The Multi-Functional Calcium/Calmodulin Stimulated Protein Kinase (CaMK) Family: Emerging Targets for Anti-Cancer Therapeutic Intervention

Joshua S Brzozowski, Kathryn A Skelding, Joshua S Brzozowski, Kathryn A Skelding

Abstract

The importance of Ca2+ signalling in key events of cancer cell function and tumour progression, such as proliferation, migration, invasion and survival, has recently begun to be appreciated. Many cellular Ca2+-stimulated signalling cascades utilise the intermediate, calmodulin (CaM). The Ca2+/CaM complex binds and activates a variety of enzymes, including members of the multifunctional Ca2+/calmodulin-stimulated protein kinase (CaMK) family. These enzymes control a broad range of cancer-related functions in a multitude of tumour types. Herein, we explore the cancer-related functions of these kinases and discuss their potential as targets for therapeutic intervention.

Keywords: CaMKI; CaMKII; CaMKIV; CaMKK; anti-cancer drugs.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic representing the domain structure of CaMKK. There are two CaMKK isoforms—CaMKKα and CaMKKβ. CaMKK consists of a unique N-terminal domain (grey), a catalytic domain (red) which contains an ATP binding region, and a regulatory domain (blue) containing overlapping autoinhibitory and calmodulin (CaM) binding regions. Phosphorylation sites are indicated by green balls, with protein kinase A (PKA) phosphorylation sites indicated with red arrows.
Figure 2
Figure 2
Schematic representing the domain structure of the CaMKI family. There are four CaMKI isoforms—CaMKIα, CaMKIβ, CaMKIγ, and CaMKIδ, with each isoform sharing a similar structure. CaMKI consists of a unique N-terminal domain (grey), adjacent to a catalytic domain (red) which contains an ATP binding region, and a regulatory domain (blue) containing overlapping autoinhibitory and calmodulin (CaM) binding regions. Phosphorylation sites are indicated by green balls.
Figure 3
Figure 3
Schematic representing the domain structure of the CaMKII family. There are four CaMKII isoforms—CaMKIIα, CaMKIIβ, CaMKIIγ, and CaMKIIδ, with each isoform sharing a similar structure. CaMKII consists of a unique N-terminal domain (grey), adjacent to a catalytic domain (red) which contains an ATP binding region, and a regulatory domain (blue) containing overlapping autoinhibitory and calmodulin (CaM) binding regions. Phosphorylation sites are indicated by green balls. All isoforms also contain a C-terminal association domain (brown), which is involved in the formation of CaMKII multimers.
Figure 4
Figure 4
Schematic representing the domain structure of the CaMKIV family. The two CaMKIV isoforms—CaMKIVα and CaMKIIβ differ only at their N-terminus. CaMKIV consists of a unique N-terminal domain (grey), adjacent to a catalytic domain (red) which contains an ATP binding region, and a regulatory domain (blue) containing overlapping autoinhibitory and calmodulin (CaM) binding regions. Phosphorylation sites are indicated (green balls).
Figure 5
Figure 5
Structures of STO-609, KN-62, KN-93, berbamine dihydrochloride and bbd24.

References

    1. Stewart T.A., Yapa K.T., Monteith G.R. Altered calcium signaling in cancer cells. Biochim. Biophys. Acta. 2015;1848:2502–2511. doi: 10.1016/j.bbamem.2014.08.016.
    1. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9.
    1. Okuno S., Kitani T., Fujisawa H. Studies on the substrate specificity of Ca2+/calmodulin-dependent protein kinase kinase alpha. J. Biochem. 1997;122:337–343. doi: 10.1093/oxfordjournals.jbchem.a021758.
    1. Ishikawa Y., Tokumitsu H., Inuzuka H., Murata-Hori M., Hosoya H., Kobayashi R. Identification and characterization of novel components of a Ca2+/calmodulin-dependent protein kinase cascade in HeLa cells. FEBS Lett. 2003;550:57–63. doi: 10.1016/S0014-5793(03)00817-2.
    1. Hsu L.S., Chen G.D., Lee L.S., Chi C.W., Cheng J.F., Chen J.Y. Human Ca2+/calmodulin-dependent protein kinase kinase beta gene encodes multiple isoforms that display distinct kinase activity. J. Biol. Chem. 2001;276:31113–31123. doi: 10.1074/jbc.M011720200.
    1. Tokumitsu H., Brickey D.A., Glod J., Hidaka H., Sikela J., Soderling T.R. Activation mechanisms for Ca2+/calmodulin-dependent protein kinase IV. Identification of a brain CaM-kinase IV kinase. J. Biol. Chem. 1994;269:28640–28647.
    1. Lee J.C., Edelman A.M. A protein activator of Ca(2+)-calmodulin-dependent protein kinase Ia. J. Biol. Chem. 1994;269:2158–2164.
    1. Edelman A.M., Mitchelhill K.I., Selbert M.A., Anderson K.A., Hook S.S., Stapleton D., Goldstein E.G., Means A.R., Kemp B.E. Multiple Ca(2+)-calmodulin-dependent protein kinase kinases from rat brain. Purification, regulation by Ca(2+)-calmodulin, and partial amino acid sequence. J. Biol. Chem. 1996;271:10806–10810. doi: 10.1074/jbc.271.18.10806.
    1. Ohmstede C.A., Jensen K.F., Sahyoun N.E. Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. J. Biol. Chem. 1989;264:5866–5875.
    1. Racioppi L., Means A.R. Calcium/calmodulin-dependent protein kinase kinase 2: Roles in signaling and pathophysiology. J. Biol. Chem. 2012;287:31658–31665. doi: 10.1074/jbc.R112.356485.
    1. Anderson K.A., Means R.L., Huang Q.H., Kemp B.E., Goldstein E.G., Selbert M.A., Edelman A.M., Fremeau R.T., Means A.R. Components of a calmodulin-dependent protein kinase cascade. Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase beta. J. Biol. Chem. 1998;273:31880–31889. doi: 10.1074/jbc.273.48.31880.
    1. Hawley S.A., Selbert M.A., Goldstein E.G., Edelman A.M., Carling D., Hardie D.G. 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 1995;270:27186–27191. doi: 10.1074/jbc.270.45.27186.
    1. Yano S., Tokumitsu H., Soderling T.R. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 1998;396:584–587. doi: 10.1038/25147.
    1. Anderson K.A., Means A.R. Defective signaling in a subpopulation of CD4(+) T cells in the absence of Ca(2+)/calmodulin-dependent protein kinase IV. Mol. Cell. Biol. 2002;22:23–29. doi: 10.1128/MCB.22.1.23-29.2002.
    1. Neal A.P., Molina-Campos E., Marrero-Rosado B., Bradford A.B., Fox S.M., Kovalova N., Hannon H.E. CaMKK-CaMKI signaling pathways differentially control axon and dendrite elongation in cortical neurons. J. Neurosci. 2010;30:2807–2809. doi: 10.1523/JNEUROSCI.5984-09.2010.
    1. Kitsos C.M., Sankar U., Illario M., Colomer-Font J.M., Duncan A.W., Ribar T.J., Reya T., Means A.R. Calmodulin-dependent protein kinase IV regulates hematopoietic stem cell maintenance. J. Biol. Chem. 2005;280:33101–33108. doi: 10.1074/jbc.M505208200.
    1. Kahl C.R., Means A.R. Regulation of cyclin D1/Cdk4 complexes by calcium/calmodulin-dependent protein kinase I. J. Biol. Chem. 2004;279:15411–15419. doi: 10.1074/jbc.M312543200.
    1. Anderson K.A., Ribar T.J., Illario M., Means A.R. Defective survival and activation of thymocytes in transgenic mice expressing a catalytically inactive form of Ca2+/calmodulin-dependent protein kinase IV. Mol. Endocrinol. 1997;11:725–737. doi: 10.1210/mend.11.6.0011.
    1. Wayman G.A., Lee Y.S., Tokumitsu H., Silva A.J., Soderling T.R. Calmodulin-kinases: Modulators of neuronal development and plasticity. Neuron. 2008;59:914–931. doi: 10.1016/j.neuron.2008.08.021.
    1. Lin F., Ribar T.J., Means A.R. The Ca2+/calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation. Endocrinology. 2011;152:3668–3679. doi: 10.1210/en.2011-1107.
    1. Witczak C.A., Fujii N., Hirshman M.F., Goodyear L.J. Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation. Diabetes. 2007;56:1403–1409. doi: 10.2337/db06-1230.
    1. Tokumitsu H., Soderling T.R. Requirements for calcium and calmodulin in the calmodulin kinase activation cascade. J. Biol. Chem. 1996;271:5617–5622. doi: 10.1074/jbc.271.10.5617.
    1. Green M.F., Scott J.W., Steel R., Oakhill J.S., Kemp B.E., Means A.R. Ca2+/Calmodulin-dependent Protein Kinase Kinase beta Is Regulated by Multisite Phosphorylation. J. Biol. Chem. 2011;286:28066–28079. doi: 10.1074/jbc.M111.251504.
    1. Wayman G.A., Tokumitsu H., Soderling T.R. Inhibitory cross-talk by cAMP kinase on the calmodulin-dependent protein kinase cascade. J. Biol. Chem. 1997;272:16073–16076. doi: 10.1074/jbc.272.26.16073.
    1. Okuno S., Kitani T., Fujisawa H. Regulation of Ca(2+)/calmodulin-dependent protein kinase kinase alpha by cAMP-dependent protein kinase: I. Biochemical analysis. J. Biochem. 2001;130:503–513. doi: 10.1093/oxfordjournals.jbchem.a003013.
    1. Tokumitsu H., Hatano N., Fujimoto T., Yurimoto S., Kobayashi R. Generation of autonomous activity of Ca(2+)/calmodulin-dependent protein kinase kinase beta by autophosphorylation. Biochemistry. 2011;50:8193–8201. doi: 10.1021/bi201005g.
    1. Davare M.A., Saneyoshi T., Guire E.S., Nygaard S.C., Soderling T.R. Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J. Biol. Chem. 2004;279:52191–52199. doi: 10.1074/jbc.M409873200.
    1. Matsushita M., Nairn A.C. Inhibition of the Ca2+/calmodulin-dependent protein kinase I cascade by cAMP-dependent protein kinase. J. Biol. Chem. 1999;274:10086–10093. doi: 10.1074/jbc.274.15.10086.
    1. Loseth O.P., de Lecea L., Calbet M., Danielson P.E., Gautvik V., Hovring P.I., Walaas S.I., Gautvik K.M. Developmental regulation of two isoforms of Ca(2+)/calmodulin-dependent protein kinase I beta in rat brain. Brain Res. 2000;869:137–145. doi: 10.1016/S0006-8993(00)02359-3.
    1. Picciotto M.R., Zoli M., Bertuzzi G., Nairn A.C. Immunochemical localization of calcium/calmodulin-dependent protein kinase I. Synapse. 1995;20:75–84. doi: 10.1002/syn.890200111.
    1. Kamata A., Sakagami H., Tokumitsu H., Owada Y., Fukunaga K., Kondo H. Spatiotemporal expression of four isoforms of Ca2+/calmodulin-dependent protein kinase I in brain and its possible roles in hippocampal dendritic growth. Neurosci. Res. 2007;57:86–97. doi: 10.1016/j.neures.2006.09.013.
    1. Nairn A.C., Greengard P. Purification and characterization of Ca2+/calmodulin-dependent protein kinase I from bovine brain. J. Biol. Chem. 1987;262:7273–7281.
    1. Joseph J.D., Means A.R. Identification and characterization of two Ca2+/CaM-dependent protein kinases required for normal nuclear division in Aspergillus nidulans. J. Biol. Chem. 2000;275:38230–38238. doi: 10.1074/jbc.M006422200.
    1. Skelding K.A., Rostas J.A., Verrills N.M. Controlling the cell cycle: The role of calcium/calmodulin-stimulated protein kinases I and II. Cell Cycle. 2011;10:631–639. doi: 10.4161/cc.10.4.14798.
    1. Wayman G.A., Kaech S., Grant W.F., Davare M., Impey S., Tokumitsu H., Nozaki N., Banker G., Soderling T.R. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J. Neurosci. 2004;24:3786–3794. doi: 10.1523/JNEUROSCI.3294-03.2004.
    1. Condon J.C., Pezzi V., Drummond B.M., Yin S., Rainey W.E. Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Endocrinology. 2002;143:3651–3657. doi: 10.1210/en.2001-211359.
    1. Takemoto-Kimura S., Ageta-Ishihara N., Nonaka M., Adachi-Morishima A., Mano T., Okamura M., Fujii H., Fuse T., Hoshino M., Suzuki S., et al. Regulation of dendritogenesis via a lipid-raft-associated Ca2+/calmodulin-dependent protein kinase CLICK-III/CaMKIgamma. Neuron. 2007;54:755–770. doi: 10.1016/j.neuron.2007.05.021.
    1. Schmitt J.M., Guire E.S., Saneyoshi T., Soderling T.R. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation. J. Neurosci. 2005;25:1281–1290. doi: 10.1523/JNEUROSCI.4086-04.2005.
    1. Ang E.S., Zhang P., Steer J.H., Tan J.W., Yip K., Zheng M.H., Joyce D.A., Xu J. Calcium/calmodulin-dependent kinase activity is required for efficient induction of osteoclast differentiation and bone resorption by receptor activator of nuclear factor kappa B ligand (RANKL) J. Cell. Physiol. 2007;212:787–795. doi: 10.1002/jcp.21076.
    1. Haribabu B., Hook S.S., Selbert M.A., Goldstein E.G., Tomhave E.D., Edelman A.M., Snyderman R., Means A.R. Human Calcium-Calmodulin Dependent Protein-Kinase-I—Cdna Cloning, Domain-Structure and Activation by Phosphorylation at Threonine-177 by Calcium-Calmodulin Dependent Protein-Kinase-I Kinase. EMBO J. 1995;14:3679–3686. doi: 10.1002/j.1460-2075.1995.tb00037.x.
    1. Takemoto-Kimura S., Terai H., Takamoto M., Ohmae S., Kikumura S., Segi E., Arakawa Y., Furuyashiki T., Narumiya S., Bito H. Molecular cloning and characterization of CLICK-III/CaMKIgamma, a novel membrane-anchored neuronal Ca2+/calmodulin-dependent protein kinase (CaMK) J. Biol. Chem. 2003;278:18597–18605. doi: 10.1074/jbc.M300578200.
    1. Senga Y., Ishida A., Shigeri Y., Kameshita I., Sueyoshi N. The Phosphatase-Resistant Isoform of CaMKI, Ca(2)(+)/Calmodulin-Dependent Protein Kinase Idelta (CaMKIdelta), Remains in Its “Primed” Form without Ca(2)(+) Stimulation. Biochemistry. 2015;54:3617–3630. doi: 10.1021/bi5012139.
    1. Cook S.G., Bourke A.M., O’Leary H., Zaegel V., Lasda E., Mize-Berge J., Quillinan N., Tucker C.L., Coultrap S.J., Herson P.S., et al. Analysis of the CaMKIIalpha and beta splice-variant distribution among brain regions reveals isoform-specific differences in holoenzyme formation. Sci. Rep. 2018;8:5448. doi: 10.1038/s41598-018-23779-4.
    1. Giese K.P., Fedorov N.B., Filipkowski R.K., Silva A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279:870–873. doi: 10.1126/science.279.5352.870.
    1. Soderling T.R., Derkach V.A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000;23:75–80. doi: 10.1016/S0166-2236(99)01490-3.
    1. Von Hertzen L.S., Giese K.P. Alpha-isoform of Ca2+/calmodulin-dependent kinase II autophosphorylation is required for memory consolidation-specific transcription. Neuroreport. 2005;16:1411–1414. doi: 10.1097/.
    1. Wang Z.W. Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol. Neurobiol. 2008;38:153–166. doi: 10.1007/s12035-008-8039-7.
    1. Fink C.C., Bayer K.U., Myers J.W., Ferrell J.E., Schulman H., Meyer T. Selective regulation of neurite extension and synapse formation by the beta but not the of isoform of CaMKII. Neuron. 2003;39:283–297. doi: 10.1016/S0896-6273(03)00428-8.
    1. Jones K.T. Intracellular calcium in the fertilization and development of mammalian eggs. Clin. Exp. Pharmacol. Physiol. 2007;34:1084–1089. doi: 10.1111/j.1440-1681.2007.04726.x.
    1. Shin M.K., Kim M.K., Bae Y.S., Jo I., Lee S.J., Chung C.P., Park Y.J., Min do S. A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells. Cell. Signal. 2008;20:613–624. doi: 10.1016/j.cellsig.2007.11.012.
    1. Munevar S., Gangopadhyay S.S., Gallant C., Colombo B., Sellke F.W., Morgan K.G. CaMKIIT287 and T305 regulate history-dependent increases in alpha agonist-induced vascular tone. J. Cell. Mol. Med. 2008;12:219–226. doi: 10.1111/j.1582-4934.2007.00202.x.
    1. Maier L.S., Bers D.M. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc. Res. 2007;73:631–640. doi: 10.1016/j.cardiores.2006.11.005.
    1. Liu W., Xu C., Ran D., Wang Y., Zhao H., Gu J., Liu X., Bian J., Yuan Y., Liu Z. CaMK mediates cadmium induced apoptosis in rat primary osteoblasts through MAPK activation and endoplasmic reticulum stress. Toxicology. 2018;406–407:70–80. doi: 10.1016/j.tox.2018.06.002.
    1. Rostas J.A., Hoffman A., Murtha L.A., Pepperall D., McLeod D.D., Dickson P.W., Spratt N.J., Skelding K.A. Ischaemia- and excitotoxicity-induced CaMKII-Mediated neuronal cell death: The relative roles of CaMKII autophosphorylation at T286 and T253. Neurochem. Int. 2017;104:6–10. doi: 10.1016/j.neuint.2017.01.002.
    1. Rostas J.A.P., Spratt N.J., Dickson P.W., Skelding K.A. The role of Ca2+-calmodulin stimulated protein kinase II in ischaemic stroke—A potential target for neuroprotective therapies. Neurochem. Int. 2017;107:33–42. doi: 10.1016/j.neuint.2017.01.012.
    1. Skelding K.A., Spratt N.J., Fluechter L., Dickson P.W., Rostas J.A.P. alpha CaMKII is differentially regulated in brain regions that exhibit differing sensitivities to ischemia and excitotoxicity. J. Cerebr. Blood Flow Metab. 2012;32:2181–2192. doi: 10.1038/jcbfm.2012.124.
    1. Rosenberg O.S., Deindl S., Sung R.J., Nairn A.C., Kuriyan J. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell. 2005;123:849–860. doi: 10.1016/j.cell.2005.10.029.
    1. Hanson P.I., Meyer T., Stryer L., Schulman H. Dual Role of Calmodulin in Autophosphorylation of Multifunctional Cam Kinase May Underlie Decoding of Calcium Signals. Neuron. 1994;12:943–956. doi: 10.1016/0896-6273(94)90306-9.
    1. Rostas J.A., Skelding K.A., Verrills N.M., Suzuki P.W., Dickson T. Camkii Binding Partners Vary with Cell Type and Phosphorylation State. J. Neurochem. 2009;110:40–41.
    1. Skelding K.A., Suzuki T., Gordon S., Xue J., Verrills N.M., Dickson P.W., Rostas J.A. Regulation of CaMKII by phospho-Thr253 or phospho-Thr286 sensitive targeting alters cellular function. Cell. Signal. 2010;22:759–769. doi: 10.1016/j.cellsig.2009.12.011.
    1. Meyer T., Hanson P.I., Stryer L., Schulman H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science. 1992;256:1199–1202. doi: 10.1126/science.256.5060.1199.
    1. Strack S., Colbran R.J. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J. Biol. Chem. 1998;273:20689–20692. doi: 10.1074/jbc.273.33.20689.
    1. Strack S., Choi S., Lovinger D.M., Colbran R.J. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J. Biol. Chem. 1997;272:13467–13470. doi: 10.1074/jbc.272.21.13467.
    1. Hanson P.I., Schulman H. Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis. J. Biol. Chem. 1992;267:17216–17224.
    1. Patton B.L., Miller S.G., Kennedy M.B. Activation of type II calcium/calmodulin-dependent protein kinase by Ca2+/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain. J. Biol. Chem. 1990;265:11204–11212.
    1. Meador W.E., Means A.R., Quiocho F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993;262:1718–1721. doi: 10.1126/science.8259515.
    1. Braun A.P., Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: From form to function. Annu. Rev. Physiol. 1995;57:417–445. doi: 10.1146/annurev.ph.57.030195.002221.
    1. Erickson J.R., Joiner M.L., Guan X., Kutschke W., Yang J., Oddis C.V., Bartlett R.K., Lowe J.S., O’Donnell S.E., Aykin-Burns N., et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell. 2008;133:462–474. doi: 10.1016/j.cell.2008.02.048.
    1. Jaffe H., Vinade L., Dosemeci A. Identification of novel phosphorylation sites on postsynaptic density proteins. Biochem. Biophys. Res. Commun. 2004;321:210–218. doi: 10.1016/j.bbrc.2004.06.122.
    1. Molloy S.S., Kennedy M.B. Autophosphorylation of type II Ca2+/calmodulin-dependent protein kinase in cultures of postnatal rat hippocampal slices. Proc. Natl. Acad. Sci. USA. 1991;88:4756–4760. doi: 10.1073/pnas.88.11.4756.
    1. Collins M.O., Yu L., Coba M.P., Husi H., Campuzano I., Blackstock W.P., Choudhary J.S., Grant S.G. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 2005;280:5972–5982. doi: 10.1074/jbc.M411220200.
    1. Migues P.V., Lehmann I.T., Fluechter L., Cammarota M., Gurd J.W., Sim A.T.R., Dickson P.W., Rostas J.A.P. Phosphorylation of CaMKII at Thr253 occurs in vivo and enhances binding to isolated postsynaptic densities. J. Neurochem. 2006;98:289–299. doi: 10.1111/j.1471-4159.2006.03876.x.
    1. Sakagami H., Kondo H. Cloning and sequencing of a gene encoding the beta polypeptide of Ca2+/calmodulin-dependent protein kinase IV and its expression confined to the mature cerebellar granule cells. Brain Res. Mol. Brain Res. 1993;19:215–218. doi: 10.1016/0169-328X(93)90029-O.
    1. Mosialos G., Hanissian S.H., Jawahar S., Vara L., Kieff E., Chatila T.A. A Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, expressed after transformation of primary human B lymphocytes by Epstein-Barr virus (EBV) is induced by the EBV oncogene LMP1. J. Virol. 1994;68:1697–1705.
    1. Wu J.Y., Gonzalez-Robayana I.J., Richards J.S., Means A.R. Female fertility is reduced in mice lacking Ca2+/calmodulin-dependent protein kinase IV. Endocrinology. 2000;141:4777–4783. doi: 10.1210/endo.141.12.7826.
    1. Wu J.Y., Means A.R. Ca(2+)/calmodulin-dependent protein kinase IV is expressed in spermatids and targeted to chromatin and the nuclear matrix. J. Biol. Chem. 2000;275:7994–7999. doi: 10.1074/jbc.275.11.7994.
    1. Kimura Y., Corcoran E.E., Eto K., Gengyo-Ando K., Muramatsu M.A., Kobayashi R., Freedman J.H., Mitani S., Hagiwara M., Means A.R., et al. A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans. EMBO Rep. 2002;3:962–966. doi: 10.1093/embo-reports/kvf191.
    1. Bleier J., Toliver A. Exploring the Role of CaMKIV in Homeostatic Plasticity. J. Neurosci. 2017;37:11520–11522. doi: 10.1523/JNEUROSCI.2599-17.2017.
    1. Takemura M., Mishima T., Wang Y., Kasahara J., Fukunaga K., Ohashi K., Mizuno K. Ca2+/Calmodulin-dependent Protein Kinase IV-mediated LIM Kinase Activation Is Critical for Calcium Signal-induced Neurite Outgrowth. J. Biol. Chem. 2009;284:28554–28562. doi: 10.1074/jbc.M109.006296.
    1. Wei F., Qiu C.S., Liauw J., Robinson D.A., Ho N., Chatila T., Zhuo M. Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat. Neurosci. 2002;5:573–579. doi: 10.1038/nn0602-855.
    1. Racioppi L., Means A.R. Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: Novel routes for an ancient traveller. Trends Immunol. 2008;29:600–607. doi: 10.1016/j.it.2008.08.005.
    1. Selbert M.A., Anderson K.A., Huang Q.H., Goldstein E.G., Means A.R., Edelman A.M. Phosphorylation and activation of Ca(2+)-calmodulin-dependent protein kinase IV by Ca(2+)-calmodulin-dependent protein kinase Ia kinase. Phosphorylation of threonine 196 is essential for activation. J. Biol. Chem. 1995;270:17616–17621. doi: 10.1074/jbc.270.29.17616.
    1. Chatila T., Anderson K.A., Ho N., Means A.R. A unique phosphorylation-dependent mechanism for the activation of Ca2+/calmodulin-dependent protein kinase type IV/GR. J. Biol. Chem. 1996;271:21542–21548. doi: 10.1074/jbc.271.35.21542.
    1. Watanabe S., Okuno S., Kitani T., Fujisawa H. Inactivation of calmodulin-dependent protein kinase IV by autophosphorylation of serine 332 within the putative calmodulin-binding domain. J. Biol. Chem. 1996;271:6903–6910. doi: 10.1074/jbc.271.12.6903.
    1. Subbannayya Y., Syed N., Barbhuiya M.A., Raja R., Marimuthu A., Sahasrabuddhe N., Pinto S.M., Manda S.S., Renuse S., Manju H.C., et al. Calcium calmodulin dependent kinase kinase 2—A novel therapeutic target for gastric adenocarcinoma. Cancer Biol. Ther. 2015;16:336–345. doi: 10.4161/15384047.2014.972264.
    1. Lin F., Marcelo K.L., Rajapakshe K., Coarfa C., Dean A., Wilganowski N., Robinson H., Sevick E., Bissig K.D., Goldie L.C., et al. The camKK2/camKIV relay is an essential regulator of hepatic cancer. Hepatology. 2015;62:505–520. doi: 10.1002/hep.27832.
    1. Liu D.M., Wang H.J., Han B., Meng X.Q., Chen M.H., Yang D.B., Sun Y., Li Y.L., Jiang C.L. CAMKK2, Regulated by Promoter Methylation, is a Prognostic Marker in Diffuse Gliomas. CNS Neurosci. Ther. 2016;22:518–524. doi: 10.1111/cns.12531.
    1. Gocher A.M., Azabdaftari G., Euscher L.M., Dai S., Karacosta L.G., Franke T.F., Edelman A.M. Akt activation by Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. J. Biol. Chem. 2017;292:14188–14204. doi: 10.1074/jbc.M117.778464.
    1. Karacosta L.G., Foster B.A., Azabdaftari G., Feliciano D.M., Edelman A.M. A regulatory feedback loop between Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer progression. J. Biol. Chem. 2012;287:24832–24843. doi: 10.1074/jbc.M112.370783.
    1. Shima T., Mizokami A., Miyagi T., Kawai K., Izumi K., Kumaki M., Ofude M., Zhang J., Keller E.T., Namiki M. Down-regulation of calcium/calmodulin-dependent protein kinase kinase 2 by androgen deprivation induces castration-resistant prostate cancer. Prostate. 2012;72:1789–1801. doi: 10.1002/pros.22533.
    1. Massie C.E., Lynch A., Ramos-Montoya A., Boren J., Stark R., Fazli L., Warren A., Scott H., Madhu B., Sharma N., et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30:2719–2733. doi: 10.1038/emboj.2011.158.
    1. Frigo D.E., Howe M.K., Wittmann B.M., Brunner A.M., Cushman I., Wang Q., Brown M., Means A.R., McDonnell D.P. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res. 2011;71:528–537. doi: 10.1158/0008-5472.CAN-10-2581.
    1. Kang X., Cui C., Wang C., Wu G., Chen H., Lu Z., Chen X., Wang L., Huang J., Geng H., et al. CAMKs support development of acute myeloid leukemia. J. Hematol. Oncol. 2018 doi: 10.1186/s13045-018-0574-8.
    1. Takai N., Ueda T., Nasu K., Yamashita S., Toyofuku M., Narahara H. Targeting calcium/calmodulin-dependence kinase I and II as a potential anti-proliferation remedy for endometrial carcinomas. Cancer Lett. 2009;277:235–243. doi: 10.1016/j.canlet.2008.12.018.
    1. Gardner H.P., Ha S.I., Reynolds C., Chodosh L.A. The caM kinase, Pnck, is spatially and temporally regulated during murine mammary gland development and may identify an epithelial cell subtype involved in breast cancer. Cancer Res. 2000;60:5571–5577.
    1. Wu S., Lv Z.J., Wang Y., Sun L., Jiang Z.M., Xu C.J., Zhao J., Sun X.J., Li X.X., Hu L.J., et al. Increased Expression of Pregnancy Up-Regulated Non-Ubiquitous Calmodulin Kinase Is Associated with Poor Prognosis in Clear Cell Renal Cell Carcinoma. PLoS ONE. 2013 doi: 10.1371/journal.pone.0059936.
    1. Gonzalez M., De Brasi C., Ferri C., Bengio R., Bianchini M., Larripa I. CAMKIIgamma, HSP70 and HSP90 transcripts are differentially expressed in chronic myeloid leukemia cells from patients with resistant mutated disease. Leuk. Lymphoma. 2014;55:2101–2108. doi: 10.3109/10428194.2013.861070.
    1. Si J., Collins S.J. Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation. Cancer Res. 2008;68:3733–3742. doi: 10.1158/0008-5472.CAN-07-2509.
    1. Chen W., An P., Quan X.J., Zhang J., Zhou Z.Y., Zou L.P., Luo H.S. Ca(2+)/calmodulin-dependent protein kinase II regulates colon cancer proliferation and migration via ERK1/2 and p38 pathways. World J. Gastroenterol. 2017;23:6111–6118. doi: 10.3748/wjg.v23.i33.6111.
    1. Chi M., Evans H., Gilchrist J., Mayhew J., Hoffman A., Pearsall E.A., Jankowski H., Brzozowski J.S., Skelding K.A. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells. Sci. Rep. 2016;6:33132. doi: 10.1038/srep33132.
    1. Daft P.G., Yuan K., Warram J.M., Klein M.J., Siegal G.P., Zayzafoon M. Alpha-CaMKII plays a critical role in determining the aggressive behavior of human osteosarcoma. Mol. Cancer Res. 2013;11:349–359. doi: 10.1158/1541-7786.MCR-12-0572.
    1. Yuan K., Chung L.W., Siegal G.P., Zayzafoon M. alpha-CaMKII controls the growth of human osteosarcoma by regulating cell cycle progression. Lab. Investig. 2007;87:938–950. doi: 10.1038/labinvest.3700658.
    1. Chai S., Xu X., Wang Y., Zhou Y., Zhang C., Yang Y., Yang Y., Xu H., Xu R., Wang K. Ca2+/calmodulin-dependent protein kinase IIgamma enhances stem-like traits and tumorigenicity of lung cancer cells. Oncotarget. 2015;6:16069–16083. doi: 10.18632/oncotarget.3866.
    1. Tang S., Pan Y., Wang Y., Hu L., Cao S., Chu M., Dai J., Shu Y., Xu L., Chen J., et al. Genome-wide association study of survival in early-stage non-small cell lung cancer. Ann. Surg. Oncol. 2015;22:630–635. doi: 10.1245/s10434-014-3983-0.
    1. Liu Z., Han G., Cao Y., Wang Y., Gong H. Calcium/calmodulindependent protein kinase II enhances metastasis of human gastric cancer by upregulating nuclear factorkappaB and Aktmediated matrix metalloproteinase9 production. Mol. Med. Rep. 2014;10:2459–2464. doi: 10.3892/mmr.2014.2525.
    1. Tamura N., Tai Y., Sugimoto K., Kobayashi R., Konishi R., Nishioka M., Masaki T., Nagahata S., Tokuda M. Enhanced expression and activation of Ca(2+)/calmodulin-dependent protein kinase IV in hepatocellular carcinoma. Cancer. 2000;89:1910–1916. doi: 10.1002/1097-0142(20001101)89:9<1910::AID-CNCR6>;2-M.
    1. Fu H., He H.C., Han Z.D., Wan Y.P., Luo H.W., Huang Y.Q., Cai C., Liang Y.X., Dai Q.S., Jiang F.N., et al. MicroRNA-224 and its target CAMKK2 synergistically influence tumor progression and patient prognosis in prostate cancer. Tumour Biol. 2015;36:1983–1991. doi: 10.1007/s13277-014-2805-0.
    1. Ma Z., Wen D., Wang X., Yang L., Liu T., Liu J., Zhu J., Fang X. Growth inhibition of human gastric adenocarcinoma cells in vitro by STO-609 is independent of calcium/calmodulin-dependent protein kinase kinase-beta and adenosine monophosphate-activated protein kinase. Am. J. Transl. Res. 2016;8:1164–1171.
    1. Davare M.A., Saneyoshi T., Soderling T.R. Calmodulin-kinases regulate basal and estrogen stimulated medulloblastoma migration via Rac1. J. Neurooncol. 2011;104:65–82. doi: 10.1007/s11060-010-0472-6.
    1. Rodriguez-Mora O.G., LaHair M.M., McCubrey J.A., Franklin R.A. Calcium/calmodulin-dependent kinase I and calcium/calmodulin-dependent kinase kinase participate in the control of cell cycle progression in MCF-7 human breast cancer cells. Cancer Res. 2005;65:5408–5416. doi: 10.1158/0008-5472.CAN-05-0271.
    1. Williams C.L., Phelps S.H., Porter R.A. Expression of Ca2+/calmodulin-dependent protein kinase types II and IV, and reduced DNA synthesis due to the Ca2+/calmodulin-dependent protein kinase inhibitor KN-62 (1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenyl piperazine) in small cell lung carcinoma. Biochem. Pharmacol. 1996;51:707–715.
    1. Russo E., Salzano M., De Falco V., Mian C., Barollo S., Secondo A., Bifulco M., Vitale M. Calcium/Calmodulin-dependent protein kinase II and its endogenous inhibitor alpha in medullary thyroid cancer. Clin. Cancer Res. 2014;20:1513–1520. doi: 10.1158/1078-0432.CCR-13-1683.
    1. Dai L., Zhuang L., Zhang B., Wang F., Chen X., Xia C., Zhang B. DAG/PKCdelta and IP3/Ca(2)(+)/CaMK IIbeta Operate in Parallel to Each Other in PLCgamma1-Driven Cell Proliferation and Migration of Human Gastric Adenocarcinoma Cells, through Akt/mTOR/S6 Pathway. Int. J. Mol. Sci. 2015;16:28510–28522. doi: 10.3390/ijms161226116.
    1. Mamaeva O.A., Kim J., Feng G., McDonald J.M. Calcium/calmodulin-dependent kinase II regulates notch-1 signaling in prostate cancer cells. J. Cell. Biochem. 2009;106:25–32. doi: 10.1002/jcb.21973.
    1. Wang Q., Symes A.J., Kane C.A., Freeman A., Nariculam J., Munson P., Thrasivoulou C., Masters J.R., Ahmed A. A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PLoS ONE. 2010;5:e10456. doi: 10.1371/journal.pone.0010456.
    1. Gu Y., Zhang J., Ma X., Kim B.W., Wang H., Li J., Pan Y., Xu Y., Ding L., Yang L., et al. Stabilization of the c-Myc Protein by CAMKIIgamma Promotes T Cell Lymphoma. Cancer Cell. 2017 doi: 10.1016/j.ccell.2017.06.001.
    1. Hoffman A., Carpenter H., Kahl R., Watt L.F., Dickson P.W., Rostas J.A.P., Verrills N.M., Skelding K.A. Dephosphorylation of CaMKII at T253 controls the metaphase-anaphase transition. Cell. Signal. 2014;26:748–756. doi: 10.1016/j.cellsig.2013.12.015.
    1. Chen J.H., Huang S.M., Chen C.C., Tsai C.F., Yeh W.L., Chou S.J., Hsieh W.T., Lu D.Y. Ghrelin induces cell migration through GHS-R, CaMKII, AMPK, and NF-kappaB signaling pathway in glioma cells. J. Cell. Biochem. 2011;112:2931–2941. doi: 10.1002/jcb.23209.
    1. Cuddapah V.A., Sontheimer H. Molecular interaction and functional regulation of ClC-3 by Ca2+/calmodulin-dependent protein kinase II (CaMKII) in human malignant glioma. J. Biol. Chem. 2010;285:11188–11196. doi: 10.1074/jbc.M109.097675.
    1. Shin H.J., Lee S., Jung H.J. A curcumin derivative hydrazinobenzoylcurcumin suppresses stem-like features of glioblastoma cells by targeting Ca(2+) /calmodulin-dependent protein kinase II. J. Cell. Biochem. 2018 doi: 10.1002/jcb.27972.
    1. Monaco S., Rusciano M.R., Maione A.S., Soprano M., Gomathinayagam R., Todd L.R., Campiglia P., Salzano S., Pastore L., Leggiero E., et al. A novel crosstalk between calcium/calmodulin kinases II and IV regulates cell proliferation in myeloid leukemia cells. Cell. Signal. 2015;27:204–214. doi: 10.1016/j.cellsig.2014.11.007.
    1. Yamada T., Suzuki M., Satoh H., Kihara-Negishi F., Nakano H., Oikawa T. Effects of PU.1-induced mouse calcium-calmodulin-dependent kinase I-like kinase (CKLiK) on apoptosis of murine erythroleukemia cells. Exp. Cell Res. 2004;294:39–50. doi: 10.1016/j.yexcr.2003.10.023.
    1. Tombes R.M., Krystal G.W. Identification of novel human tumor cell-specific CaMK-II variants. Biochim. Biophys. Acta. 1997;1355:281–292. doi: 10.1016/S0167-4889(96)00141-3.
    1. Yang B.F., Xiao C., Roa W.H., Krammer P.H., Hao C. Calcium/calmodulin-dependent protein kinase II regulation of c-FLIP expression and phosphorylation in modulation of Fas-mediated signaling in malignant glioma cells. J. Biol. Chem. 2003;278:7043–7050. doi: 10.1074/jbc.M211278200.
    1. Xiao C., Yang B.F., Song J.H., Schulman H., Li L., Hao C. Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp. Cell Res. 2005;304:244–255. doi: 10.1016/j.yexcr.2004.11.002.
    1. Gu Y., Chen T., Meng Z.P., Gan Y.C., Xu X.H., Lou G.Y., Li H.Z., Gan X.X., Zhou H., Tang J.F., et al. CaMKII gamma, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood. 2012;120:4829–4839. doi: 10.1182/blood-2012-06-434894.
    1. House S.J., Ginnan R.G., Armstrong S.E., Singer H.A. Calcium/calmodulin-dependent protein kinase II-delta isoform regulation of vascular smooth muscle cell proliferation. Am. J. Physiol. Cell Physiol. 2007;292:C2276–C2287. doi: 10.1152/ajpcell.00606.2006.
    1. Scott J.A., Xie L., Li H., Li W., He J.B., Sanders P.N., Carter A.B., Backs J., Anderson M.E., Grumbach I.M. The multifunctional Ca2+/calmodulin-dependent kinase II regulates vascular smooth muscle migration through matrix metalloproteinase 9. Am. J. Physiol. Heart Circ. Physiol. 2012;302:H1953–H1964. doi: 10.1152/ajpheart.00978.2011.
    1. Mercure M.Z., Ginnan R., Singer H.A. CaM kinase II delta2-dependent regulation of vascular smooth muscle cell polarization and migration. Am. J. Physiol. Cell Physiol. 2008;294:C1465–C1475. doi: 10.1152/ajpcell.90638.2007.
    1. Yang M., Kahn A.M. Insulin-inhibited and stimulated cultured vascular smooth muscle cell migration are related to divergent effects on protein phosphatase-2A and autonomous calcium/calmodulin-dependent protein kinase II. Atherosclerosis. 2008;196:227–233. doi: 10.1016/j.atherosclerosis.2007.04.050.
    1. Daft P.G., Yang Y., Napierala D., Zayzafoon M. The Growth and Aggressive Behavior of Human Osteosarcoma Is Regulated by a CaMKII-Controlled Autocrine VEGF Signaling Mechanism. PLoS ONE. 2015;10:e0121568. doi: 10.1371/journal.pone.0121568.
    1. Ma X., Meng Z., Jin L., Xiao Z., Wang X., Tsark W.M., Ding L., Gu Y., Zhang J., Kim B., et al. CAMK2gamma in intestinal epithelial cells modulates colitis-associated colorectal carcinogenesis via enhancing STAT3 activation. Oncogene. 2017;36:4060–4071. doi: 10.1038/onc.2017.16.
    1. Meng Z., Ma X., Du J., Wang X., He M., Gu Y., Zhang J., Han W., Fang Z., Gan X., et al. CAMK2gamma antagonizes mTORC1 activation during hepatocarcinogenesis. Oncogene. 2017;36:2446–2456. doi: 10.1038/onc.2016.400.
    1. Shang S., Takai N., Nishida M., Miyazaki T., Nasu K., Miyakawa I. CaMKIV expression is associated with clinical stage and PCNA-labeling index in endometrial carcinoma. Int. J. Mol. Med. 2003;11:181–186. doi: 10.3892/ijmm.11.2.181.
    1. Takai N., Ueda T., Nishida M., Nasu K., Miyakawa I. The relationship between oncogene expression and clinical outcome in endometrial carcinoma. Curr. Cancer Drug Targets. 2004;4:511–520. doi: 10.2174/1568009043332871.
    1. Tokumitsu H., Inuzuka H., Ishikawa Y., Ikeda M., Saji I., Kobayashi R. STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase. J. Biol. Chem. 2002;277:15813–15818. doi: 10.1074/jbc.M201075200.
    1. Monteiro P., Gilot D., Langouet S., Fardel O. Activation of the aryl hydrocarbon receptor by the calcium/calmodulin-dependent protein kinase kinase inhibitor 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid (STO-609) Drug Metab. Dispos. 2008;36:2556–2563. doi: 10.1124/dmd.108.023333.
    1. York B., Li F., Lin F., Marcelo K.L., Mao J., Dean A., Gonzales N., Gooden D., Maity S., Coarfa C., et al. Pharmacological inhibition of CaMKK2 with the selective antagonist STO-609 regresses NAFLD. Sci. Rep. 2017;7:11793. doi: 10.1038/s41598-017-12139-3.
    1. Meng Z., Li T., Ma X., Wang X., Van Ness C., Gan Y., Zhou H., Tang J., Lou G., Wang Y., et al. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca(2)(+)/calmodulin-dependent protein kinase II. Mol. Cancer Ther. 2013;12:2067–2077. doi: 10.1158/1535-7163.MCT-13-0314.
    1. Ishida A., Kameshita I., Okuno S., Kitani T., Fujisawa H. A novel highly specific and potent inhibitor of calmodulin-dependent protein kinase II. Biochem. Biophys. Res. Commun. 1995;212:806–812. doi: 10.1006/bbrc.1995.2040.
    1. Tokumitsu H., Chijiwa T., Hagiwara M., Mizutani A., Terasawa M., Hidaka H. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 1990;265:4315–4320.
    1. Hidaka H., Ishikawa T. Molecular pharmacology of calmodulin pathways in the cell functions. Cell Calcium. 1992;13:465–472. doi: 10.1016/0143-4160(92)90059-2.
    1. Kahl C.R., Means A.R. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev. 2003;24:719–736. doi: 10.1210/er.2003-0008.
    1. Ledoux J., Chartier D., Leblanc N. Inhibitors of calmodulin-dependent protein kinase are nonspecific blockers of voltage-dependent K+ channels in vascular myocytes. J. Pharmacol. Exp. Ther. 1999;290:1165–1174.
    1. Rezazadeh S., Claydon T.W., Fedida D. KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), a calcium/calmodulin-dependent protein kinase II inhibitor, is a direct extracellular blocker of voltage-gated potassium channels. J. Pharmacol. Exp. Ther. 2006;317:292–299. doi: 10.1124/jpet.105.097618.
    1. Gao L., Blair L.A., Marshall J. CaMKII-independent effects of KN93 and its inactive analog KN92: Reversible inhibition of L-type calcium channels. Biochem. Biophys. Res. Commun. 2006;345:1606–1610. doi: 10.1016/j.bbrc.2006.05.066.
    1. Rokhlin O.W., Taghiyev A.F., Bayer K.U., Bumcrot D., Koteliansk V.E., Glover R.A., Cohen M.B. Calcium/calmodulin-dependent kinase II plays an important role in prostate cancer cell survival. Cancer Biol. Ther. 2007;6:732–742. doi: 10.4161/cbt.6.5.3975.
    1. Rokhlin O.W., Guseva N.V., Taghiyev A.F., Glover R.A., Cohen M.B. KN-93 inhibits androgen receptor activity and induces cell death irrespective of p53 and Akt status in prostate cancer. Cancer Biol. Ther. 2010;9:224–235. doi: 10.4161/cbt.9.3.10747.
    1. Yang B.F., Xiao C., Li H., Yang S.J. Resistance to Fas-mediated apoptosis in malignant tumours is rescued by KN-93 and cisplatin via downregulation of c-FLIP expression and phosphorylation. Clin. Exp. Pharmacol. Physiol. 2007;34:1245–1251. doi: 10.1111/j.1440-1681.2007.04711.x.
    1. Si J.T., Mueller L., Collins S.J. CaMKII regulates retinoic acid receptor transcriptional activity and the differentiation of myeloid leukemia cells. J. Clin. Investig. 2007;117:1412–1421. doi: 10.1172/JCI30779.
    1. Lee K.H. CaMKII Inhibitor KN-62 Blunts Tumor Response to Hypoxia by Inhibiting HIF-1alpha in Hepatoma Cells. Korean J. Physiol. Pharmacol. 2010;14:331–336. doi: 10.4196/kjpp.2010.14.5.331.
    1. Wang S.J., Peyrollier K., Bourguignon L.Y. The influence of hyaluronan-CD44 interaction on topoisomerase II activity and etoposide cytotoxicity in head and neck cancer. Arch. Otolaryngol. Head Neck Surg. 2007;133:281–288. doi: 10.1001/archotol.133.3.281.
    1. Aoyama M., Grabowski D.R., Holmes K.A., Rybicki L.A., Bukowski R.M., Ganapathi M.K., Ganapathi R. Cell cycle phase specificity in the potentiation of etoposide-induced DNA damage and apoptosis by KN-62, an inhibitor of calcium-calmodulin-dependent enzymes. Biochem. Pharmacol. 2001;61:49–54. doi: 10.1016/S0006-2952(00)00539-6.
    1. Obata N.H., Okazaki K., Maeda O., Kikkawa F., Tomoda Y., Hidaka H. Effect of KN-62, Ca2+/calmodulin-dependent protein kinase II inhibitor, on adriamycin resistance of human ovarian cancer cells. Biochem. Biophys. Res. Commun. 1995;215:566–571. doi: 10.1006/bbrc.1995.2502.
    1. Okazaki K., Ishikawa T., Inui M., Tada M., Goshima K., Okamoto T., Hidaka H. KN-62, a specific Ca++/calmodulin-dependent protein kinase inhibitor, reversibly depresses the rate of beating of cultured fetal mouse cardiac myocytes. J. Pharmacol. Exp. Ther. 1994;270:1319–1324.
    1. Anderson M.E., Braun A.P., Wu Y., Lu T., Wu Y., Schulman H., Sung R.J. KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J. Pharmacol. Exp Ther. 1998;287:996–1006.
    1. Ito I., Hidaka H., Sugiyama H. Effects of KN-62, a specific inhibitor of calcium/calmodulin-dependent protein kinase II, on long-term potentiation in the rat hippocampus. Neurosci. Lett. 1991;121:119–121. doi: 10.1016/0304-3940(91)90663-E.
    1. Hanson P.I., Kapiloff M.S., Lou L.L., Rosenfeld M.G., Schulman H. Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron. 1989;3:59–70. doi: 10.1016/0896-6273(89)90115-3.
    1. Braun A.P., Schulman H. A non-selective cation current activated via the multifunctional Ca(2+)-calmodulin-dependent protein kinase in human epithelial cells. Pt 1J. Physiol. 1995;488:37–55. doi: 10.1113/jphysiol.1995.sp020944.
    1. Wu Y., Gao Z., Chen B., Koval O.M., Singh M.V., Guan X., Hund T.J., Kutschke W., Sarma S., Grumbach I.M., et al. Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proc. Natl. Acad. Sci. USA. 2009;106:5972–5977. doi: 10.1073/pnas.0806422106.
    1. Backs J., Backs T., Neef S., Kreusser M.M., Lehmann L.H., Patrick D.M., Grueter C.E., Qi X., Richardson J.A., Hill J.A., et al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc. Natl. Acad. Sci. USA. 2009;106:2342–2347. doi: 10.1073/pnas.0813013106.
    1. Sun X., Zhao D., Li Y.L., Sun Y., Lei X.H., Zhang J.N., Wu M.M., Li R.Y., Zhao Z.F., Zhang Z.R., et al. Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol. Rep. 2013;30:2852–2858. doi: 10.3892/or.2013.2777.
    1. Patel R., Holt M., Philipova R., Moss S., Schulman H., Hidaka H., Whitaker M. Calcium/calmodulin-dependent phosphorylation and activation of human Cdc25-C at the G2/M phase transition in HeLa cells. J. Biol. Chem. 1999;274:7958–7968. doi: 10.1074/jbc.274.12.7958.
    1. Chang B.H., Mukherji S., Soderling T.R. Characterization of a calmodulin kinase II inhibitor protein in brain. Proc. Natl. Acad. Sci. USA. 1998;95:10890–10895. doi: 10.1073/pnas.95.18.10890.
    1. Chang B.H., Mukherji S., Soderling T.R. Calcium/calmodulin-dependent protein kinase II inhibitor protein: Localization of isoforms in rat brain. Neuroscience. 2001;102:767–777. doi: 10.1016/S0306-4522(00)00520-0.
    1. Zhang J., Li N., Yu J., Zhang W., Cao X. Molecular cloning and characterization of a novel calcium/calmodulin-dependent protein kinase II inhibitor from human dendritic cells. Biochem. Biophys. Res. Commun. 2001;285:229–234. doi: 10.1006/bbrc.2001.5175.
    1. Wang C., Li N., Liu X., Zheng Y., Cao X. A novel endogenous human CaMKII inhibitory protein suppresses tumor growth by inducing cell cycle arrest via p27 stabilization. J. Biol. Chem. 2008;283:11565–11574. doi: 10.1074/jbc.M800436200.
    1. Ma S., Yang Y., Wang C., Hui N., Gu L., Zhong H., Cai Z., Wang Q., Zhang Q., Li N., et al. Endogenous human CaMKII inhibitory protein suppresses tumor growth by inducing cell cycle arrest and apoptosis through down-regulation of the phosphatidylinositide 3-kinase/Akt/HDM2 pathway. J. Biol. Chem. 2009;284:24773–24782. doi: 10.1074/jbc.M109.028621.
    1. Heinze K., Kritsch D., Mosig A.S., Durst M., Hafner N., Runnebaum I.B. Functional Analyses of RUNX3 and CaMKIINalpha in Ovarian Cancer Cell Lines Reveal Tumor-Suppressive Functions for CaMKIINalpha and Dichotomous Roles for RUNX3 Transcript Variants. Int. J. Mol. Sci. 2018 doi: 10.3390/ijms19010253.
    1. Coultrap S.J., Bayer K.U. Improving a natural CaMKII inhibitor by random and rational design. PLoS ONE. 2011;6:e25245. doi: 10.1371/journal.pone.0025245.
    1. Gomez-Monterrey I., Sala M., Rusciano M.R., Monaco S., Maione A.S., Iaccarino G., Tortorella P., D’Ursi A.M., Scrima M., Carotenuto A., et al. Characterization of a selective CaMKII peptide inhibitor. Eur. J. Med. Chem. 2013;62:425–434. doi: 10.1016/j.ejmech.2012.12.053.
    1. Nam S., Xie J., Perkins A., Ma Y., Yang F., Wu J., Wang Y., Xu R.Z., Huang W., Horne D.A., et al. Novel synthetic derivatives of the natural product berbamine inhibit Jak2/Stat3 signaling and induce apoptosis of human melanoma cells. Mol. Oncol. 2012;6:484–493. doi: 10.1016/j.molonc.2012.05.002.
    1. Zhao Y., Tan Y., Wu G., Liu L., Wang Y., Luo Y., Shi J., Huang H. Berbamine overcomes imatinib-induced neutropenia and permits cytogenetic responses in Chinese patients with chronic-phase chronic myeloid leukemia. Int. J. Hematol. 2011;94:156–162. doi: 10.1007/s12185-011-0887-7.
    1. Wang S., Liu Q., Zhang Y., Liu K., Yu P., Liu K., Luan J., Duan H., Lu Z., Wang F., et al. Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol. Cancer. 2009;8:81. doi: 10.1186/1476-4598-8-81.
    1. Xu R., Dong Q., Yu Y., Zhao X., Gan X., Wu D., Lu Q., Xu X., Yu X.F. Berbamine: A novel inhibitor of bcr/abl fusion gene with potent anti-leukemia activity. Leuk. Res. 2006;30:17–23. doi: 10.1016/j.leukres.2005.05.023.
    1. Wei Y.L., Liang Y., Xu L., Zhao X.Y. The antiproliferation effect of berbamine on k562 resistant cells by inhibiting NF-kappaB pathway. Anat. Rec. 2009;292:945–950. doi: 10.1002/ar.20924.
    1. Hou Z.B., Lu K.J., Wu X.L., Chen C., Huang X.E., Yin H.T. In vitro and in vivo antitumor evaluation of berbamine for lung cancer treatment. Asian Pac. J. Cancer Prev. 2014;15:1767–1769. doi: 10.7314/APJCP.2014.15.4.1767.
    1. Wang G.Y., Lv Q.H., Dong Q., Xu R.Z., Dong Q.H. Berbamine induces Fas-mediated apoptosis in human hepatocellular carcinoma HepG2 cells and inhibits its tumor growth in nude mice. J. Asian Nat. Prod. Res. 2009;11:219–228. doi: 10.1080/10286020802675076.
    1. Kirkwood N.K., O’Reilly M., Derudas M., Kenyon E.J., Huckvale R., van Netten S.M., Ward S.E., Richardson G.P., Kros C.J. d-Tubocurarine and Berbamine: Alkaloids That Are Permeant Blockers of the Hair Cell’s Mechano-Electrical Transducer Channel and Protect from Aminoglycoside Toxicity. Front. Cell. Neurosci. 2017;11:262. doi: 10.3389/fncel.2017.00262.
    1. Liang Y., Xu R.Z., Zhang L., Zhao X.Y. Berbamine, a novel nuclear factor kappaB inhibitor, inhibits growth and induces apoptosis in human myeloma cells. Acta Pharmacol. Sin. 2009;30:1659–1665. doi: 10.1038/aps.2009.167.
    1. Parhi P., Suklabaidya S., Kumar Sahoo S. Enhanced anti-metastatic and anti-tumorigenic efficacy of Berbamine loaded lipid nanoparticles in vivo. Sci. Rep. 2017;7:5806. doi: 10.1038/s41598-017-05296-y.
    1. Morris A.S., Sebag S.C., Paschke J.D., Wongrakpanich A., Ebeid K., Anderson M.E., Grumbach I.M., Salem A.K. Cationic CaMKII Inhibiting Nanoparticles Prevent Allergic Asthma. Mol. Pharm. 2017;14:2166–2175. doi: 10.1021/acs.molpharmaceut.7b00114.
    1. Wongrakpanich A., Morris A.S., Geary S.M., Joiner M.A., Salem A.K. Surface-modified particles loaded with CaMKII inhibitor protect cardiac cells against mitochondrial injury. Int. J. Pharm. 2017;520:275–283. doi: 10.1016/j.ijpharm.2017.01.061.

Source: PubMed

3
Abonnere