Mechanisms of migraine as a chronic evolutive condition

Anna P Andreou, Lars Edvinsson, Anna P Andreou, Lars Edvinsson

Abstract

Understanding the mechanisms of migraine remains challenging as migraine is not a static disorder, and even in its episodic form migraine remains an "evolutive" chronic condition. Considerable progress has been made in elucidating the pathophysiological mechanisms of migraine, associated genetic factors that may influence susceptibility to the disease, and functional and anatomical changes during the progression of a migraine attack or the transformation of episodic to chronic migraine. Migraine is a life span neurological disorder that follows an evolutive age-dependent change in its prevalence and even clinical presentations. As a disorder, migraine involves recurrent intense head pain and associated unpleasant symptoms. Migraine attacks evolve over different phases with specific neural mechanisms and symptoms being involved during each phase. In some patients, migraine can be transformed into a chronic form with daily or almost daily headaches. The mechanisms behind this evolutive process remain unknown, but genetic and epigenetic factors, inflammatory processes and central sensitization may play an important role.

Conflict of interest statement

N/A.

Figures

Fig. 1
Fig. 1
Migraine is cyclic disorders with a complex sequence of symptoms within every headache attack. In its episodic form, migraine is characterised by recurrent attacks involving different phases, with a complex sequence of symptoms within every phase. Significant advances have been made in characterising migraine as a brain disorder and in identifying evolutive functional changes in different brain areas during the different phases of a migraine attack
Fig. 2
Fig. 2
Migraine pathophysiology involves activation of the hypothalamic region during the early premonitory phase, and activation of the trigeminal system during the headache phase. Cortical spreading depression (CSD) is thought to be the biological process of the migraine aura. How activation of the hypothalamus may lead to the development of CSD and activation of the trigeminal system remains unknown. Potentially the hypothalamus may activate direct or indirect pathways involving other brain areas, such us the brainstem, or the parasympathetic system, leading to the development of migraine aura and activation of the ascending trigeminothalamic pathway

References

    1. Steiner TJ, Scher AI, Stewart WF, Kolodner K, Liberman J, Lipton RB. The prevalence and disability burden of adult migraine in England and their relationships to age, gender and ethnicity. Cephalalgia. 2003;23(7):519–527. doi: 10.1046/j.1468-2982.2003.00568.x.
    1. Srikiatkhachorn A, Phanthumchinda K. Prevalence and clinical features of chronic daily headache in a headache clinic. Headache. 1997;37(5):277–280. doi: 10.1046/j.1526-4610.1997.3705277.x.
    1. Karbowniczek A, Domitrz I. Frequency and clinical characteristics of chronic daily headache in an outpatient clinic setting. Neurol Neurochir Pol. 2011;45(1):11–17. doi: 10.1016/S0028-3843(14)60054-2.
    1. Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF, et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68(5):343–349. doi: 10.1212/01.wnl.0000252808.97649.21.
    1. WHO . The global burden of disease. Geneva: World Health Organization; 2004.
    1. Ozge A, Abu-Arafeh I, Gelfand AA, Goadsby PJ, Cuvellier JC, Valeriani M, et al. Experts’ opinion about the pediatric secondary headaches diagnostic criteria of the ICHD-3 beta. J Headache Pain. 2017;18(1):113. doi: 10.1186/s10194-017-0819-x.
    1. Annequin D, Tourniaire B, Massiou H. Migraine and headache in childhood and adolescence. Pediatr Clin N Am. 2000;47(3):617–631. doi: 10.1016/S0031-3955(05)70229-7.
    1. Peres FM. Epidemiology of migraine. In: Silberstein SD, Stiles MA, Young WB, editors. Atlas of migraine and other headaches. 2. London and New York: Taylor & Francis; 2005. pp. 41–49.
    1. Russell MB, Rasmussen BK, Thorvaldsen P, Olesen J. Prevalence and sex-ratio of the subtypes of migraine. Int J Epidemiol. 1995;24(3):612–618. doi: 10.1093/ije/24.3.612.
    1. Silberstein SD, Merriam GR. Estrogens, progestins, and headache. Neurology. 1991;41(6):786–793. doi: 10.1212/WNL.41.6.786.
    1. Neri I, Granella F, Nappi R, Manzoni GC, Facchinetti F, Genazzani AR. Characteristics of headache at menopause: a clinico-epidemiologic study. Maturitas. 1993;17(1):31–37. doi: 10.1016/0378-5122(93)90121-W.
    1. Fettes I. Migraine in the menopause. Neurology. 1999;53(4 Suppl 1):S29–S33.
    1. Pfaffenrath V, Fendrich K, Vennemann M, Meisinger C, Ladwig KH, Evers S, et al. Regional variations in the prevalence of migraine and tension-type headache applying the new IHS criteria: the German DMKG headache study. Cephalalgia. 2009;29(1):48–57. doi: 10.1111/j.1468-2982.2008.01699.x.
    1. Schwaiger J, Kiechl S, Seppi K, Sawires M, Stockner H, Erlacher T, et al. Prevalence of primary headaches and cranial neuralgias in men and women aged 55-94 years (Bruneck study) Cephalalgia. 2009;29(2):179–187. doi: 10.1111/j.1468-2982.2008.01705.x.
    1. Maytal J, Young M, Shechter A, Lipton RB. Pediatric migraine and the international headache society (IHS) criteria. Neurology. 1997;48(3):602–607. doi: 10.1212/WNL.48.3.602.
    1. Eidlitz-Markus T, Gorali O, Haimi-Cohen Y, Zeharia A. Symptoms of migraine in the paediatric population by age group. Cephalalgia. 2008;28(12):1259–1263. doi: 10.1111/j.1468-2982.2008.01668.x.
    1. Gelfand AA, Reider AC, Goadsby PJ. Cranial autonomic symptoms in pediatric migraine are the rule, not the exception. Neurology. 2013;81(5):431–436. doi: 10.1212/WNL.0b013e31829d872a.
    1. Straube A, Andreou A. Primary headaches during lifespan. J Headache Pain. 2019;20(1):35. doi: 10.1186/s10194-019-0985-0.
    1. Mulder EJ, Van Baal C, Gaist D, Kallela M, Kaprio J, Svensson DA, et al. Genetic and environmental influences on migraine: a twin study across six countries. Twin Res. 2003;6(5):422–431. doi: 10.1375/136905203770326420.
    1. van den Maagdenberg A, Nyholt DR, Anttila V. Novel hypotheses emerging from GWAS in migraine? J Headache Pain. 2019;20(1):5. doi: 10.1186/s10194-018-0956-x.
    1. Zhu Z, Anttila V, Smoller JW, Lee PH. Statistical power and utility of meta-analysis methods for cross-phenotype genome-wide association studies. PLoS One. 2018;13(3):e0193256. doi: 10.1371/journal.pone.0193256.
    1. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22. doi: 10.1016/j.ajhg.2017.06.005.
    1. Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48(8):856–866. doi: 10.1038/ng.3598.
    1. Ferrari MD, Klever RR, Terwindt GM, Ayata C, van den Maagdenberg AM. Migraine pathophysiology: lessons from mouse models and human genetics. Lancet Neurol. 2015;14(1):65–80. doi: 10.1016/S1474-4422(14)70220-0.
    1. Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol. 2005;15(3):266–274. doi: 10.1016/j.conb.2005.05.006.
    1. De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet. 2003;33(2):192–196. doi: 10.1038/ng1081.
    1. Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet. 2005;366(9483):371–377. doi: 10.1016/S0140-6736(05)66786-4.
    1. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron. 2004;41(5):701–710. doi: 10.1016/S0896-6273(04)00085-6.
    1. Wessman M, Terwindt GM, Kaunisto MA, Palotie A, Ophoff RA. Migraine: a complex genetic disorder. Lancet Neurol. 2007;6(6):521–532. doi: 10.1016/S1474-4422(07)70126-6.
    1. Park J, Moon H, Akerman S, Holland PR, Lasalandra MP, Andreou AP, et al. Differential trigeminovascular nociceptive responses in the thalamus in the familial hemiplegic migraine 1 knock-in mouse: a Fos protein study. Neurobiol Dis. 2014;64:1–7. doi: 10.1016/j.nbd.2013.12.004.
    1. Mathew R, Andreou AP, Chami L, Bergerot A, van den Maagdenberg A, Ferrari MD, et al. Immunohistochemical characterization of calcitonin gene-related peptide in the trigeminal system of the familial hemiplegic migraine 1 knock-in mouse. Cephalalgia. 2011;31(13):1368–1380. doi: 10.1177/0333102411418847.
    1. Gerring ZF, McRae AF, Montgomery GW, Nyholt DR. Genome-wide DNA methylation profiling in whole blood reveals epigenetic signatures associated with migraine. BMC Genomics. 2018;19(1):69. doi: 10.1186/s12864-018-4450-2.
    1. Terlizzi R, Bacalini MG, Pirazzini C, Giannini G, Pierangeli G, Garagnani P, et al. Epigenetic DNA methylation changes in episodic and chronic migraine. Neurol Sci. 2018;39(Suppl 1):67–68. doi: 10.1007/s10072-018-3348-8.
    1. Kurth T, Mohamed S, Maillard P, Zhu YC, Chabriat H, Mazoyer B, et al. Headache, migraine, and structural brain lesions and function: population based epidemiology of vascular ageing-MRI study. BMJ. 2011;342:c7357. doi: 10.1136/bmj.c7357.
    1. Kruit MC, van Buchem MA, Hofman PA, Bakkers JT, Terwindt GM, Ferrari MD, et al. Migraine as a risk factor for subclinical brain lesions. JAMA. 2004;291(4):427–434. doi: 10.1001/jama.291.4.427.
    1. Kruit MC, Launer LJ, Ferrari MD, van Buchem MA. Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study. Brain. 2005;128(Pt 9):2068–2077. doi: 10.1093/brain/awh542.
    1. Arkink EB, Palm-Meinders IH, Koppen H, Milles J, van Lew B, Launer LJ, et al. Microstructural white matter changes preceding white matter hyperintensities in migraine. Neurology. 2019;93(7):e688–e694. doi: 10.1212/WNL.0000000000007940.
    1. Palm-Meinders IH, Koppen H, Terwindt GM, Launer LJ, Konishi J, Moonen JM, et al. Structural brain changes in migraine. JAMA. 2012;308(18):1889–1897. doi: 10.1001/jama.2012.14276.
    1. Hamedani AG, Rose KM, Peterlin BL, Mosley TH, Coker LH, Jack CR, et al. Migraine and white matter hyperintensities: the ARIC MRI study. Neurology. 2013;81(15):1308–1313. doi: 10.1212/WNL.0b013e3182a8235b.
    1. Schick S, Gahleitner A, Wober-Bingol C, Wober C, Ba-Ssalamah A, Schoder M, et al. Virchow-Robin spaces in childhood migraine. Neuroradiology. 1999;41(4):283–287. doi: 10.1007/s002340050749.
    1. Behzadmehr R, Arefi S, Behzadmehr R. Brain imaging findings in children with headache. Acta Inform Med. 2018;26(1):51–53. doi: 10.5455/aim.2018.26.51-53.
    1. Schwedt TJ, Guo Y, Rothner AD. “Benign” imaging abnormalities in children and adolescents with headache. Headache. 2006;46(3):387–398. doi: 10.1111/j.1526-4610.2006.00371.x.
    1. Bashir A, Lipton RB, Ashina S, Ashina M. Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology. 2013;81(14):1260–1268. doi: 10.1212/WNL.0b013e3182a6cb32.
    1. Jia Z, Yu S. Grey matter alterations in migraine: a systematic review and meta-analysis. Neuroimage Clin. 2017;14:130–140. doi: 10.1016/j.nicl.2017.01.019.
    1. Demir BT, Bayram NA, Ayturk Z, Erdamar H, Seven P, Calp A, et al. Structural changes in the cerebrum, cerebellum and Corpus callosum in migraine patients. Clin Invest Med. 2016;39(6):27495. doi: 10.25011/cim.v39i6.27495.
    1. Hougaard A, Amin FM, Ashina M. Migraine and structural abnormalities in the brain. Curr Opin Neurol. 2014;27(3):309–314. doi: 10.1097/WCO.0000000000000086.
    1. Chong CD, Gaw N, Fu Y, Li J, Wu T, Schwedt TJ. Migraine classification using magnetic resonance imaging resting-state functional connectivity data. Cephalalgia. 2017;37(9):828–844. doi: 10.1177/0333102416652091.
    1. Soheili-Nezhad S, Sedghi A, Schweser F, Eslami Shahr Babaki A, Jahanshad N, Thompson PM, et al. Structural and functional reorganization of the brain in migraine without aura. Front Neurol. 2019;10:442. doi: 10.3389/fneur.2019.00442.
    1. DaSilva AF, Granziera C, Snyder J, Hadjikhani N. Thickening in the somatosensory cortex of patients with migraine. Neurology. 2007;69(21):1990–1995. doi: 10.1212/01.wnl.0000291618.32247.2d.
    1. Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW, et al. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia. 2008;28(6):598–604. doi: 10.1111/j.1468-2982.2008.01550.x.
    1. Messina R, Rocca MA, Colombo B, Valsasina P, Horsfield MA, Copetti M, et al. Cortical abnormalities in patients with migraine: a surface-based analysis. Radiology. 2013;268(1):170–180. doi: 10.1148/radiol.13122004.
    1. Schmidt-Wilcke T, Ganssbauer S, Neuner T, Bogdahn U, May A. Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia. 2008;28(1):1–4. doi: 10.1111/j.1468-2982.2007.01428.x.
    1. Mainero Caterina, Boshyan Jasmine, Hadjikhani Nouchine. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Annals of Neurology. 2011;70(5):838–845. doi: 10.1002/ana.22537.
    1. Magon S, May A, Stankewitz A, Goadsby PJ, Schankin C, Ashina M, et al. Cortical abnormalities in episodic migraine: a multi-center 3T MRI study. Cephalalgia. 2019;39(5):665–673. doi: 10.1177/0333102418795163.
    1. Magon S, May A, Stankewitz A, Goadsby PJ, Tso AR, Ashina M, et al. Morphological abnormalities of thalamic subnuclei in migraine: a multicenter MRI study at 3 tesla. J Neurosci. 2015;35(40):13800–13806. doi: 10.1523/JNEUROSCI.2154-15.2015.
    1. Granziera C, Daducci A, Romascano D, Roche A, Helms G, Krueger G, et al. Structural abnormalities in the thalamus of migraineurs with aura: a multiparametric study at 3 T. Hum Brain Mapp. 2014;35(4):1461–1468. doi: 10.1002/hbm.22266.
    1. Chong CD, Plasencia JD, Frakes DH, Schwedt TJ. Structural alterations of the brainstem in migraine. Neuroimage Clin. 2017;13:223–227. doi: 10.1016/j.nicl.2016.10.023.
    1. Coppola G, Di Renzo A, Tinelli E, Iacovelli E, Lepre C, Di Lorenzo C, et al. Evidence for brain morphometric changes during the migraine cycle: a magnetic resonance-based morphometry study. Cephalalgia. 2015;35(9):783–791. doi: 10.1177/0333102414559732.
    1. Bilgic B, Kocaman G, Arslan AB, Noyan H, Sherifov R, Alkan A, et al. Volumetric differences suggest involvement of cerebellum and brainstem in chronic migraine. Cephalalgia. 2016;36(4):301–308. doi: 10.1177/0333102415588328.
    1. Neeb L, Bastian K, Villringer K, Israel H, Reuter U, Fiebach JB. Structural gray matter alterations in chronic migraine: implications for a progressive disease? Headache. 2017;57(3):400–416. doi: 10.1111/head.13012.
    1. Coppola G, Petolicchio B, Di Renzo A, Tinelli E, Di Lorenzo C, Parisi V, et al. Cerebral gray matter volume in patients with chronic migraine: correlations with clinical features. J Headache Pain. 2017;18(1):115. doi: 10.1186/s10194-017-0825-z.
    1. Chen Z, Chen X, Liu M, Ma L, Yu S. Volume of hypothalamus as a diagnostic biomarker of chronic migraine. Front Neurol. 2019;10:606. doi: 10.3389/fneur.2019.00606.
    1. Rocca MA, Messina R, Colombo B, Falini A, Comi G, Filippi M. Structural brain MRI abnormalities in pediatric patients with migraine. J Neurol. 2014;261(2):350–357. doi: 10.1007/s00415-013-7201-y.
    1. Santoro JD, Forkert ND, Yang QZ, Pavitt S, MacEachern SJ, Moseley ME, et al. Brain diffusion abnormalities in children with tension-type and migraine-type headaches. AJNR Am J Neuroradiol. 2018;39(5):935–941. doi: 10.3174/ajnr.A5582.
    1. May A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci. 2011;15(10):475–482. doi: 10.1016/j.tics.2011.08.002.
    1. Laurell K, Artto V, Bendtsen L, Hagen K, Haggstrom J, Linde M, et al. Premonitory symptoms in migraine: a cross-sectional study in 2714 persons. Cephalalgia. 2016;36(10):951–959. doi: 10.1177/0333102415620251.
    1. Zhang Y, Kong Q, Chen J, Li L, Wang D, Zhou J. International classification of headache disorders 3rd edition beta-based field testing of vestibular migraine in China: demographic, clinical characteristics, audiometric findings and diagnosis statues. Cephalalgia. 2016;36(3):240–248. doi: 10.1177/0333102415587704.
    1. Headache Classification Committee of the International Headache Society (IHS) (2018) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38(1):1–211. 10.1177/0333102417738202
    1. Giffin NJ, Lipton RB, Silberstein SD, Olesen J, Goadsby PJ. The migraine postdrome: an electronic diary study. Neurology. 2016;87(3):309–313. doi: 10.1212/WNL.0000000000002789.
    1. Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007;27(5):394–402. doi: 10.1111/j.1468-2982.2007.01303.x.
    1. Goadsby P, Charbit A, Andreou A, Akerman S, Holland P. Neurobiology of migraine. Neuroscience. 2009;161(2):327–341. doi: 10.1016/j.neuroscience.2009.03.019.
    1. Lambru G, Andreou AP, Guglielmetti M, Martelletti P. Emerging drugs for migraine treatment: an update. Expert Opin Emerg Drugs. 2018;23(4):301–318. doi: 10.1080/14728214.2018.1552939.
    1. Toni R, Malaguti A, Benfenati F, Martini L. The human hypothalamus: a morpho-functional perspective. J Endocrinol Investig. 2004;27(6 Suppl):73–94.
    1. Alstadhaug KB, Bekkelund S, Salvesen R. Circannual periodicity of migraine? Eur J Neurol. 2007;14(9):983–988. doi: 10.1111/j.1468-1331.2007.01828.x.
    1. Alstadhaug KB, Salvesen R, Bekkelund SI. Seasonal variation in migraine. Cephalalgia. 2005;25(10):811–816. doi: 10.1111/j.1468-2982.2005.01018.x.
    1. Stewart WF, Lipton RB, Chee E, Sawyer J, Silberstein SD. Menstrual cycle and headache in a population sample of migraineurs. Neurology. 2000;55(10):1517–1523. doi: 10.1212/WNL.55.10.1517.
    1. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47(10):1418–1426.
    1. Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain. 2016;139(Pt 7):1987–1993. doi: 10.1093/brain/aww097.
    1. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. 2014;137(Pt 1):232–241. doi: 10.1093/brain/awt320.
    1. Burstein R, Jakubowski M. Unitary hypothesis for multiple triggers of the pain and strain of migraine. J Comp Neurol. 2005;493(1):9–14. doi: 10.1002/cne.20688.
    1. Faithfull NS. Post-operative headache--a multifactorial analysis. Eur J Anaesthesiol. 1991;8(1):59–63.
    1. Alstadhaug KB. Migraine and the hypothalamus. Cephalalgia. 2009;29(8):809–817. doi: 10.1111/j.1468-2982.2008.01814.x.
    1. Brennan KC, Bates EA, Shapiro RE, Zyuzin J, Hallows WC, Huang Y, et al. Casein kinase idelta mutations in familial migraine and advanced sleep phase. Sci Transl Med. 2013;5(183):183ra56. doi: 10.1126/scitranslmed.3005784.
    1. Dahmen N, Kasten M, Wieczorek S, Gencik M, Epplen JT, Ullrich B. Increased frequency of migraine in narcoleptic patients: a confirmatory study. Cephalalgia. 2003;23(1):14–19. doi: 10.1046/j.1468-2982.2003.00343.x.
    1. Casez O, Dananchet Y, Besson G. Migraine and somnambulism. Neurology. 2005;65(8):1334–1335. doi: 10.1212/01.wnl.0000180937.20774.20.
    1. Holland PR. Headache and sleep: shared pathophysiological mechanisms. Cephalalgia. 2014;34(10):725–744. doi: 10.1177/0333102414541687.
    1. Bjorklund A, Skagerberg G. Evidence for a major spinal cord projection from the diencephalic A11 dopamine cell group in the rat using transmitter-specific fluorescent retrograde tracing. Brain Res. 1979;177(1):170–175. doi: 10.1016/0006-8993(79)90927-2.
    1. Charbit AR, Akerman S, Goadsby PJ. Trigeminocervical complex responses after lesioning dopaminergic A11 nucleus are modified by dopamine and serotonin mechanisms. Pain. 2011;152(10):2365–2376. doi: 10.1016/j.pain.2011.07.002.
    1. Charbit AR, Akerman S, Holland PR, Goadsby PJ. Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci. 2009;29(40):12532–12541. doi: 10.1523/JNEUROSCI.2887-09.2009.
    1. Andreou AP, Chamberlain J. Nitric oxide alters the neuronal firing of the dopaminergic hypothalamic nucleus A11. Headache. 2014;54:6–7.
    1. Andreou AP, Chamberlain JH, Torres-Perez JV, Noormohamed F, Goadsby PJ, Bantel C, et al. The A11 hypothalamic nucleus is susceptible to nitric oxide signalling. J Headache Pain. 2014;15:F2. doi: 10.1186/1129-2377-15-S1-F2.
    1. Aurora SK, Cao Y, Bowyer SM, Welch KM. The occipital cortex is hyperexcitable in migraine: experimental evidence. Headache. 1999;39(7):469–476. doi: 10.1046/j.1526-4610.1999.3907469.x.
    1. Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW. Visual cortex excitability in migraine with and without aura. Headache. 2001;41(6):565–572. doi: 10.1046/j.1526-4610.2001.041006565.x.
    1. Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Geraud G. A PET study of photophobia during spontaneous migraine attacks. Neurology. 2011;76(3):213–218. doi: 10.1212/WNL.0b013e3182074a57.
    1. Brennan KC. Turn down the lights!: an irritable occipital cortex in migraine without aura. Neurology. 2011;76(3):206–207. doi: 10.1212/WNL.0b013e3182074bfb.
    1. Coppola G, Pierelli F, Schoenen J. Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia. 2007;27(12):1427–1439. doi: 10.1111/j.1468-2982.2007.01500.x.
    1. Andreou AP, Holland PR, Akerman S, Summ O, Fredrick J, Goadsby PJ. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine. Brain. 2016;139(Pt 7):2002–2014. doi: 10.1093/brain/aww118.
    1. Lambru G, Hill B, Lloyd J, Al-Kaisy A, Andreou AP. Single-pulse transcranial magnetic stimulation (Stms) for the treatment of migraine: a prospective real world experience. Cephalalgia. 2018;38:150.
    1. Lipton RB, Dodick DW, Silberstein SD, Saper JR, Aurora SK, Pearlman SH, et al. Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham-controlled trial. Lancet Neurol. 2010;9(4):373–380. doi: 10.1016/S1474-4422(10)70054-5.
    1. Starling AJ, Tepper SJ, Marmura MJ, Shamim EA, Robbins MS, Hindiyeh N, et al. A multicenter, prospective, single arm, open label, observational study of sTMS for migraine prevention (ESPOUSE study) Cephalalgia. 2018;38(6):1038–1048. doi: 10.1177/0333102418762525.
    1. Rasmussen BK, Olesen J. Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia. 1992;12(4):221–228. doi: 10.1046/j.1468-2982.1992.1204221.x.
    1. Olesen J. Regional cerebral blood flow and oxygen metabolism during migraine with and without aura. Cephalalgia. 1998;18(1):2–4. doi: 10.1046/j.1468-2982.1998.1801001-3.x.
    1. Arngrim N, Hougaard A, Ahmadi K, Vestergaard MB, Schytz HW, Amin FM, et al. Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses. Ann Neurol. 2017;82(6):925–939. doi: 10.1002/ana.25096.
    1. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A. 2001;98(8):4687–4692. doi: 10.1073/pnas.071582498.
    1. Leão AA. Spreading depression of activity in cerebral cortex. J Neurophysiol. 1944;7:359–390. doi: 10.1152/jn.1944.7.6.359.
    1. Andreou AP, Summ O, Charbit AR, Romero-Reyes M, Goadsby PJ. Animal models of headache: from bedside to bench and back to bedside. Expert Rev Neurother. 2010;10(3):389–411. doi: 10.1586/ern.10.16.
    1. Goadsby PJ. Migraine, aura, and cortical spreading depression: why are we still talking about it? Ann Neurol. 2001;49(1):4–6. doi: 10.1002/1531-8249(200101)49:1<4::AID-ANA3>;2-W.
    1. Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci. 1993;13(3):1167–1177. doi: 10.1523/JNEUROSCI.13-03-01167.1993.
    1. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–142. doi: 10.1038/nm0202-136.
    1. Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol. 2011;69(5):855–865. doi: 10.1002/ana.22329.
    1. Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci. 2010;30(26):8807–8814. doi: 10.1523/JNEUROSCI.0511-10.2010.
    1. Iadecola C. From CSD to headache: a long and winding road. Nat Med. 2002;8(2):110–112. doi: 10.1038/nm0202-110.
    1. Ebersberger A, Schaible HG, Averbeck B, Richter F. Is there a correlation between spreading depression, neurogenic inflammation, and nociception that might cause migraine headache? Ann Neurol. 2001;49(1):7–13. doi: 10.1002/1531-8249(200101)49:1<7::AID-ANA4>;2-K.
    1. Ingvardsen BK, Laursen H, Olsen UB, Hansen AJ. Possible mechanism of c-fos expression in trigeminal nucleus caudalis following cortical spreading depression. Pain. 1997;72(3):407–415. doi: 10.1016/S0304-3959(97)00069-9.
    1. Andreou AP, Sprenger T, Goadsby PJ. Cortical modulation of thalamic function during cortical spreading depression- unraveling a new central mechanism involved in migraine aura. J Headache Pain. 2013;14:16. doi: 10.1186/1129-2377-14-S1-I6.
    1. Ray BS, Wolff HG. Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg. 1940;41:813–856. doi: 10.1001/archsurg.1940.01210040002001.
    1. Shields KG, Goadsby PJ. Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol Dis. 2006;23(3):491–501. doi: 10.1016/j.nbd.2006.04.003.
    1. Andreou AP, Goadsby PJ. Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia. 2011;31(13):1343–1358. doi: 10.1177/0333102411418259.
    1. Andreou AP, Shields KG, Goadsby PJ. GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiol Dis. 2010;37(2):314–323. doi: 10.1016/j.nbd.2009.10.007.
    1. Andreou AP, Goadsby PJ. Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin Investig Drugs. 2009;18(6):789–803. doi: 10.1517/13543780902913792.
    1. Coppola G, Ambrosini A, Di Clemente L, Magis D, Fumal A, Gerard P, et al. Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia. 2007;27(12):1360–1367. doi: 10.1111/j.1468-2982.2007.01466.x.
    1. Amin FM, Hougaard A, Magon S, Sprenger T, Wolfram F, Rostrup E, et al. Altered thalamic connectivity during spontaneous attacks of migraine without aura: a resting-state fMRI study. Cephalalgia. 2018;38(7):1237–1244. doi: 10.1177/0333102417729113.
    1. Tu Y, Fu Z, Zeng F, Maleki N, Lan L, Li Z, et al. Abnormal thalamocortical network dynamics in migraine. Neurology. 2019;92(23):e2706–e2e16. doi: 10.1212/WNL.0000000000007607.
    1. Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, et al. A neural mechanism for exacerbation of headache by light. Nat Neurosci. 2010;13(2):239–245. doi: 10.1038/nn.2475.
    1. Filippov IV, Williams WC, Krebs AA, Pugachev KS. Dynamics of infraslow potentials in the primary auditory cortex: component analysis and contribution of specific thalamic-cortical and non-specific brainstem-cortical influences. Brain Res. 2008;1219:66–77. doi: 10.1016/j.brainres.2008.04.011.
    1. Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, et al. Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol. 2010;68(1):81–91. doi: 10.1002/ana.21994.
    1. Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–584. doi: 10.1038/nrn3057.
    1. Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–660. doi: 10.1038/nm0795-658.
    1. Afridi SK, Giffin NJ, Kaube H, Friston KJ, Ward NS, Frackowiak RS, et al. A positron emission tomographic study in spontaneous migraine. Arch Neurol. 2005;62(8):1270–1275. doi: 10.1001/archneur.62.8.1270.
    1. Matharu MS, Bartsch T, Ward N, Frackowiak RS, Weiner R, Goadsby PJ. Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain. 2004;127(Pt 1):220–230. doi: 10.1093/brain/awh022.
    1. Afridi SK, Matharu MS, Lee L, Kaube H, Friston KJ, Frackowiak RS, et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain. 2005;128(Pt 4):932–939. doi: 10.1093/brain/awh416.
    1. Gupta R, Bhatia MS. A report of cranial autonomic symptoms in migraineurs. Cephalalgia. 2007;27(1):22–28. doi: 10.1111/j.1468-2982.2006.01237.x.
    1. Edvinsson L, Elsas T, Suzuki N, Shimizu T, Lee TJ. Origin and co-localization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech. 2001;53(3):221–228. doi: 10.1002/jemt.1086.
    1. Yarnitsky D, Goor-Aryeh I, Bajwa ZH, Ransil BI, Cutrer FM, Sottile A, et al. 2003 Wolff award: possible parasympathetic contributions to peripheral and central sensitization during migraine. Headache. 2003;43(7):704–714. doi: 10.1046/j.1526-4610.2003.03127.x.
    1. Jones MG, Andreou AP, McMahon SB, Spanswick D. Pharmacology of reflex blinks in the rat: a novel model for headache research. J Headache Pain. 2016;17(1):96. doi: 10.1186/s10194-016-0686-x.
    1. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 2009;8(7):679–690. doi: 10.1016/S1474-4422(09)70090-0.
    1. Wolff HG. Headache and other head pain. 1. New York: Oxford University Press; 1948.
    1. Penfield W, McNaughton F. Dural headache and innervation of the dura matter. Arch Neurol Psychiatr. 1940;44:43–75. doi: 10.1001/archneurpsyc.1940.02280070051003.
    1. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28(2):183–187. doi: 10.1002/ana.410280213.
    1. Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988;23(2):193–196. doi: 10.1002/ana.410230214.
    1. Lambert GA, Goadsby PJ, Zagami AS, Duckworth JW. Comparative effects of stimulation of the trigeminal ganglion and the superior sagittal sinus on cerebral blood flow and evoked potentials in the cat. Brain Res. 1988;453(1–2):143–149. doi: 10.1016/0006-8993(88)90152-7.
    1. Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol. 2004;142(7):1171–1181. doi: 10.1038/sj.bjp.0705807.
    1. Biella G, Panara C, Pecile A, Sotgiu ML. Facilitatory role of calcitonin gene-related peptide (CGRP) on excitation induced by substance P (SP) and noxious stimuli in rat spinal dorsal horn neurons. An iontophoretic study in vivo. Brain Res. 1991;559(2):352–356. doi: 10.1016/0006-8993(91)90024-P.
    1. Leem JW, Gwak YS, Lee EH, Chung SS, Kim YS, Nam TS. Effects of iontophoretically applied substance P, calcitonin gene-related peptide on excitability of dorsal horn neurones in rats. Yonsei Med J. 2001;42(1):74–83. doi: 10.3349/ymj.2001.42.1.74.
    1. Schankin CJ, Maniyar FH, Seo Y, Kori S, Eller M, Chou DE, et al. Ictal lack of binding to brain parenchyma suggests integrity of the blood-brain barrier for 11C-dihydroergotamine during glyceryl trinitrate-induced migraine. Brain. 2016;139(Pt 7):1994–2001. doi: 10.1093/brain/aww096.
    1. Hougaard A, Amin FM, Christensen CE, Younis S, Wolfram F, Cramer SP, et al. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain. 2017;140(6):1633–1642. doi: 10.1093/brain/awx089.
    1. Edvinsson L, Nilsson E, Jansen-Olesen I. Inhibitory effect of BIBN4096BS, CGRP(8-37), a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br J Pharmacol. 2007;150(5):633–640. doi: 10.1038/sj.bjp.0707134.
    1. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J. CGRP may play a causative role in migraine. Cephalalgia. 2002;22(1):54–61. doi: 10.1046/j.1468-2982.2002.00310.x.
    1. Lassen LH, Thomsen LL, Olesen J. Histamine induces migraine via the H1-receptor. Support for the NO hypothesis of migraine. Neuroreport. 1995;6(11):1475–1479. doi: 10.1097/00001756-199507310-00003.
    1. Schoonman GG, van der Grond J, Kortmann C, van der Geest RJ, Terwindt GM, Ferrari MD. Migraine headache is not associated with cerebral or meningeal vasodilatation--a 3T magnetic resonance angiography study. Brain. 2008;131(Pt 8):2192–2200. doi: 10.1093/brain/awn094.
    1. Andreou AP, Trimboli M, Al-Kaisy A, Murphy M, Palmisani S, Fenech C, et al. Prospective real-world analysis of OnabotulinumtoxinA in chronic migraine post-National Institute for health and care excellence UK technology appraisal. Eur J Neurol. 2018;25(8):1069–1e83. doi: 10.1111/ene.13657.
    1. The LN. Complicated decisions on new migraine-prevention therapies. Lancet Neurol. 2019;18(3):221. doi: 10.1016/S1474-4422(19)30041-9.
    1. Dodick DW. CGRP ligand and receptor monoclonal antibodies for migraine prevention: evidence review and clinical implications. Cephalalgia. 2019;39(3):445–458. doi: 10.1177/0333102418821662.
    1. Lundblad C, Haanes KA, Grande G, Edvinsson L. Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage. J Headache Pain. 2015;16:91. doi: 10.1186/s10194-015-0575-8.
    1. Andreou AP, Holland PR, Goadsby PJ. Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation. Br J Pharmacol. 2009;157(3):464–473. doi: 10.1111/j.1476-5381.2009.00142.x.
    1. Andreou AP, Holland PR, Lasalandra M, Goadsby PJ. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors. Pain. 2015;156(3):439–450. doi: 10.1097/01.j.pain.0000460325.25762.c0.
    1. Nichols FT, 3rd, Mawad M, Mohr JP, Stein B, Hilal S, Michelsen WJ. Focal headache during balloon inflation in the internal carotid and middle cerebral arteries. Stroke. 1990;21(4):555–559. doi: 10.1161/01.STR.21.4.555.
    1. Nagata E, Moriguchi H, Takizawa S, Horie T, Yanagimachi N, Takagi S. The middle meningial artery during a migraine attack: 3T magnetic resonance angiography study. Intern Med. 2009;48(24):2133–2135. doi: 10.2169/internalmedicine.48.2565.
    1. Khan S, Amin FM, Christensen CE, Ghanizada H, Younis S, Olinger ACR, et al. Meningeal contribution to migraine pain: a magnetic resonance angiography study. Brain. 2019;142:93–102. doi: 10.1093/brain/awy300.
    1. Friberg L, Olesen J, Iversen HK, Sperling B. Migraine pain associated with middle cerebral artery dilatation: reversal by sumatriptan. Lancet. 1991;338(8758):13–17. doi: 10.1016/0140-6736(91)90005-A.
    1. Iversen HK, Nielsen TH, Olesen J, Tfelt-Hansen P. Arterial responses during migraine headache. Lancet. 1990;336(8719):837–839. doi: 10.1016/0140-6736(90)92339-J.
    1. Ashina M. Vascular changes have a primary role in migraine. Cephalalgia. 2012;32(5):428–430. doi: 10.1177/0333102412438978.
    1. Kruuse C, Thomsen LL, Birk S, Olesen J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain. 2003;126:241–247. doi: 10.1093/brain/awg009.
    1. Jacobs B, Dussor G. Neurovascular contributions to migraine: moving beyond vasodilation. Neuroscience. 2016;338:130–144. doi: 10.1016/j.neuroscience.2016.06.012.
    1. Bose P, Goadsby PJ. The migraine postdrome. Curr Opin Neurol. 2016;29(3):299–301. doi: 10.1097/WCO.0000000000000310.
    1. Buse DC, Manack AN, Fanning KM, Serrano D, Reed ML, Turkel CC, et al. Chronic migraine prevalence, disability, and sociodemographic factors: results from the American Migraine Prevalence and Prevention Study. Headache. 2012;52(10):1456–1470. doi: 10.1111/j.1526-4610.2012.02223.x.
    1. Natoli JL, Manack A, Dean B, Butler Q, Turkel CC, Stovner L, et al. Global prevalence of chronic migraine: a systematic review. Cephalalgia. 2010;30(5):599–609. doi: 10.1111/j.1468-2982.2009.01941.x.
    1. Moschiano F, D'Amico D, Schieroni F, Bussone G. Neurobiology of chronic migraine. Neurol Sci. 2003;24(Suppl 2):S94–S96. doi: 10.1007/s100720300051.
    1. Lipton RB, Pan J. Is migraine a progressive brain disease? JAMA. 2004;291(4):493–494. doi: 10.1001/jama.291.4.493.
    1. Manack AN, Buse DC, Lipton RB. Chronic migraine: epidemiology and disease burden. Curr Pain Headache Rep. 2011;15(1):70–78. doi: 10.1007/s11916-010-0157-z.
    1. Mathew NT, Reuveni U, Perez F. Transformed or evolutive migraine. Headache. 1987;27(2):102–106. doi: 10.1111/j.1526-4610.1987.hed2702102.x.
    1. May A, Schulte LH. Chronic migraine: risk factors, mechanisms and treatment. Nat Rev Neurol. 2016;12(8):455–464. doi: 10.1038/nrneurol.2016.93.
    1. Scher AI, Stewart WF, Ricci JA, Lipton RB. Factors associated with the onset and remission of chronic daily headache in a population-based study. Pain. 2003;106(1–2):81–89. doi: 10.1016/S0304-3959(03)00293-8.
    1. Mathew NT, Kurman R, Perez F. Drug induced refractory headache--clinical features and management. Headache. 1990;30(10):634–638. doi: 10.1111/j.1526-4610.1990.hed3010634.x.
    1. Katsarava Z, Schneeweiss S, Kurth T, Kroener U, Fritsche G, Eikermann A, et al. Incidence and predictors for chronicity of headache in patients with episodic migraine. Neurology. 2004;62(5):788–790. doi: 10.1212/01.WNL.0000113747.18760.D2.
    1. Lipton RB, Fanning KM, Serrano D, Reed ML, Cady R, Buse DC. Ineffective acute treatment of episodic migraine is associated with new-onset chronic migraine. Neurology. 2015;84(7):688–695. doi: 10.1212/WNL.0000000000001256.
    1. Ashina S, Serrano D, Lipton RB, Maizels M, Manack AN, Turkel CC, et al. Depression and risk of transformation of episodic to chronic migraine. J Headache Pain. 2012;13(8):615–624. doi: 10.1007/s10194-012-0479-9.
    1. Bigal ME, Lipton RB. Obesity is a risk factor for transformed migraine but not chronic tension-type headache. Neurology. 2006;67(2):252–257. doi: 10.1212/01.wnl.0000225052.35019.f9.
    1. Coppola G, Di Renzo A, Petolicchio B, Tinelli E, Di Lorenzo C, Parisi V, et al. Aberrant interactions of cortical networks in chronic migraine: a resting-state fMRI study. Neurology. 2019;92(22):e2550–e25e8. doi: 10.1212/WNL.0000000000007577.
    1. Aradi M, Schwarcz A, Perlaki G, Orsi G, Kovacs N, Trauninger A, et al. Quantitative MRI studies of chronic brain white matter hyperintensities in migraine patients. Headache. 2013;53(5):752–763. doi: 10.1111/head.12013.
    1. Chiapparini L, Ferraro S, Grazzi L, Bussone G. Neuroimaging in chronic migraine. Neurol Sci. 2010;31(Suppl 1):S19–S22. doi: 10.1007/s10072-010-0266-9.
    1. Rocca MA, Ceccarelli A, Falini A, Tortorella P, Colombo B, Pagani E, et al. Diffusion tensor magnetic resonance imaging at 3.0 tesla shows subtle cerebral grey matter abnormalities in patients with migraine. J Neurol Neurosurg Psychiatry. 2006;77(5):686–689. doi: 10.1136/jnnp.2005.080002.
    1. Valfre W, Rainero I, Bergui M, Pinessi L. Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache. 2008;48(1):109–117. doi: 10.1111/j.1526-4610.2007.00723.x.
    1. Zheng Z, Xiao Z, Shi X, Ding M, Di W, Qi W, et al. White matter lesions in chronic migraine with medication overuse headache: a cross-sectional MRI study. J Neurol. 2014;261(4):784–790. doi: 10.1007/s00415-014-7267-1.
    1. Coppola G, Schoenen J. Cortical excitability in chronic migraine. Curr Pain Headache Rep. 2012;16(1):93–100. doi: 10.1007/s11916-011-0231-1.
    1. Cosentino G, Fierro B, Vigneri S, Talamanca S, Paladino P, Baschi R, et al. Cyclical changes of cortical excitability and metaplasticity in migraine: evidence from a repetitive transcranial magnetic stimulation study. Pain. 2014;155(6):1070–1078. doi: 10.1016/j.pain.2014.02.024.
    1. Edvinsson L, Haanes KA, Warfvinge K. Does inflammation have a role in migraine? Nat Rev Neurol. 2019;15(8):483–490. doi: 10.1038/s41582-019-0216-y.
    1. Moskowitz MA. Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology. 1993;43(6 Suppl 3):S16–S20.
    1. Xu H, Han W, Wang J, Li M. Network meta-analysis of migraine disorder treatment by NSAIDs and triptans. J Headache Pain. 2016;17(1):113. doi: 10.1186/s10194-016-0703-0.
    1. Allen SM, Mookadam F, Cha SS, Freeman JA, Starling AJ, Mookadam M. Greater occipital nerve block for acute treatment of migraine headache: a large retrospective cohort study. J Am Board Fam Med. 2018;31(2):211–218. doi: 10.3122/jabfm.2018.02.170188.
    1. Kashipazha D, Nakhostin-Mortazavi A, Mohammadianinejad SE, Bahadoram M, Zandifar S, Tarahomi S. Preventive effect of greater occipital nerve block on severity and frequency of migraine headache. Global J Health Sci. 2014;6(6):209–213. doi: 10.5539/gjhs.v6n6p209.
    1. Nakamura-Craig M, Gill BK. Effect of neurokinin a, substance P and calcitonin gene related peptide in peripheral hyperalgesia in the rat paw. Neurosci Lett. 1991;124(1):49–51. doi: 10.1016/0304-3940(91)90819-F.
    1. Schaible HG, Schmidt RF. Excitation and sensitization of fine articular afferents from cat's knee joint by prostaglandin E2. J Physiol. 1988;403:91–104. doi: 10.1113/jphysiol.1988.sp017240.
    1. Birrell GJ, McQueen DS, Iggo A, Coleman RA, Grubb BD. PGI2-induced activation and sensitization of articular mechanonociceptors. Neurosci Lett. 1991;124(1):5–8. doi: 10.1016/0304-3940(91)90809-8.
    1. Wang J, Qiu X, Kulkarni A, Hauer-Jensen M. Calcitonin gene-related peptide and substance P regulate the intestinal radiation response. Clin Cancer Res. 2006;12(13):4112–4118. doi: 10.1158/1078-0432.CCR-06-0592.
    1. Eftekhari S, Salvatore CA, Calamari A, Kane SA, Tajti J, Edvinsson L. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience. 2010;169(2):683–696. doi: 10.1016/j.neuroscience.2010.05.016.
    1. Johnson K, Bolay H. Neurogenic inflammatory mechanisms. In: Olesen J, Goadsby PJ, Ramadan NM, Tfelt-Hansen P, Welch KMA, editors. The headaches. 3. Philadelphia: Lipincott Williams & Wilkins; 2006. pp. 309–319.
    1. Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365–391. doi: 10.1146/annurev-physiol-030212-183717.
    1. Covelli V, Munno I, Pellegrino NM, Altamura M, Decandia P, Marcuccio C, et al. Are TNF-alpha and IL-1 beta relevant in the pathogenesis of migraine without aura? Acta Neurol (Napoli) 1991;13(2):205–211.
    1. Perini F, D'Andrea G, Galloni E, Pignatelli F, Billo G, Alba S, et al. Plasma cytokine levels in migraineurs and controls. Headache. 2005;45(7):926–931. doi: 10.1111/j.1526-4610.2005.05135.x.
    1. Franceschini A, Vilotti S, Ferrari MD, van den Maagdenberg AM, Nistri A, Fabbretti E. TNFalpha levels and macrophages expression reflect an inflammatory potential of trigeminal ganglia in a mouse model of familial hemiplegic migraine. PLoS One. 2013;8(1):e52394. doi: 10.1371/journal.pone.0052394.
    1. Tanure MT, Gomez RS, Hurtado RC, Teixeira AL, Domingues RB. Increased serum levels of brain-derived neurotropic factor during migraine attacks: a pilot study. J Headache Pain. 2010;11(5):427–430. doi: 10.1007/s10194-010-0233-0.
    1. Kristiansen KA, Edvinsson L. Neurogenic inflammation: a study of rat trigeminal ganglion. J Headache Pain. 2010;11(6):485–495. doi: 10.1007/s10194-010-0260-x.
    1. Kuris A, Xu CB, Zhou MF, Tajti J, Uddman R, Edvinsson L. Enhanced expression of CGRP in rat trigeminal ganglion neurons during cell and organ culture. Brain Res. 2007;1173:6–13. doi: 10.1016/j.brainres.2007.07.073.
    1. Csati A, Edvinsson L, Vecsei L, Toldi J, Fulop F, Tajti J, et al. Kynurenic acid modulates experimentally induced inflammation in the trigeminal ganglion. J Headache Pain. 2015;16:99. doi: 10.1186/s10194-015-0581-x.
    1. Lukacs M, Haanes KA, Majlath Z, Tajti J, Vecsei L, Warfvinge K, et al. Dural administration of inflammatory soup or complete Freund's adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J Headache Pain. 2015;16:564. doi: 10.1186/s10194-015-0564-y.
    1. Lukacs M, Tajti J, Fulop F, Toldi J, Edvinsson L, Vecsei L. Migraine, neurogenic inflammation, drug development - pharmacochemical aspects. Curr Med Chem. 2017;24(33):3649–3665. doi: 10.2174/0929867324666170712163437.
    1. Tajti J, Kuris A, Vecsei L, Xu CB, Edvinsson L. Organ culture of the trigeminal ganglion induces enhanced expression of calcitonin gene-related peptide via activation of extracellular signal-regulated protein kinase 1/2. Cephalalgia. 2011;31(1):95–105. doi: 10.1177/0333102410382796.
    1. Burstein R, Yamamura H, Malick A, Strassman AM. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol. 1998;79(2):964–982. doi: 10.1152/jn.1998.79.2.964.
    1. Strassman AM, Raymond SA, Burstein R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature. 1996;384(6609):560–564. doi: 10.1038/384560a0.
    1. Lukacs M, Warfvinge K, Kruse LS, Tajti J, Fulop F, Toldi J, et al. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1beta in the rat trigeminal ganglion. J Headache Pain. 2016;17(1):64. doi: 10.1186/s10194-016-0654-5.
    1. Cernuda-Morollon E, Martinez-Camblor P, Alvarez R, Larrosa D, Ramon C, Pascual J. Increased VIP levels in peripheral blood outside migraine attacks as a potential biomarker of cranial parasympathetic activation in chronic migraine. Cephalalgia. 2015;35(4):310–316. doi: 10.1177/0333102414535111.
    1. Riesco N, Cernuda-Morollon E, Pascual J. Neuropeptides as a marker for chronic headache. Curr Pain Headache Rep. 2017;21(4):18. doi: 10.1007/s11916-017-0618-8.
    1. Cernuda-Morollon E, Larrosa D, Ramon C, Vega J, Martinez-Camblor P, Pascual J. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology. 2013;81(14):1191–1196. doi: 10.1212/WNL.0b013e3182a6cb72.
    1. De Felice M, Ossipov MH, Wang R, Lai J, Chichorro J, Meng I, et al. Triptan-induced latent sensitization: a possible basis for medication overuse headache. Ann Neurol. 2010;67(3):325–337.
    1. McMahon SB, Lewin GR, Wall PD. Central hyperexcitability triggered by noxious inputs. Curr Opin Neurobiol. 1993;3(4):602–610. doi: 10.1016/0959-4388(93)90062-4.
    1. Woolf CJ, Doubell TP. The pathophysiology of chronic pain--increased sensitivity to low threshold a beta-fibre inputs. Curr Opin Neurobiol. 1994;4(4):525–534. doi: 10.1016/0959-4388(94)90053-1.
    1. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288(5472):1765–1769. doi: 10.1126/science.288.5472.1765.
    1. Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache. 2006;46(Suppl 4):S182–S191. doi: 10.1111/j.1526-4610.2006.00602.x.
    1. Greene CS. Neuroplasticity and sensitization. J Am Dent Assoc. 2009;140(6):676–678. doi: 10.14219/jada.archive.2009.0253.
    1. Salter MW. Cellular neuroplasticity mechanisms mediating pain persistence. J Orofac Pain. 2004;18(4):318–324.
    1. Coderre TJ, Katz J, Vaccarino AL, Melzack R. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain. 1993;52(3):259–285. doi: 10.1016/0304-3959(93)90161-H.
    1. Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44(3):293–299. doi: 10.1016/0304-3959(91)90100-C.
    1. Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain. 2000;123(Pt 8):1703–1709. doi: 10.1093/brain/123.8.1703.
    1. Selby G, Lance JW. Observations on 500 cases of migraine and allied vascular headache. J Neurol Neurosurg Psychiatry. 1960;23:23–32. doi: 10.1136/jnnp.23.1.23.
    1. Bartsch T, Goadsby PJ. Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain. 2003;126(Pt 8):1801–1813. doi: 10.1093/brain/awg190.
    1. Ebersberger A, Ringkamp M, Reeh PW, Handwerker HO. Recordings from brain stem neurons responding to chemical stimulation of the subarachnoid space. J Neurophysiol. 1997;77(6):3122–3133. doi: 10.1152/jn.1997.77.6.3122.
    1. Schepelmann K, Ebersberger A, Pawlak M, Oppmann M, Messlinger K. Response properties of trigeminal brain stem neurons with input from dura mater encephali in the rat. Neuroscience. 1999;90(2):543–554. doi: 10.1016/S0306-4522(98)00423-0.
    1. Oshinsky ML, Luo J. Neurochemistry of trigeminal activation in an animal model of migraine. Headache. 2006;46(Suppl 1):S39–S44. doi: 10.1111/j.1526-4610.2006.00489.x.
    1. Schwedt TJ, Larson-Prior L, Coalson RS, Nolan T, Mar S, Ances BM, et al. Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med. 2014;15(1):154–165. doi: 10.1111/pme.12267.
    1. Welch KM, Nagesh V, Aurora SK, Gelman N. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache. 2001;41(7):629–637. doi: 10.1046/j.1526-4610.2001.041007629.x.

Source: PubMed

3
Abonnere