Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Infertility

Francesca Sciarra, Edoardo Franceschini, Federica Campolo, Daniele Gianfrilli, Francesco Pallotti, Donatella Paoli, Andrea M Isidori, Mary Anna Venneri, Francesca Sciarra, Edoardo Franceschini, Federica Campolo, Daniele Gianfrilli, Francesco Pallotti, Donatella Paoli, Andrea M Isidori, Mary Anna Venneri

Abstract

: Infertility represents a growing health problem in industrialized countries. Thus, a greater understanding of the molecular networks involved in this disease could be critical for the development of new therapies. A recent finding revealed that circadian rhythmicity disruption is one of the main causes of poor reproductive outcome. The circadian clock system beats circadian rhythms and modulates several physiological functions such as the sleep-wake cycle, body temperature, heart rate, and hormones secretion, all of which enable the body to function in response to a 24 h cycle. This intricated machinery is driven by specific genes, called "clock genes" that fine-tune body homeostasis. Stress of modern lifestyle can determine changes in hormone secretion, favoring the onset of infertility-related conditions that might reflect disfunctions within the hypothalamic-pituitary-gonadal axis. Consequently, the loss of rhythmicity in the suprachiasmatic nuclei might affect pulsatile sexual hormones release. Herein, we provide an overview of the recent findings, in both animal models and humans, about how fertility is influenced by circadian rhythm. In addition, we explore the complex interaction among hormones, fertility and the circadian clock. A deeper analysis of these interactions might lead to novel insights that could ameliorate the therapeutic management of infertility and related disorders.

Keywords: clock genes; fertility; hormones regulation; reproduction; spermatogenesis.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Figures

Figure 1
Figure 1
Autoregulatory feedback loop of clock-specific gene expressions that are involved in fertility processes.
Figure 2
Figure 2
Infertility is associated with unbalanced GCs levels. The reciprocal relationship between the disruption of circadian rhythms of GCs and fertility may be either the cause or the effect of female and male infertility.
Figure 3
Figure 3
Schematic representation of infertility complications due to clock gene disruption on female and male knockout mice.

References

    1. Dickmeis T., Weger B.D., Weger M. The circadian clock and glucocorticoids--interactions across many time scales. Mol. Cell. Endocrinol. 2013;380:2–15. doi: 10.1016/j.mce.2013.05.012.
    1. Kume K., Zylka M.J., Sriram S., Shearman L.P., Weaver D.R., Jin X., Maywood E.S., Hastings M.H., Reppert S.M. Mcry1 and mcry2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98:193–205. doi: 10.1016/S0092-8674(00)81014-4.
    1. Nader N., Chrousos G.P., Kino T. Interactions of the circadian clock system and the hpa axis. Trends Endocrinol. Metab. 2010;21:277–286. doi: 10.1016/j.tem.2009.12.011.
    1. Partch C.L., Green C.B., Takahashi J.S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014;24:90–99. doi: 10.1016/j.tcb.2013.07.002.
    1. Kennaway D.J., Boden M.J., Varcoe T.J. Circadian rhythms and fertility. Mol. Cell Endocrinol. 2012;349:56–61. doi: 10.1016/j.mce.2011.08.013.
    1. Sen A., Hoffmann H.M. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol. Cell Endocrinol. 2020;501:110655. doi: 10.1016/j.mce.2019.110655.
    1. Pan X., Taylor M.J., Cohen E., Hanna N., Mota S. Circadian clock, time-restricted feeding and reproduction. Int J. Mol. Sci. 2020;21 doi: 10.3390/ijms21030831.
    1. Kalantaridou S.N., Makrigiannakis A., Zoumakis E., Chrousos G.P. Stress and the female reproductive system. J. Reprod Immunol. 2004;62:61–68. doi: 10.1016/j.jri.2003.09.004.
    1. Morris C.J., Aeschbach D., Scheer F.A. Circadian system, sleep and endocrinology. Mol. Cell Endocrinol. 2012;349:91–104. doi: 10.1016/j.mce.2011.09.003.
    1. Minnetti M., Hasenmajer V., Pofi R., Venneri M.A., Alexandraki K.I., Isidori A.M. Fixing the broken clock in adrenal disorders: Focus on glucocorticoids and chronotherapy. J. Endocrinol. 2020 doi: 10.1530/JOE-20-0066.
    1. Joseph D.N., Whirledge S. Stress and the hpa axis: Balancing homeostasis and fertility. Int J. Mol. Sci. 2017;18:224. doi: 10.3390/ijms18102224.
    1. Mills J., Kuohung W. Impact of circadian rhythms on female reproduction and infertility treatment success. Curr. Opin. Endocrinol. Diabetes Obes. 2019;26:317–321. doi: 10.1097/MED.0000000000000511.
    1. Boden M.J., Kennaway D.J. Circadian rhythms and reproduction. Reproduction. 2006;132:379–392. doi: 10.1530/rep.1.00614.
    1. Angelousi A., Kassi E., Nasiri-Ansari N., Weickert M.O., Randeva H., Kaltsas G. Clock genes alterations and endocrine disorders. Eur J. Clin. Invest. 2018;48:e12927. doi: 10.1111/eci.12927.
    1. Miller B.H., Olson S.L., Turek F.W., Levine J.E., Horton T.H., Takahashi J.S. Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol. 2004;14:1367–1373. doi: 10.1016/j.cub.2004.07.055.
    1. Harter C.J.L., Kavanagh G.S., Smith J.T. The role of kisspeptin neurons in reproduction and metabolism. J. Endocrinol. 2018;238:R173–R183. doi: 10.1530/JOE-18-0108.
    1. Yeo S.H., Colledge W.H. The role of kiss1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic-pituitary-gonadal axis. Front. Endocrinol. 2018;9:188. doi: 10.3389/fendo.2018.00188.
    1. Irwig M.S., Fraley G.S., Smith J.T., Acohido B.V., Popa S.M., Cunningham M.J., Gottsch M.L., Clifton D.K., Steiner R.A. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of kiss-1 mrna in the male rat. Neuroendocrinology. 2004;80:264–272. doi: 10.1159/000083140.
    1. Messager S., Chatzidaki E.E., Ma D., Hendrick A.G., Zahn D., Dixon J., Thresher R.R., Malinge I., Lomet D., Carlton M.B., et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via g protein-coupled receptor 54. Proc. Natl. Acad. Sci. USA. 2005;102:1761–1766. doi: 10.1073/pnas.0409330102.
    1. Sairam M.R., Krishnamurthy H. The role of follicle-stimulating hormone in spermatogenesis: Lessons from knockout animal models. Arch. Med. Res. 2001;32:601–608. doi: 10.1016/S0188-4409(01)00328-9.
    1. Coquelin A., Desjardins C. Luteinizing hormone and testosterone secretion in young and old male mice. Am. J. Physiol. 1982;243:E257–E263. doi: 10.1152/ajpendo.1982.243.3.E257.
    1. Goh H.H., Ratnam S.S. The lh surge in humans: Its mechanism and sex difference. Gynecol. Endocrinol. 1988;2:165–182. doi: 10.3109/09513598809023624.
    1. Kobayashi M., Watanabe K., Matsumura R., Anayama N., Miyamoto A., Miyazaki H., Miyazaki K., Shimizu T., Akashi M. Involvement of the luteinizing hormone surge in the regulation of ovary and oviduct clock gene expression in mice. Genes Cells. 2018 doi: 10.1111/gtc.12605.
    1. Chianese R., Cobellis G., Chioccarelli T., Ciaramella V., Migliaccio M., Fasano S., Pierantoni R., Meccariello R. Kisspeptins, estrogens and male fertility. Curr Med. Chem. 2016;23:4070–4091. doi: 10.2174/0929867323666160902155434.
    1. Rahman S.A., Grant L.K., Gooley J.J., Rajaratnam S.M.W., Czeisler C.A., Lockley S.W. Endogenous circadian regulation of female reproductive hormones. J. Clin. Endocrinol. Metab. 2019;104:6049–6059. doi: 10.1210/jc.2019-00803.
    1. Davison S.L., Bell R. Androgen physiology. Semin Reprod Med. 2006;24:71–77. doi: 10.1055/s-2006-939565.
    1. Cooke P.S., Nanjappa M.K., Ko C., Prins G.S., Hess R.A. Estrogens in male physiology. Physiol. Rev. 2017;97:995–1043. doi: 10.1152/physrev.00018.2016.
    1. Naftolin F., Garcia-Segura L.M., Horvath T.L., Zsarnovszky A., Demir N., Fadiel A., Leranth C., Vondracek-Klepper S., Lewis C., Chang A., et al. Estrogen-induced hypothalamic synaptic plasticity and pituitary sensitization in the control of the estrogen-induced gonadotrophin surge. Reprod Sci. 2007;14:101–116. doi: 10.1177/1933719107301059.
    1. Shea J.L., Wong P.Y., Chen Y. Free testosterone: Clinical utility and important analytical aspects of measurement. Adv. Clin. Chem. 2014;63:59–84.
    1. Shiina H., Matsumoto T., Sato T., Igarashi K., Miyamoto J., Takemasa S., Sakari M., Takada I., Nakamura T., Metzger D., et al. Premature ovarian failure in androgen receptor-deficient mice. Proc. Natl. Acad. Sci. USA. 2006;103:224–229. doi: 10.1073/pnas.0506736102.
    1. Dickmeis T. Glucocorticoids and the circadian clock. J. Endocrinol. 2009;200:3–22. doi: 10.1677/JOE-08-0415.
    1. Silva E.J., Vendramini V., Restelli A., Bertolla R.P., Kempinas W.G., Avellar M.C. Impact of adrenalectomy and dexamethasone treatment on testicular morphology and sperm parameters in rats: Insights into the adrenal control of male reproduction. Andrology. 2014;2:835–846. doi: 10.1111/j.2047-2927.2014.00228.x.
    1. Whirledge S., Cidlowski J.A. A role for glucocorticoids in stress-impaired reproduction: Beyond the hypothalamus and pituitary. Endocrinology. 2013;154:4450–4468. doi: 10.1210/en.2013-1652.
    1. Kratz E.M., Piwowar A. Melatonin, advanced oxidation protein products and total antioxidant capacity as seminal parameters of prooxidant-antioxidant balance and their connection with expression of metalloproteinases in context of male fertility. J. Physiol. Pharmacol. 2017;68:659–668.
    1. Zhang P., Zheng Y., Lv Y., Li F., Su L., Qin Y., Zeng W. Melatonin protects the mouse testis against heat-induced damage. Mol. Hum. Reprod. 2020;26:65–79. doi: 10.1093/molehr/gaaa002.
    1. Bejarano I., Monllor F., Marchena A.M., Ortiz A., Lozano G., Jimenez M.I., Gaspar P., Garcia J.F., Pariente J.A., Rodriguez A.B., et al. Exogenous melatonin supplementation prevents oxidative stress-evoked DNA damage in human spermatozoa. J. Pineal Res. 2014;57:333–339. doi: 10.1111/jpi.12172.
    1. Perez S., Murias L., Fernandez-Plaza C., Diaz I., Gonzalez C., Otero J., Diaz E. Evidence for clock genes circadian rhythms in human full-term placenta. Syst Biol. Reprod Med. 2015;61:360–366. doi: 10.3109/19396368.2015.1069420.
    1. Simonneaux V., Bahougne T., Angelopoulou E. Daily rhythms count for female fertility. Best Pract Res. Clin. Endocrinol. Metab. 2017;31:505–519. doi: 10.1016/j.beem.2017.10.012.
    1. Weiser M.J., Wu T.J., Handa R.J. Estrogen receptor-beta agonist diarylpropionitrile: Biological activities of r- and s-enantiomers on behavior and hormonal response to stress. Endocrinology. 2009;150:1817–1825. doi: 10.1210/en.2008-1355.
    1. He P.J., Hirata M., Yamauchi N., Hattori M.A. Up-regulation of per1 expression by estradiol and progesterone in the rat uterus. J. Endocrinol. 2007;194:511–519. doi: 10.1677/JOE-07-0172.
    1. Nakamura T.J., Sellix M.T., Menaker M., Block G.D. Estrogen directly modulates circadian rhythms of per2 expression in the uterus. Am. J. Physiol. Endocrinol. Metab. 2008;295:E1025–E1031. doi: 10.1152/ajpendo.90392.2008.
    1. Li S., Wang M., Ao X., Chang A.K., Yang C., Zhao F., Bi H., Liu Y., Xiao L., Wu H. Clock is a substrate of sumo and sumoylation of clock upregulates the transcriptional activity of estrogen receptor-alpha. Oncogene. 2013;32:4883–4891. doi: 10.1038/onc.2012.518.
    1. Alvarez J.D., Chen D., Storer E., Sehgal A. Non-cyclic and developmental stage-specific expression of circadian clock proteins during murine spermatogenesis. Biol. Reprod. 2003;69:81–91. doi: 10.1095/biolreprod.102.011833.
    1. Sellix M.T., Murphy Z.C., Menaker M. Excess androgen during puberty disrupts circadian organization in female rats. Endocrinology. 2013;154:1636–1647. doi: 10.1210/en.2012-2066.
    1. Franks S. Polycystic ovary syndrome in adolescents. Int J. Obes (Lond.) 2008;32:1035–1041. doi: 10.1038/ijo.2008.61.
    1. Franks S. Genetic and environmental origins of obesity relevant to reproduction. Reprod Biomed. Online. 2006;12:526–531. doi: 10.1016/S1472-6483(10)61177-7.
    1. Balasubramanian P., Jagannathan L., Mahaley R.E., Subramanian M., Gilbreath E.T., Mohankumar P.S., Mohankumar S.M. High fat diet affects reproductive functions in female diet-induced obese and dietary resistant rats. J. Neuroendocrinol. 2012;24:748–755. doi: 10.1111/j.1365-2826.2011.02276.x.
    1. Mereness A.L., Murphy Z.C., Sellix M.T. Developmental programming by androgen affects the circadian timing system in female mice. Biol. Reprod. 2015;92:88. doi: 10.1095/biolreprod.114.126409.
    1. Sapolsky R.M., Romero L.M., Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21:55–89.
    1. Hasenmajer V., Sbardella E., Sciarra F., Minnetti M., Isidori A.M., Venneri M.A. The immune system in cushing’s syndrome. Trends Endocrinol. Metab. 2020 doi: 10.1016/j.tem.2020.04.004.
    1. Isidori A.M., Venneri M.A., Graziadio C., Simeoli C., Fiore D., Hasenmajer V., Sbardella E., Gianfrilli D., Pozza C., Pasqualetti P., et al. Effect of once-daily, modified-release hydrocortisone versus standard glucocorticoid therapy on metabolism and innate immunity in patients with adrenal insufficiency (dream): A single-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6:173–185. doi: 10.1016/S2213-8587(17)30398-4.
    1. Vitellius G., Trabado S., Bouligand J., Delemer B., Lombes M. Pathophysiology of glucocorticoid signaling. Ann. Endocrinol. 2018;79:98–106. doi: 10.1016/j.ando.2018.03.001.
    1. Luo E., Stephens S.B., Chaing S., Munaganuru N., Kauffman A.S., Breen K.M. Corticosterone blocks ovarian cyclicity and the lh surge via decreased kisspeptin neuron activation in female mice. Endocrinology. 2016;157:1187–1199. doi: 10.1210/en.2015-1711.
    1. Kirby E.D., Geraghty A.C., Ubuka T., Bentley G.E., Kaufer D. Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc. Natl. Acad. Sci. USA. 2009;106:11324–11329. doi: 10.1073/pnas.0901176106.
    1. Bambino T.H., Hsueh A.J. Direct inhibitory effect of glucocorticoids upon testicular luteinizing hormone receptor and steroidogenesis in vivo and in vitro. Endocrinology. 1981;108:2142–2148. doi: 10.1210/endo-108-6-2142.
    1. Whirledge S., Cidlowski J.A. Glucocorticoids, stress, and fertility. Minerva Endocrinol. 2010;35:109–125.
    1. Li Q.N., Li L., Hou G., Wang Z.B., Hou Y., Liu Z.H., Schatten H., Sun Q.Y. Glucocorticoid exposure affects female fertility by exerting its effect on the uterus but not on the oocyte: Lessons from a hypercortisolism mouse model. Hum. Reprod. 2018;33:2285–2294. doi: 10.1093/humrep/dey322.
    1. Rhen T., Grissom S., Afshari C., Cidlowski J.A. Dexamethasone blocks the rapid biological effects of 17beta-estradiol in the rat uterus without antagonizing its global genomic actions. Faseb J. 2003;17:1849–1870. doi: 10.1096/fj.02-1099com.
    1. Dare J.B., Arogundade B., Awoniyi O.O., Adegoke A.A., Adekomi D.A. Dexamethasone as endocrine disruptor; type i and type ii (anti) oestrogenic actions on the ovary and uterus of adult wistar rats (rattus novergicus) JBRA Assist. Reprod. 2018;22:307–313. doi: 10.5935/1518-0557.20180061.
    1. Ristic N., Nestorovic N., Manojlovic-Stojanoski M., Trifunovic S., Ajdzanovic V., Filipovic B., Pendovski L., Milosevic V. Adverse effect of dexamethasone on development of the fetal rat ovary. Fundam Clin. Pharmacol. 2019;33:199–207. doi: 10.1111/fcp.12415.
    1. Yang G., Chen L., Grant G.R., Paschos G., Song W.L., Musiek E.S., Lee V., McLoughlin S.C., Grosser T., Cotsarelis G., et al. Timing of expression of the core clock gene bmal1 influences its effects on aging and survival. Sci. Transl Med. 2016;8:324ra316. doi: 10.1126/scitranslmed.aad3305.
    1. Fowden A.L., Forhead A.J. Glucocorticoids as regulatory signals during intrauterine development. Exp. Physiol. 2015;100:1477–1487. doi: 10.1113/EP085212.
    1. Zhang J., Zhang J., Liu R., Gan J., Liu J., Liu W. Endocrine-disrupting effects of pesticides through interference with human glucocorticoid receptor. Environ. Sci. Technol. 2016;50:435–443. doi: 10.1021/acs.est.5b03731.
    1. de Barros J.W.F., Borges C.D.S., Missassi G., Pacheco T.L., De Grava Kempinas W. Impact of intrauterine exposure to betamethasone on the testes and epididymides of prepubertal rats. Chem Biol. Interact. 2018;291:202–211. doi: 10.1016/j.cbi.2018.06.030.
    1. Borges C.D.S., Pacheco T.L., da Silva K.P., Fernandes F.H., Gregory M., Pupo A.S., Salvadori D.M.F., Cyr D.G., Kempinas W.G. Betamethasone causes intergenerational reproductive impairment in male rats. Reprod Toxicol. 2017;71:108–117. doi: 10.1016/j.reprotox.2017.04.012.
    1. Chen H., Gao L., Xiong Y., Yang D., Li C., Wang A., Jin Y. Circadian clock and steroidogenic-related gene expression profiles in mouse leydig cells following dexamethasone stimulation. Biochem. Biophys. Res. Commun. 2017;483:294–300. doi: 10.1016/j.bbrc.2016.12.149.
    1. Ilacqua A., Izzo G., Emerenziani G.P., Baldari C., Aversa A. Lifestyle and fertility: The influence of stress and quality of life on male fertility. Reprod Biol. Endocrinol. 2018;16:115. doi: 10.1186/s12958-018-0436-9.
    1. Milardi D., Luca G., Grande G., Ghezzi M., Caretta N., Brusco G., De Filpo G., Marana R., Pontecorvi A., Calafiore R., et al. Prednisone treatment in infertile patients with oligozoospermia and accessory gland inflammatory alterations. Andrology. 2017;5:268–273. doi: 10.1111/andr.12300.
    1. Bals-Pratsch M., Doren M., Karbowski B., Schneider H.P., Nieschlag E. Cyclic corticosteroid immunosuppression is unsuccessful in the treatment of sperm antibody-related male infertility: A controlled study. Hum. Reprod. 1992;7:99–104. doi: 10.1093/oxfordjournals.humrep.a137568.
    1. Rivier C., Vale W. Stimulatory effect of interleukin-1 on adrenocorticotropin secretion in the rat: Is it modulated by prostaglandins? Endocrinology. 1991;129:384–388. doi: 10.1210/endo-129-1-384.
    1. Morrison D., Capewell S., Reynolds S.P., Thomas J., Ali N.J., Read G.F., Henley R., Riad-Fahmy D. Testosterone levels during systemic and inhaled corticosteroid therapy. Respir Med. 1994;88:659–663. doi: 10.1016/S0954-6111(05)80062-9.
    1. Huang B., Qian C., Ding C., Meng Q., Zou Q., Li H. Fetal liver mesenchymal stem cells restore ovarian function in premature ovarian insufficiency by targeting mt1. Stem Cell Res. Ther. 2019;10:362. doi: 10.1186/s13287-019-1490-8.
    1. Elokil A.A., Bhuiyan A.A., Liu H.Z., Hussein M.N., Ahmed H.I., Azmal S.A., Yang L., Li S. The capability of l-carnitine-mediated antioxidant on cock during aging: Evidence for the improved semen quality and enhanced testicular expressions of gnrh1, gnrhr, and melatonin receptors mt 1/2. Poult Sci. 2019;98:4172–4181. doi: 10.3382/ps/pez201.
    1. Espino J., Macedo M., Lozano G., Ortiz A., Rodriguez C., Rodriguez A.B., Bejarano I. Impact of melatonin supplementation in women with unexplained infertility undergoing fertility treatment. Antioxidants. 2019;8:338. doi: 10.3390/antiox8090338.
    1. Nehme P.A., Amaral F., Lowden A., Skene D.J., Cipolla-Neto J., Moreno C.R.C. Reduced melatonin synthesis in pregnant night workers: Metabolic implications for offspring. Med. Hypotheses. 2019;132:109353. doi: 10.1016/j.mehy.2019.109353.
    1. Green A., Barak S., Shine L., Kahane A., Dagan Y. Exposure by males to light emitted from media devices at night is linked with decline of sperm quality and correlated with sleep quality measures. Chronobiol. Int. 2020;37:414–424. doi: 10.1080/07420528.2020.1727918.
    1. Zheng M., Tong J., Li W.P., Chen Z.J., Zhang C. Melatonin concentration in follicular fluid is correlated with antral follicle count (afc) and in vitro fertilization (ivf) outcomes in women undergoing assisted reproductive technology (art) procedures. Gynecol. Endocrinol. 2018;34:446–450. doi: 10.1080/09513590.2017.1409713.
    1. Latif Khan H., Bhatti S., Latif Khan Y., Abbas S., Munir Z., Rahman Khan Sherwani I.A., Suhail S., Hassan Z., Aydin H.H. Cell-free nucleic acids and melatonin levels in human follicular fluid predict embryo quality in patients undergoing in-vitro fertilization treatment. J. Gynecol. Obstet Hum. Reprod. 2020;49:101624. doi: 10.1016/j.jogoh.2019.08.007.
    1. Macchi M.M., Bruce J.N. Human pineal physiology and functional significance of melatonin. Front. Neuroendocrinol. 2004;25:177–195. doi: 10.1016/j.yfrne.2004.08.001.
    1. Waldhauser F., Boepple P.A., Schemper M., Mansfield M.J., Crowley W.F., Jr. Serum melatonin in central precocious puberty is lower than in age-matched prepubertal children. J. Clin. Endocrinol. Metab. 1991;73:793–796. doi: 10.1210/jcem-73-4-793.
    1. Bergiannaki J.D., Soldatos C.R., Paparrigopoulos T.J., Syrengelas M., Stefanis C.N. Low and high melatonin excretors among healthy individuals. J. Pineal Res. 1995;18:159–164. doi: 10.1111/j.1600-079X.1995.tb00155.x.
    1. Laughlin G.A., Loucks A.B., Yen S.S. Marked augmentation of nocturnal melatonin secretion in amenorrheic athletes, but not in cycling athletes: Unaltered by opioidergic or dopaminergic blockade. J. Clin. Endocrinol. Metab. 1991;73:1321–1326. doi: 10.1210/jcem-73-6-1321.
    1. Karasek M., Pawlikowski M., Nowakowska-Jankiewicz B., Kolodziej-Maciejewska H., Zieleniewski J., Cieslak D., Leidenberger F. Circadian variations in plasma melatonin, fsh, lh, and prolactin and testosterone levels in infertile men. J. Pineal Res. 1990;9:149–157. doi: 10.1111/j.1600-079X.1990.tb00703.x.
    1. Pilorz V., Steinlechner S. Low reproductive success in per1 and per2 mutant mouse females due to accelerated ageing? Reproduction. 2008;135:559–568. doi: 10.1530/REP-07-0434.
    1. Zheng B., Albrecht U., Kaasik K., Sage M., Lu W., Vaishnav S., Li Q., Sun Z.S., Eichele G., Bradley A., et al. Nonredundant roles of the mper1 and mper2 genes in the mammalian circadian clock. Cell. 2001;105:683–694. doi: 10.1016/S0092-8674(01)00380-4.
    1. Zheng Y., Liu C., Li Y., Jiang H., Yang P., Tang J., Xu Y., Wang H., He Y. Loss-of-function mutations with circadian rhythm regulator per1/per2 lead to premature ovarian insufficiencydagger. Biol. Reprod. 2019;100:1066–1072. doi: 10.1093/biolre/ioy245.
    1. Vitaterna M.H., King D.P., Chang A.M., Kornhauser J.M., Lowrey P.L., McDonald J.D., Dove W.F., Pinto L.H., Turek F.W., Takahashi J.S. Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science. 1994;264:719–725. doi: 10.1126/science.8171325.
    1. Dolatshad H., Campbell E.A., O’Hara L., Maywood E.S., Hastings M.H., Johnson M.H. Developmental and reproductive performance in circadian mutant mice. Hum. Reprod. 2006;21:68–79. doi: 10.1093/humrep/dei313.
    1. King D.P., Zhao Y., Sangoram A.M., Wilsbacher L.D., Tanaka M., Antoch M.P., Steeves T.D., Vitaterna M.H., Kornhauser J.M., Lowrey P.L., et al. Positional cloning of the mouse circadian clock gene. Cell. 1997;89:641–653. doi: 10.1016/S0092-8674(00)80245-7.
    1. Boden M.J., Varcoe T.J., Voultsios A., Kennaway D.J. Reproductive biology of female bmal1 null mice. Reproduction. 2010;139:1077–1090. doi: 10.1530/REP-09-0523.
    1. Liu Y., Johnson B.P., Shen A.L., Wallisser J.A., Krentz K.J., Moran S.M., Sullivan R., Glover E., Parlow A.F., Drinkwater N.R., et al. Loss of bmal1 in ovarian steroidogenic cells results in implantation failure in female mice. Proc. Natl Acad Sci. USA. 2014;111:14295–14300. doi: 10.1073/pnas.1209249111.
    1. Alvarez J.D., Hansen A., Ord T., Bebas P., Chappell P.E., Giebultowicz J.M., Williams C., Moss S., Sehgal A. The circadian clock protein bmal1 is necessary for fertility and proper testosterone production in mice. J. Biol. Rhythms. 2008;23:26–36. doi: 10.1177/0748730407311254.
    1. Kennaway D.J., Boden M.J., Voultsios A. Reproductive performance in female clock delta19 mutant mice. Reprod Fertil Dev. 2004;16:801–810. doi: 10.1071/RD04023.
    1. Miller B.H., Olson S.L., Levine J.E., Turek F.W., Horton T.H., Takahashi J.S. Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and clock mutant mice. Biol. Reprod. 2006;75:778–784. doi: 10.1095/biolreprod.106.052845.
    1. Kumar P., Sait S.F. Luteinizing hormone and its dilemma in ovulation induction. J. Hum. Reprod Sci. 2011;4:2–7. doi: 10.4103/0974-1208.82351.
    1. Chu G., Ma G., Sun J., Zhu Y., Xiang A., Yang G., Sun S. Leptin receptor mediates bmal1 regulation of estrogen synthesis in granulosa cells. Animals. 2019;9:899. doi: 10.3390/ani9110899.
    1. DeAngelis A.M., Roy-O’Reilly M., Rodriguez A. Genetic alterations affecting cholesterol metabolism and human fertility. Biol. Reprod. 2014;91:117. doi: 10.1095/biolreprod.114.119883.
    1. Britt K.L., Drummond A.E., Dyson M., Wreford N.G., Jones M.E., Simpson E.R., Findlay J.K. The ovarian phenotype of the aromatase knockout (arko) mouse. J. Steroid Biochem Mol. Biol. 2001;79:181–185. doi: 10.1016/S0960-0760(01)00158-3.
    1. Jones M.E., Thorburn A.W., Britt K.L., Hewitt K.N., Wreford N.G., Proietto J., Oz O.K., Leury B.J., Robertson K.M., Yao S., et al. Aromatase-deficient (arko) mice have a phenotype of increased adiposity. Proc. Natl Acad Sci. USA. 2000;97:12735–12740. doi: 10.1073/pnas.97.23.12735.
    1. Kudo T., Kawashima M., Tamagawa T., Shibata S. Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet. Am. J. Physiol. Endocrinol. Metab. 2008;294:E120–E130. doi: 10.1152/ajpendo.00061.2007.
    1. Morse D., Cermakian N., Brancorsini S., Parvinen M., Sassone-Corsi P. No circadian rhythms in testis: Period1 expression is clock independent and developmentally regulated in the mouse. Mol. Endocrinol. 2003;17:141–151. doi: 10.1210/me.2002-0184.
    1. Bebas P., Goodall C.P., Majewska M., Neumann A., Giebultowicz J.M., Chappell P.E. Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice. Faseb j. 2009;23:523–533. doi: 10.1096/fj.08-113191.
    1. Liang X., Cheng S., Jiang X., He X., Wang Y., Jiang Z., Hou W., Li S., Liu Y., Wang Z. The noncircadian function of the circadian clock gene in the regulation of male fertility. J. Biol. Rhythms. 2013;28:208–217. doi: 10.1177/0748730413486873.
    1. Cheng S., Liang X., Wang Y., Jiang Z., Liu Y., Hou W., Li S., Zhang J., Wang Z. The circadian clock gene regulates acrosin activity of sperm through serine protease inhibitor a3k. Exp. Biol. Med. 2016;241:205–215. doi: 10.1177/1535370215597199.
    1. Baburski A.Z., Sokanovic S.J., Bjelic M.M., Radovic S.M., Andric S.A., Kostic T.S. Circadian rhythm of the leydig cells endocrine function is attenuated during aging. Exp. Gerontol. 2016;73:5–13. doi: 10.1016/j.exger.2015.11.002.
    1. Li C., Xiao S., Hao J., Liao X., Li G. Cry1 deficiency leads to testicular dysfunction and altered expression of genes involved in cell communication, chromatin reorganization, spermatogenesis, and immune response in mouse testis. Mol. Reprod Dev. 2018;85:325–335. doi: 10.1002/mrd.22968.
    1. Peterlin A., Kunej T., Peterlin B. The role of circadian rhythm in male reproduction. Curr. Opin. Endocrinol. Diabetes Obes. 2019;26:313–316. doi: 10.1097/MED.0000000000000512.
    1. Resuehr H.E., Resuehr D., Olcese J. Induction of mper1 expression by gnrh in pituitary gonadotrope cells involves egr-1. Mol. Cell Endocrinol. 2009;311:120–125. doi: 10.1016/j.mce.2009.07.005.
    1. Chu A., Zhu L., Blum I.D., Mai O., Leliavski A., Fahrenkrug J., Oster H., Boehm U., Storch K.F. Global but not gonadotrope-specific disruption of bmal1 abolishes the luteinizing hormone surge without affecting ovulation. Endocrinology. 2013;154:2924–2935. doi: 10.1210/en.2013-1080.
    1. Elks C.E., Perry J.R., Sulem P., Chasman D.I., Franceschini N., He C., Lunetta K.L., Visser J.A., Byrne E.M., Cousminer D.L., et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 2010;42:1077–1085. doi: 10.1038/ng.714.
    1. Perry J.R., Day F., Elks C.E., Sulem P., Thompson D.J., Ferreira T., He C., Chasman D.I., Esko T., Thorleifsson G., et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514:92–97. doi: 10.1038/nature13545.
    1. de Vries L., Kauschansky A., Shohat M., Phillip M. Familial central precocious puberty suggests autosomal dominant inheritance. J. Clin. Endocrinol. Metab. 2004;89:1794–1800. doi: 10.1210/jc.2003-030361.
    1. Wehkalampi K., Widen E., Laine T., Palotie A., Dunkel L. Patterns of inheritance of constitutional delay of growth and puberty in families of adolescent girls and boys referred to specialist pediatric care. J. Clin. Endocrinol. Metab. 2008;93:723–728. doi: 10.1210/jc.2007-1786.
    1. Day F.R., Thompson D.J., Helgason H., Chasman D.I., Finucane H., Sulem P., Ruth K.S., Whalen S., Sarkar A.K., Albrecht E., et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 2017;49:834–841. doi: 10.1038/ng.3841.
    1. Flynn-Evans E.E., Stevens R.G., Tabandeh H., Schernhammer E.S., Lockley S.W. Effect of light perception on menarche in blind women. Ophthalmic Epidemiol. 2009;16:243–248. doi: 10.1080/09286580902863056.
    1. Weger B.D., Gobet C., Yeung J., Martin E., Jimenez S., Betrisey B., Foata F., Berger B., Balvay A., Foussier A., et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 2019;29:362–382.e368. doi: 10.1016/j.cmet.2018.09.023.
    1. Montagner A., Korecka A., Polizzi A., Lippi Y., Blum Y., Canlet C., Tremblay-Franco M., Gautier-Stein A., Burcelin R., Yen Y.C., et al. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Sci. Rep. 2016;6:20127. doi: 10.1038/srep20127.
    1. Bisanti L., Olsen J., Basso O., Thonneau P., Karmaus W. Shift work and subfecundity: A european multicenter study. European study group on infertility and subfecundity. J. Occup Environ. Med. 1996;38:352–358. doi: 10.1097/00043764-199604000-00012.
    1. Labyak S., Lava S., Turek F., Zee P. Effects of shiftwork on sleep and menstrual function in nurses. Health Care Women Int. 2002;23:703–714. doi: 10.1080/07399330290107449.
    1. Zhang Y., Meng N., Bao H., Jiang Y., Yang N., Wu K., Wu J., Wang H., Kong S., Zhang Y. Circadian gene per1 senses progesterone signal during human endometrial decidualization. J. Endocrinol. 2019;243:229–243. doi: 10.1530/JOE-19-0284.
    1. Lv S., Wang N., Ma J., Li W.P., Chen Z.J., Zhang C. Impaired decidualization caused by downregulation of circadian clock gene bmal1 contributes to human recurrent miscarriagedagger. Biol. Reprod. 2019;101:138–147. doi: 10.1093/biolre/ioz063.
    1. Kovanen L., Saarikoski S.T., Aromaa A., Lonnqvist J., Partonen T. Arntl (bmal1) and npas2 gene variants contribute to fertility and seasonality. PLoS ONE. 2010;5:e10007. doi: 10.1371/journal.pone.0010007.
    1. Chen M., Xu Y., Miao B., Zhao H., Luo L., Shi H., Zhou C. Expression pattern of circadian genes and steroidogenesis-related genes after testosterone stimulation in the human ovary. J. Ovarian Res. 2016;9:56. doi: 10.1186/s13048-016-0264-5.
    1. Brzezinski A., Saada A., Miller H., Brzezinski-Sinai N.A., Ben-Meir A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. J. Ovarian Res. 2018;11:95. doi: 10.1186/s13048-018-0471-3.
    1. Li R., Cheng S., Wang Z. Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion. Cell Physiol. Biochem. 2015;37:911–920. doi: 10.1159/000430218.
    1. Shen O., Ding X., Nie J., Xia Y., Wang X., Tong J., Zhang J. Variants of the clock gene affect the risk of idiopathic male infertility in the han-chinese population. Chronobiol. Int. 2015;32:959–965.
    1. Zhang J., Ding X., Li Y., Xia Y., Nie J., Yi C., Wang X., Tong J. Association of clock gene variants with semen quality in idiopathic infertile han-chinese males. Reprod Biomed. Online. 2012;25:536–542. doi: 10.1016/j.rbmo.2012.07.018.
    1. Ramasamy R., Bakircioglu M.E., Cengiz C., Karaca E., Scovell J., Jhangiani S.N., Akdemir Z.C., Bainbridge M., Yu Y., Huff C., et al. Whole-exome sequencing identifies novel homozygous mutation in npas2 in family with nonobstructive azoospermia. Fertil Steril. 2015;104:286–291. doi: 10.1016/j.fertnstert.2015.04.001.

Source: PubMed

3
Abonnere