Effectiveness of Virtual Reality on Functional Performance after Spinal Cord Injury: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Amaranta De Miguel-Rubio, M Dolores Rubio, Alejandro Salazar, Rocio Camacho, David Lucena-Anton, Amaranta De Miguel-Rubio, M Dolores Rubio, Alejandro Salazar, Rocio Camacho, David Lucena-Anton

Abstract

A spinal cord injury (SCI) usually results in a significant limitation in the functional outcomes, implying a challenge to the performance of activities of daily living. The main aim of this study is to analyze the effectiveness of virtual reality to improve functional performance in patients with SCI. The search was performed between October and December 2019 in Cumulative Index to Nursing and Allied Health Literature (CINAHL), Medline, Cochrane Central Register of Controlled Trials, Physiotherapy Evidence Database (PEDro), PubMed, Scopus, Web of Science, and Embase. The methodological quality of the studies was evaluated through the PEDro scale, and the risk of bias was evaluated with the Cochrane collaboration's tool. Seven articles were included in this systematic review, and five of them in the meta-analysis. Statistical analysis showed favorable results for functional performance in control group performing conventional therapy, measured by the functional independence measure (standardized mean difference (SMD)= -0.70; 95% confidence interval: -1.25 to -0.15). Results were inconclusive for other outcomes. Most studies have not shown beneficial effects on functional performance compared with conventional physical therapy. The results obtained showed that virtual reality may not be more effective than conventional physical therapy in improving functional performance in patients with SCI.

Keywords: functional performance; neurological rehabilitation; physical therapy; quality of life; spinal cord injuries; virtual reality.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Flow diagram of the different phases of the systematic review and meta-analysis.
Figure 2
Figure 2
Risk of bias of the studies included in the systematic review.
Figure 3
Figure 3
Overall risk of bias. Each category is presented by percentages.
Figure 4
Figure 4
Forest plot for functional performance measured by FIM scale. A green block indicates the weight assigned to the study and the horizontal line depicts the confidence interval. A black rhombus shows the overall result.
Figure 5
Figure 5
Forest plot for functional performance measured by SCIM scale. A green block indicates the weight assigned to the study and the horizontal line depicts the confidence interval. A black rhombus shows the overall result.
Figure 6
Figure 6
Forest plot for functional performance measured by SCIM self-care subtest. A green block indicates the weight assigned to the study and the horizontal line depicts the confidence interval. A black rhombus shows the overall result.
Figure 7
Figure 7
Forest plot for functional performance measured by Barthel index. A green block indicates the weight assigned to the study and the horizontal line depicts the confidence interval. A black rhombus shows the overall result.

References

    1. Leemhuis E., De Gennaro L., Pazzaglia M. Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury. J. Clin. Med. 2019;8:2144. doi: 10.3390/jcm8122144.
    1. Dimbwadyo-Terrer I., Gil-Agudo A., Segura-Fragoso A., De Los Reyes-Guzmán A., Trincado-Alonso F., Piazza S., Polonio-López B. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial. Biomed. Res. Int. 2016:6397828. doi: 10.1155/2016/6397828.
    1. Yoon S.Y., Leigh J.-H., Lee J., Kim W.H. Comparing Activity and Participation between Acquired Brain Injury and Spinal-Cord Injury in Community-Dwelling People with Severe Disability Using WHODAS 2.0. Int. J. Environ. Res. Public Health. 2020;17:3031. doi: 10.3390/ijerph17093031.
    1. Murie-Fernández M., Irimia P., Martínez-Vila E., Meyer M.J., Teasell R. Neuro-rehabilitation after stroke. Neurologia. 2010;25:189–196. doi: 10.1016/S0213-4853(10)70008-6.
    1. Pourmand A., Davis S., Lee D., Barber S., Sikka N. Emerging Utility of Virtual Reality as a Multidisciplinary Tool in Clinical Medicine. Games Health J. 2017;6:263–270. doi: 10.1089/g4h.2017.0046.
    1. D’ Addio G., Iuppariello L., Gallo F., Bifulco P., Cesarelli M., Lanzillo B. Comparison between clinical and instrumental assessing using Wii Fit system on balance control. IEEE Int. Symp. Med. Meas Appl. 2014:1–5. doi: 10.1109/MeMeA.2014.6860124.
    1. Gil-Agudo A., Dimbwadyo-Terrer I., Peñasco-Martín B., De Los Reyes-Guzmán A., Bernal-Sahún A., Berbel-García A. Clinical experience regarding the application of the TOyRA virtual reality system in neuro-rehabiliation of patients with spinal cord lesion. Rehabilitacion. 2012;46:41–48. doi: 10.1016/j.rh.2011.10.005.
    1. Fung V., Ho A., Shaffer J., Chung E., Gomez M. Use of Nintendo Wii FitTM in the rehabilitation of outpatients following total knee replacement: A preliminary randomised controlled trial. Physiotherapy. 2012;98:183–188. doi: 10.1016/j.physio.2012.04.001.
    1. Franco J.R., Jacobs K., Inzerillo C., Kluzik J. The effect of the Nintendo Wii Fit and exercise in improving balance and quality of life in community dwelling elders. Technol. Health Care. 2012;20:95–115. doi: 10.3233/THC-2011-0661.
    1. Fager S.K., Burnfield J.M. Patients’ experiences with technology during inpatient rehabilitation: Opportunities to support independence and therapeutic engagement. Disabil. Rehabil. Assist. Technol. 2014;9:121–127. doi: 10.3109/17483107.2013.787124.
    1. Dimbwadyo-Terrer I., Trincado-Alonso F., De Los Reyes-Guzmán A., Bernal-Sahún A., López-Monteagudo P., Polonio-López B., Gil-Agudo A. Clinical, functional and kinematic correlations using the Virtual Reality System toyra® as upper limb rehabilitation tool in people with spinal cord injury; Proceedings of the NEUROTECHNIX, International Congress on Neurotechnology, Electronics and Information; Algarve, Portugal. 18–20 September 2013; pp. 81–88.
    1. Gutiérrez Á., Sepúlveda-Muñoz D., Gil-Agudo Á., de los Reyes Guzmán A. Serious game platform with haptic feedback and EMG monitoring for upper limb rehabilitation and smoothness quantification on spinal cord injury patients. Appl. Sci. 2020;10:963. doi: 10.3390/app10030963.
    1. Booth A.T.C., Buizer A.I., Meyns P., Oude Lansink I.L.B., Steenbrink F., van der Krogt M.M. The efficacy of functional gait training in children and young adults with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2018;60:866–883. doi: 10.1111/dmcn.13708.
    1. Johansen T., Strøm V., Simic J., Rike P.-O. Effectiveness of training with motion-controlled commercial video games for hand and arm function in people with cerebral palsy: A systematic review and meta-analysis. J. Rehabil. Med. 2020;52:jrm00012. doi: 10.2340/16501977-2633.
    1. Moreno-Verdú M., Ferreira-Sánchez M.R., Cano-De-La-Cuerda R., Jiménez-Antona C. Efficacy of virtual reality on balance and gait in multiple sclerosis. Systematic review of randomized controlled trials. Rev. Neurol. 2019;68:357–368.
    1. Norouzi E., Gerber M., Pühse U., Vaezmosavi M., Brand S. Combined virtual reality and physical training improved the bimanual coordination of women with multiple sclerosis. Neuropsychol. Rehabil. 2020 doi: 10.1080/09602011.2020.1715231.
    1. Maggio M.G., Russo M., Cuzzola M.F., Destro M., La Rosa G., Molonia F., Bramanti P., Lombardo G., De Luca R., Salvatore Calabrò R. Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. J. Clin. Neurosci. 2019;65:106–111. doi: 10.1016/j.jocn.2019.03.017.
    1. Dominguez-Tellez P., Moral-Munoz J.A., Casado-Fernandez E., Salazar A., Lucena-Anton D. Effects of virtual reality on balance and gait in stroke: A systematic review and meta-analysis. Rev. Neurol. 2019;69:223–234.
    1. Ikbali Afsar S., Mirzayev I., Umit Yemisci O., Cosar Saracgil S.N. Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial. J. Stroke Cerebrovasc. Dis. 2018;27:3473–3478. doi: 10.1016/j.jstrokecerebrovasdis.2018.08.007.
    1. Bonuzzi G.M.G., de Freitas T.B., dos Santos Palma G.C., Soares M.A.A., Lange B., Pompeu J.E., Torriani-Pasin C. Effects of the brain-damaged side after stroke on the learning of a balance task in a non-immersive virtual reality environment. Physiother. Theory Pract. 2020 doi: 10.1080/09593985.2020.1731893.
    1. García-Muñoz C., Casuso-Holgado M.J. Effectiveness of Wii Fit Balance board in comparison with other interventions for post-stroke balance rehabilitation. Systematic review and meta-analysis. Rev. Neurol. 2019;69:271–279.
    1. Feng H., Li C., Liu J., Wang L., Ma J., Li G., Gan L., Shang X., Wu Z. Virtual reality rehabilitation versus conventional physical therapy for improving balance and gait in parkinson’s disease patients: A randomized controlled trial. Med. Sci. Monit. 2019;25:4186–4192. doi: 10.12659/MSM.916455.
    1. Lei C., Sunzi K., Dai F., Liu X., Wang Y., Zhang B., He L., Ju M. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PLoS ONE. 2019;14:e0224819. doi: 10.1371/journal.pone.0224819.
    1. Sale P., Russo E.F., Russo M., Masiero S., Piccione F., Calabrò R.S., Serena F. Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: A preliminary report. BMC Neurol. 2016;16:12. doi: 10.1186/s12883-016-0536-0.
    1. Yeo E., Chau B., Chi B., Ruckle D.E., Ta P. Virtual Reality Neurorehabilitation for Mobility in Spinal Cord Injury: A Structured Review. Innov. Clin. Neurosci. 2019;16:13–20.
    1. de Araújo A.V.L., Ribeiro F.P.G., Massetti T., Potter-Baker K.A., Cortes M., Plow E.B., da Silva T.D., Tonks J., Anghinah R., Magalhães F.H., et al. Effectiveness of anodal transcranial direct current stimulation to improve muscle strength and motor functionality after incomplete spinal cord injury: A systematic review and meta-analysis. Spinal Cord. 2020;58:635–646. doi: 10.1038/s41393-020-0438-2.
    1. De Araújo A.V.L., Neiva J.F.D.O., Monteiro C.B.D.M., Magalhães F.H. Efficacy of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review. Biomed. Res. Int. 2019 doi: 10.1155/2019/7106951.
    1. Villiger M., Liviero J., Awai L., Stoop R., Pyk P., Clijsen R., Curt A., Eng K., Bolliger M. Home-based virtual reality-augmented training improves lower limb muscle strength, balance, and functional mobility following chronic incomplete spinal cord injury. Front. Neurol. 2017;8:635. doi: 10.3389/fneur.2017.00635.
    1. Kloosterman M.G.M., Snoek G.J., Jannink M.J.A. Systematic review of the effects of exercise therapy on the upper extremity of patients with spinal-cord injury. Spinal Cord. 2009;47:196–203. doi: 10.1038/sc.2008.113.
    1. Hutton B., Catalá-López F., Moher D. The PRISMA statement extension for systematic reviews incorporating network meta-analysis: PRISMA-NMA. Med. Clin. 2016;147:262–266. doi: 10.1016/j.medcli.2016.02.025.
    1. Maher C.G., Sherrington C., Herbert R.D., Moseley A.M., Elkins M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003;83:713–721. doi: 10.1093/ptj/83.8.713.
    1. Moseley A.M., Herbert R.D., Sherrington C., Maher C.G. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro) Aust. J. Physiother. 2002;48:43–49. doi: 10.1016/S0004-9514(14)60281-6.
    1. Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savović J., Schulz K.F., Weeks L., Sterne J.C.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Dimbwadyo-Terrer I., Trincado-Alonso F., de los Reyes-Guzmán A., Aznar M.A., Alcubilla C., Pérez-Nombela S., del Alma-Espinosa A., Polonio-López B., Gil-Agudo A. Upper limb rehabilitation after spinal cord injury: A treatment based on a data glove and an immersive virtual reality environment. Disabil. Rehabil. Assist. Technol. 2016;11:462–467. doi: 10.3109/17483107.2015.1027293.
    1. Khurana M., Walia S., Noohu M.M. Study on the effectiveness of virtual reality game-based training on balance and functional performance in individuals with paraplegia. Top Spinal Cord Inj. Rehabil. 2017;23:263–270. doi: 10.1310/sci16-00003.
    1. Prasad S., Aikat R., Labani S., Khanna N. Efficacy of virtual reality in upper limb rehabilitation in patients with spinal cord injury: A pilot randomized controlled trial. Asian Spine J. 2018;12:927–934. doi: 10.31616/asj.2018.12.5.927.
    1. Linacre J.M., Heinemann A.W., Wright B.D., Granger C.V., Hamilton B.B. The structure and stability of the functional independence measure. Arch. Phys. Med. Rehabil. 1994;75:127–132. doi: 10.1016/0003-9993(94)90384-0.
    1. Catz A., Dickson H.G., Agranov E., Ring H., Tamir A. SCIM—Spinal Cord Independence Measure: A new disability scale for patients with spinal cord lesions. Spinal Cord. 1997;35:850–856. doi: 10.1038/sj.sc.3100504.
    1. Collin C., Wade D.T., Davies S., Horne V. The barthel ADL index: A reliability study. Disabil. Rehabil. 1988;10:61–63. doi: 10.3109/09638288809164103.
    1. Domínguez-Téllez P., Moral-Muñoz J.A., Salazar A., Casado-Fernández E., Lucena-Antón D. Game-Based Virtual Reality Interventions to Improve Upper Limb Motor Function and Quality of Life after Stroke: Systematic Review and Meta-analysis. Games Health J. 2020;9:1–10. doi: 10.1089/g4h.2019.0043.
    1. Massetti T., Da Silva T.D., Crocetta T.B., Guarnieri R., De Freitas B.L., Bianchi Lopes P., Watson S., Tonks J., de Mello Monteiro C.B. The Clinical Utility of Virtual Reality in Neurorehabilitation: A Systematic Review. J. Cent. Nerv. Syst. Dis. 2018;10:1179573518813541. doi: 10.1177/1179573518813541.
    1. Henderson A., Korner-Bitensky N., Levin M. Virtual reality in stroke rehabilitation: A systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14:52–61. doi: 10.1310/tsr1402-52.
    1. Gokeler A., Bisschop M., Myer G.D., Benjaminse A., Dijkstra P.U., van Keeken H.G., van Raay J.J., Burgerhof J.G., Otten E. Immersive virtual reality improves movement patterns in patients after ACL reconstruction: Implications for enhanced criteria-based return-to-sport rehabilitation. Knee Surg. Sport Traumatol. Arthrosc. 2016;24:2280–2286. doi: 10.1007/s00167-014-3374-x.
    1. Morone G., Tramontano M., Iosa M., Shofany J., Iemma A., Musicco M., Paolucci S., Caltagirone C. The Efficacy of Balance Training with Video Game-Based Therapy in Subacute Stroke Patients: A Randomized Controlled Trial. Biomed. Res. Int. 2014;2014:580861. doi: 10.1155/2014/580861.
    1. Sanchez-Herrera-Baeza P., Cano-de-la-Cuerda R., Ona-Simbana E.D., Palacios-Cena D., Perez-Corrales J., Cuenca-Zaldivar J.N., Gueita-Rodriguez J., Balaguer-Bernaldo de Quirós C., Jardón-Huete A., Cuesta-Gomez A. The Impact of a Novel Immersive Virtual Reality Technology Associated with Serious Games in Parkinson’s Disease Patients on Upper Limb Rehabilitation: A Mixed Methods Intervention Study. Sensors. 2020;20:2168. doi: 10.3390/s20082168.
    1. Oña E.D., Jardón A., Cuesta-Gómez A., Sánchez-Herrera-Baeza P., Cano-De-la-Cuerda R., Balaguer C. Validity of a fully-immersive VR-based version of the box and blocks test for upper limb function assessment in Parkinson’s disease. Sensor. 2020;20:2773. doi: 10.3390/s20102773.
    1. Morone G., Paolucci S., Mattia D., Pichiorri F., Tramontano M., Iosa M. The 3Ts of the new millennium neurorehabilitation gym: Therapy, technology, translationality. Expert Rev. Med. Devices. 2016;13:785–787. doi: 10.1080/17434440.2016.1218275.
    1. Tak S., Choi W., Lee S. Game-based virtual reality training improves sitting balance after spinal cord injury: A single-blinded, randomized controlled trial. Med. Sci. Technol. 2015;56:53–59.
    1. Sullivan K.J., Cen S.Y. Model of Disablement and Recovery: Knowledge Translation in Rehabilitation Research and Practice. Phys. Ther. 2011;91:1892–1904. doi: 10.2522/ptj.20110003.
    1. Wirz M., Mach O., Maier D., Benito-Penalva J., Taylor J., Esclarin A., Dietz V. Effectiveness of Automated Locomotor Training in Patients with Acute Incomplete Spinal Cord Injury: A Randomized, Controlled, Multicenter Trial. J. Neurotrauma. 2017;34:1891–1896. doi: 10.1089/neu.2016.4643.
    1. Miot H.A. Sample size in clinical and experimental trials. J. Vasc. Bras. 2011;10:275–278. doi: 10.1590/S1677-54492011000400001.

Source: PubMed

3
Abonnere