Is There a Role for Exercise When Treating Patients with Cancer with Immune Checkpoint Inhibitors? A Scoping Review

Jasmine Handford, Miaoqi Chen, Ridesh Rai, Charlotte L Moss, Deborah Enting, Nicola Peat, Sophia N Karagiannis, Mieke Van Hemelrijck, Beth Russell, Jasmine Handford, Miaoqi Chen, Ridesh Rai, Charlotte L Moss, Deborah Enting, Nicola Peat, Sophia N Karagiannis, Mieke Van Hemelrijck, Beth Russell

Abstract

The impact of using exercise as a non-pharmacological intervention in patients with cancer receiving immune checkpoint inhibitors (ICIs) is not well known. Our objective was to determine the extent of, and identify gaps within, available literature addressing the effect of exercise on (a) oncological outcomes and (b) quality of life (QoL) in patients with cancer receiving ICIs, and (c) the underlying biological mechanisms for such effects. We conducted searches across EMBASE, APA PsycInfo and Ovid MEDLINE(R). Studies were eligible if they addressed at least one aspect of the objective and were available in the English language. Results were synthesised using a narrative approach and subsequently discussed with multidisciplinary stakeholders. As of the final search on 5 April 2022, 11 eligible studies were identified, of which 8 were preclinical and 3 were clinical. Clinical studies only focused on QoL-related outcomes. When studies were grouped by whether they addressed oncological outcomes (n = 7), QoL (n = 5) or biological mechanisms (n = 7), they were found to be heterogeneous in methodology and findings. Additional evidence, particularly in the clinical setting, is required before robust recommendations about whether, and how, to include exercise alongside ICI treatment can be made.

Keywords: cancer; exercise; immune checkpoint; physical activity; quality of life; scoping review.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the protocol for this scoping review. Adapted using information from the published protocol [27]. [ICIs, immune checkpoint inhibitors; PPI, patient and public involvement; QoL, quality of life].
Figure 2
Figure 2
Flowchart of study selection. Adapted using the ‘PRISMA 2020 flow diagram for new systematic reviews which included searches of databases’ template [31]. † Different records relating to the same study (confirmed by comparison of authors, methodology and reported results) e.g., abstracts from different conferences relating to the same study. Where available, the duplicate record containing a full-text article was included. ‡ Two studies were abstract-only. [ICIs, immune checkpoint inhibitors].

References

    1. Eno J. Immunotherapy Through the Years. J. Adv. Pract. Oncol. 2017;8:747–753.
    1. Jenkins R.W., Barbie D.A., Flaherty K.T. Mechanisms of Resistance to Immune Checkpoint Inhibitors. Br. J. Cancer. 2018;118:9–16. doi: 10.1038/bjc.2017.434.
    1. Postow M.A., Chesney J., Pavlick A.C., Robert C., Grossmann K., McDermott D., Linette G.P., Meyer N., Giguere J.K., Agarwala S.S., et al. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N. Engl. J. Med. 2015;372:2006–2017. doi: 10.1056/NEJMoa1414428.
    1. Gide T.N., Wilmott J.S., Scolyer R.A., Long G.V. Primary and Acquired Resistance to Immune Checkpoint Inhibitors in Metastatic Melanoma. Clin. Cancer Res. 2018;24:1260–1270. doi: 10.1158/1078-0432.CCR-17-2267.
    1. Arnaud-Coffin P., Maillet D., Gan H.K., Stelmes J.-J., You B., Dalle S., Péron J. A Systematic Review of Adverse Events in Randomized Trials Assessing Immune Checkpoint Inhibitors. Int. J. Cancer. 2019;145:639–648. doi: 10.1002/ijc.32132.
    1. Physical Activity. [(accessed on 4 April 2022)]. Available online: .
    1. Caspersen C.J., Powell K.E., Christenson G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Rep. 1985;100:126–131.
    1. Campbell K.L., Winters-Stone K., Wiskemann J., May A.M., Schwartz A.L., Courneya K.S., Zucker D., Matthews C., Ligibel J., Gerber L., et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med. Sci. Sports Exerc. 2019;51:2375–2390. doi: 10.1249/MSS.0000000000002116.
    1. Warburton D.E.R., Katzmarzyk P.T., Rhodes R.E., Shephard R.J. Evidence-Informed Physical Activity Guidelines for Canadian Adults. Can. J. Public Health Rev. Can. Sante Publique. 2007;98((Suppl. S2)):S16–S68.
    1. Mishra S.I., Scherer R.W., Snyder C., Geigle P.M., Berlanstein D.R., Topaloglu O. Exercise Interventions on Health-related Quality of Life for People with Cancer during Active Treatment. Cochrane Database Syst. Rev. 2012;2012:CD008465. doi: 10.1111/coa.12015.
    1. Gerritsen J.K.W., Vincent A.J.P.E. Exercise Improves Quality of Life in Patients with Cancer: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Br. J. Sports Med. 2016;50:796–803. doi: 10.1136/bjsports-2015-094787.
    1. Ferioli M., Zauli G., Martelli A.M., Vitale M., McCubrey J.A., Ultimo S., Capitani S., Neri L.M. Impact of Physical Exercise in Cancer Survivors during and after Antineoplastic Treatments. Oncotarget. 2018;9:14005–14034. doi: 10.18632/oncotarget.24456.
    1. Ligibel J.A., Bohlke K., May A.M., Clinton S.K., Demark-Wahnefried W., Gilchrist S.C., Irwin M.L., Late M., Mansfield S., Marshall T.F., et al. Exercise, Diet, and Weight Management during Cancer Treatment: ASCO Guideline. J. Clin. Oncol. 2022;40:2491–2507. doi: 10.1200/JCO.22.00687.
    1. Zheng X., Cui X.-X., Huang M.-T., Liu Y., Shih W.J., Lin Y., Lu Y.P., Wagner G.C., Conney A.H. Inhibitory Effect of Voluntary Running Wheel Exercise on the Growth of Human Pancreas Panc-1 and Prostate PC-3 Xenograft Tumors in Immunodeficient Mice. Oncol. Rep. 2008;19:1583–1588.
    1. Higgins K.A., Park D., Lee G.Y., Curran W.J., Deng X. Exercise-Induced Lung Cancer Regression: Mechanistic Findings from a Mouse Model. Cancer. 2014;120:3302–3310. doi: 10.1002/cncr.28878.
    1. Piguet A.-C., Saran U., Simillion C., Keller I., Terracciano L., Reeves H.L., Dufour J.-F. Regular Exercise Decreases Liver Tumors Development in Hepatocyte-Specific PTEN-Deficient Mice Independently of Steatosis. J. Hepatol. 2015;62:1296–1303. doi: 10.1016/j.jhep.2015.01.017.
    1. Hagar A., Wang Z., Koyama S., Serrano J.A., Melo L., Vargas S., Carpenter R., Foley J. Endurance Training Slows Breast Tumor Growth in Mice by Suppressing Treg Cells Recruitment to Tumors. BMC Cancer. 2019;19:536. doi: 10.1186/s12885-019-5745-7.
    1. Pedersen L., Idorn M., Olofsson G.H., Lauenborg B., Nookaew I., Hansen R.H., Johannesen H.H., Becker J.C., Pedersen K.S., Dethlefsen C., et al. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution. Cell Metab. 2016;23:554–562. doi: 10.1016/j.cmet.2016.01.011.
    1. Van Waart H., Stuiver M.M., van Harten W.H., Geleijn E., Kieffer J.M., Buffart L.M., de Maaker-Berkhof M., Boven E., Schrama J., Geenen M.M., et al. Effect of Low-Intensity Physical Activity and Moderate- to High-Intensity Physical Exercise During Adjuvant Chemotherapy on Physical Fitness, Fatigue, and Chemotherapy Completion Rates: Results of the PACES Randomized Clinical Trial. J. Clin. Oncol. 2015;33:1918–1927. doi: 10.1200/JCO.2014.59.1081.
    1. Dimeo F.C., Stieglitz R.-D., Novelli-Fischer U., Fetscher S., Keul J. Effects of Physical Activity on the Fatigue and Psychologic Status of Cancer Patients during Chemotherapy. Cancer. 1999;85:2273–2277. doi: 10.1002/(SICI)1097-0142(19990515)85:10<2273::AID-CNCR24>;2-B.
    1. Sturgeon K., Schadler K., Muthukumaran G., Ding D., Bajulaiye A., Thomas N.J., Ferrari V., Ryeom S., Libonati J.R. Concomitant Low-Dose Doxorubicin Treatment and Exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014;307:R685–R692. doi: 10.1152/ajpregu.00082.2014.
    1. Courneya K.S., Segal R.J., McKenzie D.C., Dong H., Gelmon K., Friedenreich C.M., Yasui Y., Reid R.D., Crawford J.J., Mackey J.R. Effects of Exercise during Adjuvant Chemotherapy on Breast Cancer Outcomes. Med. Sci. Sports Exerc. 2014;46:1744–1751. doi: 10.1249/MSS.0000000000000297.
    1. Pedersen B.K., Hoffman-Goetz L. Exercise and the Immune System: Regulation, Integration, and Adaptation. Physiol. Rev. 2000;80:1055–1081. doi: 10.1152/physrev.2000.80.3.1055.
    1. Gustafson M.P., Wheatley-Guy C.M., Rosenthal A.C., Gastineau D.A., Katsanis E., Johnson B.D., Simpson R.J. Exercise and the Immune System: Taking Steps to Improve Responses to Cancer Immunotherapy. J. Immunother. Cancer. 2021;9:e001872. doi: 10.1136/jitc-2020-001872.
    1. Sellami M., Gasmi M., Denham J., Hayes L.D., Stratton D., Padulo J., Bragazzi N. Effects of Acute and Chronic Exercise on Immunological Parameters in the Elderly Aged: Can Physical Activity Counteract the Effects of Aging? Front. Immunol. 2018;9:2187. doi: 10.3389/fimmu.2018.02187.
    1. Tricco A.C., Lillie E., Zarin W., O’Brien K.K., Colquhoun H., Levac D., Moher D., Peters M.D.J., Horsley T., Weeks L., et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018;169:467–473. doi: 10.7326/M18-0850.
    1. Chen M., Rai R., Fox L., Moss C.L., George G., Karagiannis S.N., Enting D., Joseph M., Peat N., Russell B., et al. Is There a Role for Physical Activity When Treating Patients with Cancer with Immune Checkpoint Inhibitors? Protocol for a Scoping Review. BMJ Open. 2021;11:e046052. doi: 10.1136/bmjopen-2020-046052.
    1. Aromataris E., Munn Z. JBI Manual for Evidence Synthesis. [(accessed on 4 April 2022)]. Available online: .
    1. Levac D., Colquhoun H., O’Brien K.K. Scoping Studies: Advancing the Methodology. Implement. Sci. 2010;5:69. doi: 10.1186/1748-5908-5-69.
    1. González-Blanch C., Hernández-de-Hita F., Muñoz-Navarro R., Ruíz-Rodríguez P., Medrano L.A., Cano-Vindel A. The Association between Different Domains of Quality of Life and Symptoms in Primary Care Patients with Emotional Disorders. Sci. Rep. 2018;8:11180. doi: 10.1038/s41598-018-28995-6.
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71.
    1. Serrano J.A., Hagar A. Run for Your Life: An Integrated Virtual Tissue Platform for Incorporating Exercise Oncology into Immunotherapy. Cancer Immunol. Immunother. 2021;70:1951–1964. doi: 10.1007/s00262-020-02790-7.
    1. Martín-Ruiz A., Fiuza-Luces C., Rincón-Castanedo C., Fernández-Moreno D., Gálvez B.G., Martínez-Martínez E., Martín-Acosta P., Coronado M.J., Franco-Luzón L., González-Murillo Á., et al. Benefits of Exercise and Immunotherapy in a Murine Model of Human Non-Small-Cell Lung Carcinoma. Exerc. Immunol. Rev. 2020;26:100–115.
    1. Wennerberg E., Lhuillier C., Rybstein M.D., Dannenberg K., Rudqvist N.-P., Koelwyn G.J., Jones L.W., Demaria S. Exercise Reduces Immune Suppression and Breast Cancer Progression in a Preclinical Model. Oncotarget. 2020;11:452–461. doi: 10.18632/oncotarget.27464.
    1. Gomes-Santos I.L., Amoozgar Z., Kumar A.S., Ho W.W., Roh K., Talele N.P., Curtis H., Kawaguchi K., Jain R.K., Fukumura D. Exercise Training Improves Tumor Control by Increasing CD8+ T-Cell Infiltration via CXCR3 Signaling and Sensitizes Breast Cancer to Immune Checkpoint Blockade. Cancer Immunol. Res. 2021;9:765–778. doi: 10.1158/2326-6066.CIR-20-0499.
    1. Turbitt W.J., Xu Y., Mastro A.M., Rogers C.J. Abstract 1260: Diet and Exercise-Induced Weight Maintenance May Be Preventing Mammary Tumor Growth and Metastatic Burden by Enhancing Antitumor Immunity and/or Reducing Protumorigenic Factors. Cancer Res. 2017;77:1260. doi: 10.1158/1538-7445.AM2017-1260.
    1. Unterrainer N., Pedersen K.S., Bay M.L., Pedersen B.K., Gehl K.J., Hojman P. PO-364 Effect of Exercise and Immunotherapy on Tumour Immunogenicity and Growth. ESMO Open. 2018;3:A371. doi: 10.1136/esmoopen-2018-EACR25.875.
    1. Hyatt A., Drosdowsky A., Williams N., Paton E., Bennett F., Andersen H., Mathai J., Milne D. Exercise Behaviors and Fatigue in Patients Receiving Immunotherapy for Advanced Melanoma: A Cross-Sectional Survey via Social Media. Integr. Cancer Ther. 2019;18:1534735419864431. doi: 10.1177/1534735419864431.
    1. Lacey J., Lomax A.J., McNeil C., Marthick M., Levy D., Kao S., Nielsen T., Dhillon H.M. A Supportive Care Intervention for People with Metastatic Melanoma Being Treated with Immunotherapy: A Pilot Study Assessing Feasibility, Perceived Benefit, and Acceptability. Support. Care Cancer. 2019;27:1497–1507. doi: 10.1007/s00520-018-4524-3.
    1. Bay M.L., Unterrainer N., Stagaard R., Pedersen K.S., Schauer T., Staffeldt M.M., Christensen J.F., Hojman P., Pedersen B.K., Gehl J. Voluntary Wheel Running Can Lead to Modulation of Immune Checkpoint Molecule Expression. Acta Oncol. 2020;59:1447–1454. doi: 10.1080/0284186X.2020.1817550.
    1. Buss L.A., Williams T., Hock B., Ang A.D., Robinson B.A., Currie M.J., Dachs G.U. Effects of Exercise and Anti-PD-1 on the Tumour Microenvironment. Immunol. Lett. 2021;239:60–71. doi: 10.1016/j.imlet.2021.08.005.
    1. Charles C., Bardet A., Ibrahimi N., Aromatario O., Cambon L., Imbert A., Pons M., Raynard B., Sauveplane D., Pouchepadass C., et al. Delivering Adapted Physical Activity by Videoconference to Patients with Fatigue under Immune Checkpoint Inhibitors: Lessons Learned from the PACTIMe-FEAS Feasibility Study. J. Telemed. Telecare. 2021. online ahead of print .
    1. Shaver A.L., Sharma S., Nikita N., Lefler D.S., Basu-Mallick A., Johnson J.M., Butryn M., Lu-Yao G. The Effects of Physical Activity on Cancer Patients Undergoing Treatment with Immune Checkpoint Inhibitors: A Scoping Review. Cancers. 2021;13:6364. doi: 10.3390/cancers13246364.
    1. Thomas R., Al-Khadairi G., Decock J. Immune Checkpoint Inhibitors in Triple Negative Breast Cancer Treatment: Promising Future Prospects. Front. Oncol. 2021;10:600573. doi: 10.3389/fonc.2020.600573.
    1. Donlon N.E., Power R., Hayes C., Reynolds J.V., Lysaght J. Radiotherapy, Immunotherapy, and the Tumour Microenvironment: Turning an Immunosuppressive Milieu into a Therapeutic Opportunity. Cancer Lett. 2021;502:84–96. doi: 10.1016/j.canlet.2020.12.045.
    1. Wennerberg E., Vanpouille-Box C., Bornstein S., Yamazaki T., Demaria S., Galluzzi L. Immune Recognition of Irradiated Cancer Cells. Immunol. Rev. 2017;280:220–230. doi: 10.1111/imr.12568.
    1. Chen I.X., Chauhan V.P., Posada J., Ng M.R., Wu M.W., Adstamongkonkul P., Huang P., Lindeman N., Langer R., Jain R.K. Blocking CXCR4 Alleviates Desmoplasia, Increases T-Lymphocyte Infiltration, and Improves Immunotherapy in Metastatic Breast Cancer. Proc. Natl. Acad. Sci. USA. 2019;116:4558–4566. doi: 10.1073/pnas.1815515116.
    1. Kurz E., Hirsch C.A., Dalton T., Shadaloey S.A., Khodadadi-Jamayran A., Miller G., Pareek S., Rajaei H., Mohindroo C., Baydogan S., et al. Exercise-Induced Engagement of the IL-15/IL-15Rα Axis Promotes Anti-Tumor Immunity in Pancreatic Cancer. Cancer Cell. 2022;40:720–737.e5. doi: 10.1016/j.ccell.2022.05.006.
    1. Li H.-B., Yang Z.-H., Guo Q.-Q. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Limitations and Prospects: A Systematic Review. Cell Commun. Signal. 2021;19:117. doi: 10.1186/s12964-021-00789-w.
    1. Hanson E.D., Sakkal S., Que S., Cho E., Spielmann G., Kadife E., Violet J.A., Battaglini C.L., Stoner L., Bartlett D.B., et al. Natural Killer Cell Mobilization and Egress Following Acute Exercise in Men with Prostate Cancer. Exp. Physiol. 2020;105:1524–1539. doi: 10.1113/EP088627.
    1. Gebhardt K., Krüger K. Supporting Tumor Therapy by Exercise: Boosting T Cell Immunity by Myokines. Signal Transduct. Target. Ther. 2022;7:292. doi: 10.1038/s41392-022-01116-6.
    1. Goulart K.N.d.O., Resende N.M., Oliveira L.M., Drummond M.D.M., Lima F.V., Fujiwara R.T., Couto B.P. Cytokine Response to Resistance Training Sessions Performed after Different Recovery Intervals. Sport Sci. Health. 2022;18:743–749. doi: 10.1007/s11332-021-00852-6.
    1. Riechman S.E., Balasekaran G., Roth S.M., Ferrell R.E. Association of Interleukin-15 Protein and Interleukin-15 Receptor Genetic Variation with Resistance Exercise Training Responses. J. Appl. Physiol. 2004;97:2214–2219. doi: 10.1152/japplphysiol.00491.2004.
    1. Calle M.C., Fernandez M.L. Effects of Resistance Training on the Inflammatory Response. Nutr. Res. Pract. 2010;4:259–269. doi: 10.4162/nrp.2010.4.4.259.
    1. Izquierdo M., Ibañez J., Calbet J.A.L., Navarro-Amezqueta I., González-Izal M., Idoate F., Häkkinen K., Kraemer W.J., Palacios-Sarrasqueta M., Almar M., et al. Cytokine and Hormone Responses to Resistance Training. Eur. J. Appl. Physiol. 2009;107:397–409. doi: 10.1007/s00421-009-1139-x.
    1. Pudkasam S., Tangalakis K., Chinlumprasert N., Apostolopoulos V., Stojanovska L. Breast Cancer and Exercise: The Role of Adiposity and Immune Markers. Maturitas. 2017;105:16–22. doi: 10.1016/j.maturitas.2017.04.022.
    1. Mustian K.M., Alfano C.M., Heckler C., Kleckner A.S., Kleckner I.R., Leach C.R., Mohr D., Palesh O.G., Peppone L.J., Piper B.F., et al. Comparison of Pharmaceutical, Psychological, and Exercise Treatments for Cancer-Related Fatigue: A Meta-Analysis. JAMA Oncol. 2017;3:961–968. doi: 10.1001/jamaoncol.2016.6914.
    1. Naidoo J., Page D.B., Li B.T., Connell L.C., Schindler K., Lacouture M.E., Postow M.A., Wolchok J.D. Toxicities of the Anti-PD-1 and Anti-PD-L1 Immune Checkpoint Antibodies. Ann. Oncol. 2015;26:2375–2391. doi: 10.1093/annonc/mdv383.
    1. Zaleta A.K., Miller M.F., Olson J.S., Yuen E.Y.N., LeBlanc T.W., Cole C.E., McManus S., Buzaglo J.S. Symptom Burden, Perceived Control, and Quality of Life Among Patients Living With Multiple Myeloma. J. Natl. Compr. Cancer Netw. 2020;18:1087–1095. doi: 10.6004/jnccn.2020.7561.
    1. Piraux E., Caty G., Aboubakar Nana F., Reychler G. Effects of Exercise Therapy in Cancer Patients Undergoing Radiotherapy Treatment: A Narrative Review. SAGE Open Med. 2020;8:2050312120922657. doi: 10.1177/2050312120922657.
    1. Hall E.T., Singhal S., Dickerson J., Gabster B., Wong H., Aslakson R.A., Schapira L., Aslakson R., Ast K., Carroll T., et al. Patient-Reported Outcomes for Cancer Patients Receiving Checkpoint Inhibitors: Opportunities for Palliative Care—A Systematic Review. J. Pain Symptom Manag. 2019;58:137–156.e1. doi: 10.1016/j.jpainsymman.2019.03.015.
    1. Wiskemann J. Sportivumab—Feasibility of Exercise as a Supportive Measure for Patients Undergoing Checkpoint-Inhibitor Treatment. [(accessed on 22 July 2022)];2022 Available online:
    1. Straten P. High Intensity Aerobic Exercise Training and Immune Cell Mobilization in Patients With Lung Cancer (HI AIM) [(accessed on 22 July 2022)];2022 Available online: .

Source: PubMed

3
Abonnere