Identifying risk factors for high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia

Xiao Li, Zhongguo Sui, Fanbo Jing, Wen Xu, Xiangpeng Li, Qie Guo, Shuhong Sun, Xiaolin Bi, Xiao Li, Zhongguo Sui, Fanbo Jing, Wen Xu, Xiangpeng Li, Qie Guo, Shuhong Sun, Xiaolin Bi

Abstract

Background: Whether monitoring of the methotrexate (MTX) concentrations after high-dose MTX (HD-MTX) infusion can predict toxicities is still controversial, especially when HD-MTX therapy is used in the treatment of children with acute lymphoblastic leukemia (ALL), which is different than the previous schedules. The relationship between patient characteristics and severe adverse events (AEs) has yet to be determined.

Objective: To analyze the relationship between the MTX concentration and toxicities and to identify the risk predictors from patient characteristics for severe AEs during HD-MTX therapy in children with ALL.

Methods: We conducted a retrospective study on children with ALL who were treated with 388 HD-MTX infusions. The chi-square test and univariate and logistic regression analyses were used to analyze the relationship between the MTX concentrations and toxicities and to identify predictors for severe AEs.

Results: Febrile neutropenia (P=0.000) and vomiting (P=0.034) were more likely to occur if the infusion had an MTX level ≥1 μmol/L at 44 h, but other toxicities had no correlations with MTX concentration. Predictive factors for toxicities were as follows: higher risk stratification and higher values of albumin (ALB) for leucopenia, higher values of white blood cell count (WBC) for anemia, higher values of ALB and creatinine (Cr) for neutropenia, higher risk stratification and higher 44-h MTX concentration for febrile neutropenia, higher values of alanine transferase (ALT) for elevated ALT, higher values of ALT for elevated aspartate transferase (AST), and higher values of total bilirubin (TBil) for vomiting.

Conclusion: Routine monitoring of 44-h MTX concentrations is essential to identify patients at high risk of developing febrile neutropenia and vomiting. This study may provide a reference for clinicians to distinguish patients with a relatively high risk of severe AEs based on certain characteristics before HD-MTX infusion.

Keywords: acute lymphoblastic leukemia; high-dose methotrexate; methotrexate concentration; patient characteristics; risk predictors; toxicities.

Conflict of interest statement

The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
The 44-h plasma MTX concentrations in all 388 infusions. Abbreviation: MTX, methotrexate.

References

    1. Xing C, Liang B, Wu J, et al. Prognostic significance of leukopenia during the induction phase in adult B cell acute lymphoblastic leukemia. Cancer Manag Res. 2018;10:625–635. doi:10.2147/CMAR.S158359
    1. May J, Carson KR, Butler S, Liu W, Bartlett NL, Wagner-Johnston ND. High incidence of methotrexate associated renal toxicity in patients with lymphoma: a retrospective analysis. Leuk Lymphoma. 2014;55(6):1345–1349. doi:10.3109/10428194.2013.840780
    1. Cheng KK. Association of plasma methotrexate, neutropenia, hepatic dysfunction, nausea/vomiting and oral mucositis in children with cancer. Eur J Cancer Care (Engl). 2008;17(3):306–311. doi:10.1111/j.1365-2354.2007.00843.x
    1. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med. 1998;338(8):499–505. doi:10.1056/NEJM199802193380803
    1. Abromowitch M, Ochs J, Pui CH, et al. High-dose methotrexate improves clinical outcome in children with acute lymphoblastic leukemia: st. Jude total therapy study X. Med Pediatr Oncol. 1988;16(5):297–303.
    1. Joannon P, Oviedo I, Campbell M, Tordecilla J. High-dose methotrexate therapy of childhood acute lymphoblastic leukemia: lack of relation between serum methotrexate concentration and creatinine clearance. Pediatr Blood Cancer. 2004;43(1):17–22. doi:10.1002/pbc.20032
    1. Rask C, Albertioni F, Bentzen SM, Schroeder H, Peterson C. Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia–a logistic regression analysis. Acta Oncol (Madr). 1998;37(3):277–284.
    1. Borsi JD, Wesenberg F, Stokland T, Moe PJ. How much is too much? Folinic acid rescue dose in children with acute lymphoblastic leukaemia. Eur J Cancer. 1991;27(8):1006–1009.
    1. Browman GP, Goodyear MD, Levine MN, Russell R, Archibald SD, Young JE. Modulation of the antitumor effect of methotrexate by low-dose leucovorin in squamous cell head and neck cancer: a randomized placebo-controlled clinical trial. J Clin Oncol. 1990;8(2):203–208. doi:10.1200/JCO.1990.8.2.203
    1. Moore MJ, Erlichman C. Therapeutic drug monitoring in oncology. Problems and potential in antineoplastic therapy. Clin Pharmacokinet. 1987;13(4):205–227. doi:10.2165/00003088-198713040-00001
    1. Sirotnak FM, Moccio DM. Pharmacokinetic basis for differences in methotrexate sensitivity of normal proliferative tissues in the mouse. Cancer Res. 1980;40(4):1230–1234.
    1. Evans WE, Pratt CB, Taylor RH, Barker LF, Crom WR. Pharmacokinetic monitoring of high-dose methotrexate. Early recognition of high-risk patients. Cancer Chemother Pharmacol. 1979;3(3):161–166.
    1. Stoller RG, Hande KR, Jacobs SA, Rosenberg SA, Chabner BA. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med. 1977;297(12):630–634. doi:10.1056/NEJM197709222971203
    1. Perez C, Wang YM, Sutow WW, Herson J. Significance of the 48 hr plasma level in high-dose methotrexate regimens. Cancer Clin Trials. 1978;1(2):107–111.
    1. Christensen ML, Rivera GK, Crom WR, Hancock ML, Evans WE. Effect of hydration on methotrexate plasma concentrations in children with acute lymphocytic leukemia. J Clin Oncol. 1988;6(5):797–801. doi:10.1200/JCO.1988.6.5.797
    1. Skarby T, Jonsson P, Hjorth L, et al. High-dose methotrexate: on the relationship of methotrexate elimination time vs renal function and serum methotrexate levels in 1164 courses in 264 Swedish children with acute lymphoblastic leukaemia (ALL). Cancer Chemother Pharmacol. 2003;51(4):311–320. doi:10.1007/s00280-002-0552-1
    1. Xu W, Tang Y, Song H, Shi S, Yang S. Retrospective study on elimination delay of methotrexate in high-dose therapy of childhood acute lymphoblastic leukemia in China. J Pediatr Hematol Oncol. 2007;29(10):688–693. doi:10.1097/MPH.0b013e31814d6777
    1. Maiguma T, Hayashi Y, Ueshima S, et al. Relationship between oral mucositis and high-dose methotrexate therapy in pediatric acute lymphoblastic leukemia. Int J Clin Pharmacol Ther. 2008;46(11):584–590.
    1. Kanbayashi Y, Nomura K, Okamoto K, et al. Statistical examination to determine whether only 48-h value for serum concentration during high-dose methotrexate therapy is a predictor for clinical adverse events using ordered logistic regression analysis. Ann Hematol. 2010;89(10):965–969. doi:10.1007/s00277-010-0965-6
    1. Relling MV, Fairclough D, Ayers D, et al. Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol. 1994;12(8):1667–1672. doi:10.1200/JCO.1994.12.8.1667
    1. Ye H, Gu L. [Advances in the study of acute lymphocytic leukemia treated by large dosage of methotrexate]. Zhonghua Xue Ye Xue Za Zhi. 1999;20(2):110–112.
    1. Mosteller RD, Turksoy RN, Atkins L, McLaughlin C, Brown LG, Page DC. Simplified calculation of body-surface area. N Engl J Med. 1987;317(17):1098. doi:10.1056/NEJM198707163170301
    1. Moulla Y, Gradistanac T, Wittekind C, Eichfeld U, Gockel I, Dietrich A. Predictive risk factors for lymph node metastasis in patients with resected non-small cell lung cancer: a case control study. J Cardiothorac Surg. 2019;14(1):11. doi:10.1186/s13019-019-0831-0
    1. Mahmoud LB, Mdhaffar M, Frikha R, et al. Use of MTHFR C677T polymorphism and plasma pharmacokinetics to predict methotrexate toxicity in patients with acute lymphoblastic leukemia. Adv Clin Exp Med. 2018;27(8):1061–1068. doi:10.17219/acem/69802
    1. Ayad MW, El Naggar AA, El Naggar M. MTHFR C677T polymorphism: association with lymphoid neoplasm and effect on methotrexate therapy. Eur J Haematol. 2014;93(1):63–69. doi:10.1111/ejh.12302
    1. Schmiegelow K. Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol. 2009;146(5):489–503. doi:10.1111/j.1365-2141.2009.07765.x
    1. Tiwari P, Thomas MK, Pathania S, et al. Serum creatinine versus plasma methotrexate levels to predict toxicities in children receiving high-dose methotrexate. Pediatr Hematol Oncol. 2015;32(8):576–584. doi:10.3109/08880018.2015.1087612
    1. Yazicioglu B, Kaya Z, Guntekin Ergun S, et al. Influence of folate-related gene polymorphisms on high-dose methotrexate-related toxicity and prognosis in Turkish children with acute lymphoblastic leukemia. Turk J Haematol. 2017;34(2):143–150. doi:10.4274/tjh.2016.0007
    1. Tsurusawa M, Gosho M, Mori T, et al. Statistical analysis of relation between plasma methotrexate concentration and toxicity in high-dose methotrexate therapy of childhood nonHodgkin lymphoma. Pediatr Blood Cancer. 2015;62(2):279–284. doi:10.1002/pbc.25305
    1. Dordelmann M, Reiter A, Zimmermann M, et al. Intermediate dose methotrexate is as effective as high dose methotrexate in preventing isolated testicular relapse in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 1998;20(5):444–450.
    1. Green MR, Chamberlain MC. Renal dysfunction during and after high-dose methotrexate. Cancer Chemother Pharmacol. 2009;63(4):599–604. doi:10.1007/s00280-008-0772-0
    1. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11(6):694–703. doi:10.1634/theoncologist.11-6-694

Source: PubMed

3
Abonnere