim Acta. 2020;503:90–98.
    1. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Brandt LJ, Aroniadis OC. Gastrointest Endosc. 2013;78:240–249.
    1. Effects of fecal microbiota transplantation with oral capsules in obese patients. Allegretti JR, Kassam Z, Mullish BH, et al. Clin Gastroenterol Hepatol. 2020;18:855–863.
    1. Fecal microbiota transplantation: a new old kid on the block for the management of gut microbiota-related disease. Cammarota G, Ianiro G, Bibbò S, Gasbarrini A. J Clin Gastroenterol. 2014;48:0–4.
    1. Durable alteration of the colonic microbiota by the administration of donor fecal flora. Grehan MJ, Borody TJ, Leis SM, Campbell J, Mitchell H, Wettstein A. J Clin Gastroenterol. 2010;44:551–561.
    1. Gut microbiota and obesity: an opportunity to alter obesity through faecal microbiota transplant (FMT) Lee P, Yacyshyn BR, Yacyshyn MB. Diabetes Obes Metab. 2019;21:479–490.
    1. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. Yu EW, Gao L, Stastka P, et al. PLoS Med. 2020;17:0.
    1. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Haifer C, Kelly CR, Paramsothy S, et al. Gut. 2020;69:801–810.
    1. Norovirus gastroenteritis after fecal microbiota transplantation for treatment of Clostridium difficile infection despite asymptomatic donors and lack of sick contacts. Schwartz M, Gluck M, Koon S. Am J Gastroenterol. 2013;108:1367.
    1. Fatal aspiration pneumonia as a complication of fecal microbiota transplant. Baxter M, Ahmad T, Colville A, Sheridan R. Clin Infect Dis. 2015;61:136–137.
    1. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. DeFilipp Z, Bloom PP, Torres Soto M, et al. N Engl J Med. 2019;381:2043–2050.
    1. Case records of the Massachusetts General Hospital. Case 25-2014. A 37-year-old man with ulcerative colitis and bloody diarrhea. Hohmann EL, Ananthakrishnan AN, Deshpande V. N Engl J Med. 2014;371:668–675.
    1. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Moayyedi P, Surette MG, Kim PT, et al. Gastroenterology. 2015;149:102–109.
    1. Faecal microbiota transplantation: applications and limitations in treating gastrointestinal disorders. Sbahi H, Di Palma JA. BMJ Open Gastroenterol. 2016;3:0.
    1. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis. Li M, Liang P, Li Z, et al. Front Microbiol. 2015;6:692.
    1. Rebuilding the gut microbiota ecosystem. Gagliardi A, Totino V, Cacciotti F, et al. Int J Environ Res Public Health. 2018;15:1679.
    1. The role of regulated clinical trials in the development of bacteriophage therapeutics. Parracho HM, Burrowes BH, Enright MC, McConville ML, Harper DR. J Mol Genet Med. 2012;6:279–286.
    1. Gut microbiota as a mediator of essential and toxic effects of zinc in the intestines and other tissues. Skalny AV, Aschner M, Lei XG, et al. Int J Mol Sci. 2021;22:13074.
    1. Pros and cons of phage therapy. Loc-Carrillo C, Abedon ST. Bacteriophage. 2011;1:111–114.
    1. Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Thoen RU, Barther NN, Schemitt E, et al. Appl Physiol Nutr Metab. 2019;44:580–586.
    1. Zinc. Skalny AV, Aschner M, Tinkov AA. Adv Food Nutr Res. 2021;96:251–310.
    1. Zinc homeostasis plays an important role in the prevention of obesity-induced cardiac inflammation, remodeling and dysfunction. Zhang H, Cai L. J Trace Elem Med Biol. 2020;62:126615.
    1. Vitamin A status improvement in obesity: findings and perspectives using encapsulation techniques. Gomes CC, Passos TS, Morais AH. Nutrients. 2021;13:1921.
    1. Associations between body mass index and the prevalence of low micronutrient levels among US adults. Kimmons JE, Blanck HM, Tohill BC, Zhang J, Khan LK. MedGenMed. 2006;8:59.
    1. Impact of micronutrient deficiencies on obesity. García OP, Long KZ, Rosado JL. Nutr Rev. 2009;67:559–572.
    1. Longitudinal associations between body mass index and serum carotenoids: the CARDIA study. Andersen LF, Jacobs DR Jr, Gross MD, Schreiner PJ, Dale Williams O, Lee DH. Br J Nutr. 2006;95:358–365.
    1. β-carotene in obesity research: technical considerations and current status of the field. Coronel J, Pinos I, Amengual J. Nutrients. 2019;11:842.
    1. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. Wimalawansa SJ. J Steroid Biochem Mol Biol. 2018;175:177–189.
    1. Vitamin D and obesity: current evidence and controversies. Karampela I, Sakelliou A, Vallianou N, Christodoulatos GS, Magkos F, Dalamaga M. Curr Obes Rep. 2021;10:162–180.
    1. Vitamin D in obesity and obesity-related diseases: an overview. Barrea L, Frias-Toral E, Pugliese G, et al. Minerva Endocrinol (Torino) 2021;46:177–192.
    1. Vitamin D status in patients with musculoskeletal pain, fatigue and headache: a cross-sectional descriptive study in a multi-ethnic general practice in Norway. Knutsen KV, Brekke M, Gjelstad S, Lagerløv P. Scand J Prim Health Care. 2010;28:166–171.
    1. Commentary on "Low serum 25-hydroxyvitamin D level is associated with obesity and atherogenesis in adolescent boys". Lim HH. Ann Pediatr Endocrinol Metab. 2022;27:3–4.
    1. Low serum 25-hydroxyvitamin D level is associated with obesity and atherogenesis in adolescent boys. Naganuma J, Koyama S, Arisaka O, Yoshihara S. Ann Pediatr Endocrinol Metab. 2022;27:30–36.
    1. Vitamin D status and weight loss: a systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Mallard SR, Howe AS, Houghton LA. Am J Clin Nutr. 2016;104:1151–1159.
    1. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Earthman CP, Beckman LM, Masodkar K, Sibley SD. Int J Obes (Lond) 2012;36:387–396.
    1. Recent developments in folate nutrition. Naderi N, House JD. Adv Food Nutr Res. 2018;83:195–213.
    1. Chronic folate deficiency induces glucose and lipid metabolism disorders and subsequent cognitive dysfunction in mice. Zhao M, Yuan MM, Yuan L, et al. PLoS One. 2018;13:0.
    1. Dietary intake of folate and risk of stroke in US men and women: NHANES I Epidemiologic Follow-up Study. National Health and Nutrition Examination Survey. Bazzano LA, He J, Ogden LG, Loria C, Vupputuri S, Myers L, Whelton PK. Stroke. 2002;33:1183–1188.
    1. Metabolic syndrome severity and lifestyle factors among adolescents. Wang LX, Gurka MJ, Deboer MD. Minerva Pediatr. 2018;70:467–475.

Source: PubMed

3
Abonnere