MACC1 as a Potential Target for the Treatment and Prevention of Breast Cancer

Mengmeng Lv, Yunjuan Jiao, Bowen Yang, Mengchen Ye, Wenyu Di, Wei Su, Jiateng Zhong, Mengmeng Lv, Yunjuan Jiao, Bowen Yang, Mengchen Ye, Wenyu Di, Wei Su, Jiateng Zhong

Abstract

Metastasis associated in colon cancer 1 (MACC1) is an oncogene first identified in colon cancer. MACC1 has been identified in more than 20 different types of solid cancers. It is a key prognostic biomarker in clinical practice and is involved in recurrence, metastasis, and survival in many types of human cancers. MACC1 is significantly associated with the primary tumor, lymph node metastasis, distant metastasis classification, and clinical staging in patients with breast cancer (BC), and MACC1 overexpression is associated with reduced recurrence-free survival (RFS) and worse overall survival (OS) in patients. In addition, MACC1 is involved in BC progression in multiple ways. MACC1 promotes the immune escape of BC cells by affecting the infiltration of immune cells in the tumor microenvironment. Since the FGD5AS1/miR-497/MACC1 axis inhibits the apoptotic pathway in radiation-resistant BC tissues and cell lines, the MACC1 gene may play an important role in BC resistance to radiation. Since MACC1 is involved in numerous biological processes inside and outside BC cells, it is a key player in the tumor microenvironment. Focusing on MACC1, this article briefly discusses its biological effects, emphasizes its molecular mechanisms and pathways of action, and describes its use in the treatment and prevention of breast cancer.

Keywords: MACC1; breast cancer; immune escape; radiation resistance; tumor microenvironment.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
MACC1 domain and potential function. Interaction motifs for clathrin-mediated endocytosis (clathrin box, NPF, DPF); the functions of the ZU5 domain at MACC1 N-terminus are mainly associated with apoptosis; proline-rich motifs (KxxPxP) and SH3 (Src homology domain) domains play a part in interactions between proteins; there are two death domain family (DD) domains at MACC1 C-terminus.
Figure 2
Figure 2
MACC1 effectors, signaling mechanisms, and biological responses. MACC1 is involved in a variety of cancer hallmark functions such as proliferation, metastasis, apoptosis resistance, angiogenesis and Warburg through transcriptional activation of its key target molecules HGF/c-Met, Akt, TWIST1/2, MAPK, Nanog/Oct-4, and STAT.

References

    1. Cao W., Chen H.D., Yu Y.W., Li N., Chen W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021;134:783–791. doi: 10.1097/CM9.0000000000001474.
    1. Smith R.A., Andrews K., Brooks D., DeSantis C.E., Fedewa S.A., Lortet-Tieulent J., Manassaram-Baptiste D., Brawley O.W., Wender R.C. Cancer screening in the United States, 2016: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 2016;66:95–114. doi: 10.3322/caac.21336.
    1. Prat A., Pineda E., Adamo B., Galvan P., Fernandez A., Gaba L., Diez M., Viladot M., Arance A., Munoz M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015;24((Suppl. 2)):S26–S35. doi: 10.1016/j.breast.2015.07.008.
    1. Barzaman K., Karami J., Zarei Z., Hosseinzadeh A., Kazemi M.H., Moradi-Kalbolandi S., Safari E., Farahmand L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020;84:106535. doi: 10.1016/j.intimp.2020.106535.
    1. Mueller C., Haymond A., Davis J.B., Williams A., Espina V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev. Proteom. 2018;15:131–152. doi: 10.1080/14789450.2018.1421071.
    1. Criscitiello C., Vingiani A., Maisonneuve P., Viale G., Viale G., Curigliano G. Tumor-infiltrating lymphocytes (TILs) in ER+/HER2- breast cancer. Breast Cancer Res. Treat. 2020;183:347–354. doi: 10.1007/s10549-020-05771-7.
    1. Jayanthi V., Das A.B., Saxena U. Grade-specific diagnostic and prognostic biomarkers in breast cancer. Genomics. 2020;112:388–396. doi: 10.1016/j.ygeno.2019.03.001.
    1. Stoletov K., Beatty P.H., Lewis J.D. Novel therapeutic targets for cancer metastasis. Expert Rev. Anticancer. Ther. 2020;20:97–109. doi: 10.1080/14737140.2020.1718496.
    1. Radhakrishnan H., Walther W., Zincke F., Kobelt D., Imbastari F., Erdem M., Kortüm B., Dahlmann M., Stein U. MACC1—The first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev. 2019;37:805–820. doi: 10.1007/s10555-018-9771-8.
    1. Stein U., Dahlmann M., Walther W. MACC1—More than metastasis? Facts and predictions about a novel gene. J. Mol. Med. 2010;88:11–18. doi: 10.1007/s00109-009-0537-1.
    1. Hu Y., Wang M., Wang K., Gao J., Tong J., Zhao Z., Li M. A potential role for metastasis-associated in colon cancer 1 (MACC1) as a pan-cancer prognostic and immunological biomarker. Math. Biosci. Eng. 2021;18:8331–8353. doi: 10.3934/mbe.2021413.
    1. Stein U., Walther W., Arlt F., Schwabe H., Smith J., Fichtner I., Birchmeier W., Schlag P.M. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat. Med. 2009;15:59–67. doi: 10.1038/nm.1889.
    1. Cheng H., Zhou L., Long Y., Xiang J., Chen L. MACC1 Is Associated With Epithelial-Mesenchymal Transition and Can Predict Poor Prognosis in Nasopharyngeal Carcinoma. Front. Oncol. 2021;11:644120. doi: 10.3389/fonc.2021.644120.
    1. Treese C., Werchan J., von Winterfeld M., Berg E., Hummel M., Timm L., Rau B., Daberkow O., Walther W., Daum S., et al. Inhibition of MACC1-Induced Metastasis in Esophageal and Gastric Adenocarcinomas. Cancers. 2022;14:1773. doi: 10.3390/cancers14071773.
    1. Mei J., Zhu C., Pan L., Li M. MACC1 regulates the AKT/STAT3 signaling pathway to induce migration, invasion, cancer stemness, and suppress apoptosis in cervical cancer cells. Bioengineered. 2022;13:61–70. doi: 10.1080/21655979.2021.2006567.
    1. Peng T., Li Z., Li D., Wang S. MACC1 promotes angiogenesis in cholangiocarcinoma by upregulating VEGFA. Onco Targets Ther. 2019;12:1893–1903. doi: 10.2147/OTT.S197319.
    1. Zhang Z., Jia H., Wang Y., Du B., Zhong J. Association of MACC1 expression with lymphatic metastasis in colorectal cancer: A nested case-control study. PLoS ONE. 2021;16:e0255489. doi: 10.1371/journal.pone.0255489.
    1. Lin L., Huang H., Liao W., Ma H., Liu J., Wang L., Huang N., Liao Y., Liao W. MACC1 supports human gastric cancer growth under metabolic stress by enhancing the Warburg effect. Oncogene. 2015;34:2700–2710. doi: 10.1038/onc.2014.204.
    1. Wu Z.Z., Chen L.S., Zhou R., Bin J.P., Liao Y.L., Liao W.J. Metastasis-associated in colon cancer-1 in gastric cancer: Beyond metastasis. World J. Gastroenterol. 2016;22:6629–6637. doi: 10.3748/wjg.v22.i29.6629.
    1. Xiong M., Wang M., Yan Y., Chen X., Guo W., Xu M., Guo S., Wang Y., Pan J. MACC1 Promotes the Progression and Is a Novel Biomarker for Predicting Immunotherapy Response in Colorectal Cancer. J. Oncol. 2022;2022:8326940. doi: 10.1155/2022/8326940.
    1. Zhao Y., Liu Y., Lin L., Huang Q., He W., Zhang S., Dong S., Wen Z., Rao J., Liao W., et al. The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Mol. Cancer. 2018;17:69. doi: 10.1186/s12943-018-0820-2.
    1. Van Der Steen N., Giovannetti E., Pauwels P., Peters G.J., Hong D.S., Cappuzzo F., Hirsch F.R., Rolfo C. cMET Exon 14 Skipping: From the Structure to the Clinic. J. Thorac. Oncol. 2016;11:1423–1432. doi: 10.1016/j.jtho.2016.05.005.
    1. Wang R., Wei Z., Jin H., Wu H., Yu C., Wen W., Chan L.N., Wen Z., Zhang M. Autoinhibition of UNC5b revealed by the cytoplasmic domain structure of the receptor. Mol. Cell. 2009;33:692–703. doi: 10.1016/j.molcel.2009.02.016.
    1. Pichorner A., Sack U., Kobelt D., Kelch I., Arlt F., Smith J., Walther W., Schlag P.M., Stein U. In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice. Clin. Exp. Metastasis. 2012;29:573–583. doi: 10.1007/s10585-012-9472-6.
    1. Terada N., Ohno N., Saitoh S., Seki G., Komada M., Suzuki T., Yamakawa H., Soleimani M., Ohno S. Interaction of membrane skeletal protein, protein 4.1B and p55, and sodium bicarbonate cotransporter1 in mouse renal S1–S2 proximal tubules. J. Histochem. Cytochem. 2007;55:1199–1206. doi: 10.1369/jhc.7A7266.2007.
    1. Birchmeier C., Birchmeier W., Gherardi E., Vande Woude G.F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell. Biol. 2003;4:915–925. doi: 10.1038/nrm1261.
    1. Joosten S.P.J., Spaargaren M., Clevers H., Pals S.T. Hepatocyte growth factor/MET and CD44 in colorectal cancer: Partners in tumorigenesis and therapy resistance. Biochim. Biophys. Acta Rev. Cancer. 2020;1874:188437. doi: 10.1016/j.bbcan.2020.188437.
    1. Kwon Y., Godwin A.K. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer. Reprod. Sci. 2017;24:494–501. doi: 10.1177/1933719116648212.
    1. Mhawech-Fauceglia P., Afkhami M., Pejovic T. MET/HGF Signaling Pathway in Ovarian Carcinoma: Clinical Implications and Future Direction. Patholog. Res. Int. 2012;2012:960327. doi: 10.1155/2012/960327.
    1. Shen Y., Chen Q., Li L. Endostar regulates EMT, migration and invasion of lung cancer cells through the HGF-Met pathway. Mol. Cell. Probes. 2019;45:57–64. doi: 10.1016/j.mcp.2019.05.003.
    1. Huang X., Gan G., Wang X., Xu T., Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258–1279. doi: 10.1080/15548627.2019.1580105.
    1. Wang C., Xi W., Ji J., Cai Q., Zhao Q., Jiang J., Zhou C., Shi M., Zhang H., Zhu Z., et al. The prognostic value of HGF-c-MET signaling pathway in Gastric Cancer: A study based on TCGA and GEO databases. Int. J. Med. Sci. 2020;17:1946–1955. doi: 10.7150/ijms.44952.
    1. Thayaparan T., Spicer J.F., Maher J. The role of the HGF/Met axis in mesothelioma. Biochem. Soc. Trans. 2016;44:363–370. doi: 10.1042/BST20150252.
    1. Giuliani C. The Flavonoid Quercetin Induces AP-1 Activation in FRTL-5 Thyroid Cells. Antioxidants. 2019;8:112. doi: 10.3390/antiox8050112.
    1. Yang J., Yang L., Li S., Hu N. HGF/c-Met Promote Renal Carcinoma Cancer Stem Cells Enrichment Through Upregulation of Cir-CCDC66. Technol. Cancer Res. Treat. 2020;19:1533033819901114. doi: 10.1177/1533033819901114.
    1. Vasudevan K.M., Garraway L.A. AKT signaling in physiology and disease. Curr. Top. Microbiol. Immunol. 2010;347:105–133. doi: 10.1007/82_2010_66.
    1. Tong G., Cheng B., Li J., Wu X., Nong Q., He L., Li X., Li L., Wang S. MACC1 regulates PDL1 expression and tumor immunity through the c-Met/AKT/mTOR pathway in gastric cancer cells. Cancer Med. 2019;8:7044–7054. doi: 10.1002/cam4.2542.
    1. Liu J., Pan C., Guo L., Wu M., Guo J., Peng S., Wu Q., Zuo Q. A new mechanism of trastuzumab resistance in gastric cancer: MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway. J. Hematol. Oncol. 2016;9:76. doi: 10.1186/s13045-016-0302-1.
    1. Pan T., Chen W., Yuan X., Shen J., Qin C., Wang L. miR-944 inhibits metastasis of gastric cancer by preventing the epithelial-mesenchymal transition via MACC1/Met/AKT signaling. FEBS Open Bio. 2017;7:905–914. doi: 10.1002/2211-5463.12215.
    1. Yao Y., Dou C., Lu Z., Zheng X., Liu Q. MACC1 suppresses cell apoptosis in hepatocellular carcinoma by targeting the HGF/c-MET/AKT pathway. Cell. Physiol. Biochem. 2015;35:983–996. doi: 10.1159/000369754.
    1. Zhou X., Xu C.J., Wang J.X., Dai T., Ye Y.P., Cui Y.M., Liao W.T., Wu X.L., Ou J.P. Metastasis-Associated in Colon Cancer-1 Associates With Poor Prognosis and Promotes Cell Invasion and Angiogenesis in Human Cervical Cancer. Int. J. Gynecol. Cancer. 2015;25:1353–1363. doi: 10.1097/IGC.0000000000000524.
    1. Zhang K., Tian F., Zhang Y., Zhu Q., Xue N., Zhu H., Wang H., Guo X. MACC1 is involved in the regulation of proliferation, colony formation, invasion ability, cell cycle distribution, apoptosis and tumorigenicity by altering Akt signaling pathway in human osteosarcoma. Tumour. Biol. 2014;35:2537–2548. doi: 10.1007/s13277-013-1335-5.
    1. Zhang Q., Zhang B., Sun L., Yan Q., Zhang Y., Zhang Z., Su Y., Wang C. Cisplatin resistance in lung cancer is mediated by MACC1 expression through PI3K/AKT signaling pathway activation. Acta Biochim. Biophys. Sin. 2018;50:748–756. doi: 10.1093/abbs/gmy074.
    1. Wang G., Kang M.X., Lu W.J., Chen Y., Zhang B., Wu Y.L. MACC1: A potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncol. Lett. 2012;4:783–791. doi: 10.3892/ol.2012.784.
    1. Meng F., Li H., Shi H., Yang Q., Zhang F., Yang Y., Kang L., Zhen T., Dai S., Dong Y., et al. MACC1 down-regulation inhibits proliferation and tumourigenicity of nasopharyngeal carcinoma cells through Akt/beta-catenin signaling pathway. PLoS ONE. 2013;8:e60821. doi: 10.1371/journal.pone.0060821.
    1. Wang J., Wang W., Cai H., Du B., Zhang L., Ma W., Hu Y., Feng S., Miao G. MACC1 facilitates chemoresistance and cancer stem celllike properties of colon cancer cells through the PI3K/AKT signaling pathway. Mol. Med. Rep. 2017;16:8747–8754. doi: 10.3892/mmr.2017.7721.
    1. Shi X.Y., Zhang X.L., Shi Q.Y., Qiu X., Wu X.B., Zheng B.L., Jiang H.X., Qin S.Y. IFN-gamma affects pancreatic cancer properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway. Clin. Transl. Oncol. 2022;24:1073–1085. doi: 10.1007/s12094-021-02748-w.
    1. Zhou W., Liu L., Xue Y., Zheng J., Liu X., Ma J., Li Z., Liu Y. Combination of Endothelial-Monocyte-Activating Polypeptide-II with Temozolomide Suppress Malignant Biological Behaviors of Human Glioblastoma Stem Cells via miR-590-3p/MACC1 Inhibiting PI3K/AKT/mTOR Signal Pathway. Front. Mol. Neurosci. 2017;10:68. doi: 10.3389/fnmol.2017.00068.
    1. Wang L., Zhou R., Zhao Y., Dong S., Zhang J., Luo Y., Huang N., Shi M., Bin J., Liao Y., et al. MACC-1 Promotes Endothelium-Dependent Angiogenesis in Gastric Cancer by Activating TWIST1/VEGF-A Signal Pathway. PLoS ONE. 2016;11:e0157137. doi: 10.1371/journal.pone.0157137.
    1. Hua F.F., Liu S.S., Zhu L.H., Wang Y.H., Liang X., Ma N., Shi H.R. MiRNA-338-3p regulates cervical cancer cells proliferation by targeting MACC1 through MAPK signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2017;21:5342–5352. doi: 10.26355/eurrev_201712_13919.
    1. Lemos C., Hardt M.S., Juneja M., Voss C., Forster S., Jerchow B., Haider W., Blaker H., Stein U. MACC1 Induces Tumor Progression in Transgenic Mice and Colorectal Cancer Patients via Increased Pluripotency Markers Nanog and Oct4. Clin. Cancer Res. 2016;22:2812–2824. doi: 10.1158/1078-0432.CCR-15-1425.
    1. Shenoy A.R., Kirschnek S., Hacker G. IL-15 regulates Bcl-2 family members Bim and Mcl-1 through JAK/STAT and PI3K/AKT pathways in T cells. Eur. J. Immunol. 2014;44:2500–2507. doi: 10.1002/eji.201344238.
    1. Cayrol F., Praditsuktavorn P., Fernando T.M., Kwiatkowski N., Marullo R., Calvo-Vidal M.N., Phillip J., Pera B., Yang S.N., Takpradit K., et al. Corrigendum: THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat. Commun. 2017;8:14747. doi: 10.1038/ncomms14747.
    1. Radhakrishnan H., Ilm K., Walther W., Shirasawa S., Sasazuki T., Daniel P.T., Gillissen B., Stein U. MACC1 regulates Fas mediated apoptosis through STAT1/3—Mcl-1 signaling in solid cancers. Cancer Lett. 2017;403:231–245. doi: 10.1016/j.canlet.2017.06.020.
    1. Huang Y., Zhang H., Cai J., Fang L., Wu J., Ye C., Zhu X., Li M. Overexpression of MACC1 and Its significance in human Breast Cancer Progression. Cell Biosci. 2013;3:16. doi: 10.1186/2045-3701-3-16.
    1. Srabovic N., Mujagic Z., Mujanovic-Mustedanagic J., Softic A., Muminovic Z., Rifatbegovic A., Begic L. Vascular endothelial growth factor receptor-1 expression in breast cancer and its correlation to vascular endothelial growth factor A. Int. J. Breast Cancer. 2013;2013:746749. doi: 10.1155/2013/746749.
    1. Toi M., Matsumoto T., Bando H. Vascular endothelial growth factor: Its prognostic, predictive, and therapeutic implications. Lancet Oncol. 2001;2:667–673. doi: 10.1016/S1470-2045(01)00556-3.
    1. Soyleyici N.A., Aslan F., Avcykurt A.S., Akgun G.A. Importance of MACC1 expression in breast cancer and its relationship with pathological prognostic markers. Indian J. Pathol. Microbiol. 2020;63:19–24. doi: 10.4103/IJPM.IJPM_658_19.
    1. Prguda-Mujic J., Milde-Langosch K., Mueller V., Suljagic M., Coric J., Ler D. The Predictive Significance of Metastasis-Associated in Colon Cancer-1 (MACC1) in Primary Breast Cancer. Ann. Clin. Lab. Sci. 2018;48:191–196.
    1. Koh Y.W., Hur H., Lee D. Increased MACC1 expression indicates a poor prognosis independent of MET expression in gastric adenocarcinoma. Pathol. Res. Pract. 2016;212:93–100. doi: 10.1016/j.prp.2015.11.018.
    1. Van Loo P., Nilsen G., Nordgard S.H., Vollan H.K., Borresen-Dale A.L., Kristensen V.N., Lingjaerde O.C. Analyzing cancer samples with SNP arrays. Methods Mol. Biol. 2012;802:57–72. doi: 10.1007/978-1-61779-400-1_4.
    1. Zheng Z., Gao S., Yang Z., Xie H., Zhang C., Lin B., Wu L., Zheng S., Zhou L. Single nucleotide polymorphisms in the metastasis-associated in colon cancer-1 gene predict the recurrence of hepatocellular carcinoma after transplantation. Int. J. Med. Sci. 2014;11:142–150. doi: 10.7150/ijms.7142.
    1. Lang A.H., Geller-Rhomberg S., Winder T., Stark N., Gasser K., Hartmann B., Kohler B., Grizelj I., Drexel H., Muendlein A. A common variant of the MACC1 gene is significantly associated with overall survival in colorectal cancer patients. BMC Cancer. 2012;12:20. doi: 10.1186/1471-2407-12-20.
    1. Hu R.H., Chuang C.Y., Lin C.W., Su S.C., Chang L.C., Wu S.W., Liu Y.F., Yang S.F. Effect of MACC1 Genetic Polymorphisms and Environmental Risk Factors in the Occurrence of Oral Squamous Cell Carcinoma. J. Pers. Med. 2021;11:490. doi: 10.3390/jpm11060490.
    1. Dai Z.J., Liu X.H., Kang H.F., Wang X.J., Jin T.B., Zhang S.Q., Feng T., Ma X.B., Wang M., Feng Y.J., et al. Genetic Variation in Metastasis-Associated in Colon Cancer-1 and the Risk of Breast Cancer Among the Chinese Han Population: A STROBE-Compliant Observational Study. Medicine. 2016;95:e2801. doi: 10.1097/MD.0000000000002801.
    1. Muendlein A., Hubalek M., Geller-Rhomberg S., Gasser K., Winder T., Drexel H., Decker T., Mueller-Holzner E., Chamson M., Marth C., et al. Significant survival impact of MACC1 polymorphisms in HER2 positive breast cancer patients. Eur. J. Cancer. 2014;50:2134–2141. doi: 10.1016/j.ejca.2014.05.007.
    1. Fuse N., Kuboki Y., Kuwata T., Nishina T., Kadowaki S., Shinozaki E., Machida N., Yuki S., Ooki A., Kajiura S., et al. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric. Cancer. 2016;19:183–191. doi: 10.1007/s10120-015-0471-6.
    1. Wang L., Fan L., Xu H., Jiang H. Prognostic significance of the expression of metastasis-associated in colon cancer-1 in gynecologic cancers and breast cancer: A protocol for systematic review and meta-analysis. Medicine. 2021;100:e24255. doi: 10.1097/MD.0000000000024255.
    1. Tan W., Xie X., Li L., Tang H., Ye X., Chen L., Tang W., Gao J., Pan L., Zhang X., et al. Diagnostic and prognostic value of serum MACC1 in breast cancer patients. Res. Pap. 2016;7:84408–84415. doi: 10.18632/oncotarget.12910.
    1. Ali D.A., El-Guindy D.M., Elrashidy M.A., Sabry N.M., Kabel A.M., Gaber R.A., Ibrahim R.R., Samy S.M., Shalaby M.M., Salama S.A., et al. The Prognostic Significance of MACC1 Expression in Breast Cancer and Its Relationship to Immune Cells in the Tumor Microenvironment and Patient Survival. Medicina. 2021;57:934. doi: 10.3390/medicina57090934.
    1. Sueta A., Yamamoto Y., Yamamoto-Ibusuki M., Hayashi M., Takeshita T., Yamamoto S., Omoto Y., Iwase H. Differential role of MACC1 expression and its regulation of the HGF/cMet pathway between breast and colorectal cancer. Int. J. Oncol. 2015;46:2143–2153. doi: 10.3892/ijo.2015.2907.
    1. Lin D., Shen L., Luo M., Zhang K., Li J., Yang Q., Zhu F., Zhou D., Zheng S., Chen Y., et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 2021;6:404. doi: 10.1038/s41392-021-00817-8.
    1. Shekari N., Baradaran B., Shanehbandi D., Kazemi T. Circulating MicroRNAs: Valuable Biomarkers for the Diagnosis and Prognosis of Gastric Cancer. Curr. Med. Chem. 2018;25:698–714. doi: 10.2174/0929867324666171003123425.
    1. Gion M., Trevisiol C., Fabricio A.S.C. State of the art and trends of circulating cancer biomarkers. Int. J. Biol. Markers. 2020;35:12–15. doi: 10.1177/1724600819900512.
    1. Meraj Ahmed M.A. Serum MACC-1: A new biomarker for breast cancer. Res. Pap. 2020;11:4521–4526. doi: 10.18632/oncotarget.27813.
    1. Gil Del Alcazar C.R., Alečković M., Polyak K. Immune Escape during Breast Tumor Progression. Cancer Immunol. Res. 2020;8:422–427. doi: 10.1158/2326-6066.CIR-19-0786.
    1. Ramos R.N., Amano M.T., Paes Leme A.F., Fox J.W., de Oliveira A.K. Editorial: Tumor microenvironment (TME) and tumor immune microenvironment (TIME): New perspectives for prognosis and therapy. Front. Cell. Dev. Biol. 2022;10:971275. doi: 10.3389/fcell.2022.971275.
    1. Ge Z., Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front. Oncol. 2020;10:590941. doi: 10.3389/fonc.2020.590941.
    1. Krneta T., Gillgrass A., Poznanski S., Chew M., Lee A.J., Kolb M., Ashkar A.A. M2-polarized and tumor-associated macrophages alter NK cell phenotype and function in a contact-dependent manner. J. Leukoc. Biol. 2017;101:285–295. doi: 10.1189/jlb.3A1215-552R.
    1. Abdin S.M., Paasch D., Morgan M., Lachmann N. CARs and beyond: Tailoring macrophage-based cell therapeutics to combat solid malignancies. J. Immunother. Cancer. 2021;9:e002741. doi: 10.1136/jitc-2021-002741.
    1. Lin B., Du L., Li H., Zhu X., Cui L., Li X. Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed. Pharmacother. 2020;132:110873. doi: 10.1016/j.biopha.2020.110873.
    1. Rezaeifard S., Talei A., Shariat M., Erfani N. Tumor infiltrating NK cell (TINK) subsets and functional molecules in patients with breast cancer. Mol. Immunol. 2021;136:161–167. doi: 10.1016/j.molimm.2021.03.003.
    1. Gabrielson A., Wu Y., Wang H., Jiang J., Kallakury B., Gatalica Z., Reddy S., Kleiner D., Fishbein T., Johnson L., et al. Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free Survival in HCC. Cancer Immunol. Res. 2016;4:419–430. doi: 10.1158/2326-6066.CIR-15-0110.
    1. Yang Y., Attwood K., Bshara W., Mohler J.L., Guru K., Xu B., Kalinski P., Chatta G. High intratumoral CD8(+) T-cell infiltration is associated with improved survival in prostate cancer patients undergoing radical prostatectomy. Prostate. 2021;81:20–28. doi: 10.1002/pros.24068.
    1. Deng M., Li S.H., Fu X., Yan X.P., Chen J., Qiu Y.D., Guo R.P. Relationship between PD-L1 expression, CD8+ T-cell infiltration and prognosis in intrahepatic cholangiocarcinoma patients. Cancer Cell. Int. 2021;21:371. doi: 10.1186/s12935-021-02081-w.
    1. Hu D., Li L., Shi W., Zhang L. Less expression of CD4(+) and CD8(+) T cells might reflect the severity of infection and predict worse prognosis in patients with COVID-19: Evidence from a pooled analysis. Clin. Chim. Acta. 2020;510:1–4. doi: 10.1016/j.cca.2020.06.040.
    1. Suwa T., Kobayashi M., Nam J.M., Harada H. Tumor microenvironment and radioresistance. Exp. Mol. Med. 2021;53:1029–1035. doi: 10.1038/s12276-021-00640-9.
    1. Jang B.S., Han W., Kim I.A. Tumor mutation burden, immune checkpoint crosstalk and radiosensitivity in single-cell RNA sequencing data of breast cancer. Radiother. Oncol. 2020;142:202–209. doi: 10.1016/j.radonc.2019.11.003.
    1. Zhang X., Zhou Y., Chen S., Li W., Chen W., Gu W. LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1. Oncogenesis. 2019;8:73. doi: 10.1038/s41389-019-0182-7.
    1. Jia L., Yang X., Tian W., Guo S., Huang W., Zhao W. Increased Expression of c-Met is Associated with Chemotherapy-Resistant Breast Cancer and Poor Clinical Outcome. Med. Sci. Monit. 2018;24:8239–8249. doi: 10.12659/MSM.913514.
    1. Yue D., Qin X. miR-182 regulates trastuzumab resistance by targeting MET in breast cancer cells. Cancer Gene. Ther. 2019;26:1–10. doi: 10.1038/s41417-018-0031-4.
    1. Shattuck D.L., Miller J.K., Carraway K.L., 3rd, Sweeney C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res. 2008;68:1471–1477. doi: 10.1158/0008-5472.CAN-07-5962.
    1. Parr C., Ali A.Y. Boswellia frereana suppresses HGF-mediated breast cancer cell invasion and migration through inhibition of c-Met signalling. J. Transl. Med. 2018;16:281. doi: 10.1186/s12967-018-1660-y.
    1. Venkatesh J., Wasson M.D., Brown J.M., Fernando W., Marcato P. LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack. Cancer Lett. 2021;509:81–88. doi: 10.1016/j.canlet.2021.04.002.
    1. Jadaliha M., Gholamalamdari O., Tang W., Zhang Y., Petracovici A., Hao Q., Tariq A., Kim T.G., Holton S.E., Singh D.K., et al. A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet. 2018;14:e1007802. doi: 10.1371/journal.pgen.1007802.
    1. Wasson M.D., Brown J.M., Venkatesh J., Fernando W., Marcato P. Datasets exploring putative lncRNA-miRNA-mRNA axes in breast cancer cell lines. Data Brief. 2021;37:107241. doi: 10.1016/j.dib.2021.107241.
    1. Mao W., Li T. LncRNA MACC1-AS1 Promotes Lung Adenocarcinoma Cell Proliferation by Downregulating PTEN. Cancer Biother. Radiopharm. 2020;35:313–318. doi: 10.1089/cbr.2019.3020.
    1. Tong H., Liu X., Li T., Qiu W., Peng C., Shen B., Zhu Z. MACC1-AS1 promotes hepatocellular carcinoma cell invasion and proliferation by regulating PAX8. Albany NY. 2020;12:70–79. doi: 10.18632/aging.102585.
    1. Guo Y., Zhong J., Wu F., Zhan Z. Long noncoding RNA MACC1-AS1 promotes the stemness of hepatocellular carcinoma cells by antagonizing miR-145. J. Int. Med. Res. 2020;48:300060520920411. doi: 10.1177/0300060520920411.
    1. Jin J., Chen X., Chen J., Geng X. Long noncoding RNA MACC1-AS1 is a potential sponge of microRNA-34a in cervical squamous cell carcinoma and upregulates cyclin-dependent kinase 6. Oncol. Lett. 2020;19:2339–2345. doi: 10.3892/ol.2020.11346.
    1. Qi C., Xiaofeng C., Dongen L., Liang Y., Liping X., Yue H., Jianshuai J. Long non-coding RNA MACC1-AS1 promoted pancreatic carcinoma progression through activation of PAX8/NOTCH1 signaling pathway. J. Exp. Clin. Cancer Res. 2019;38:344. doi: 10.1186/s13046-019-1332-7.
    1. Zhang X., Zhu Y., Wu J.D., Zhou Y., Chen W., Gu W. Two lncRNAs, MACC1-AS1 and UCA1, co-mediate the expression of multiple mRNAs through interaction with individual miRNAs in breast cancer cells. Noncoding RNA Res. 2022;7:164–170. doi: 10.1016/j.ncrna.2022.06.003.

Source: PubMed

3
Abonnere