Is Virtual Reality Effective for Balance Recovery in Patients with Spinal Cord Injury? A Systematic Review and Meta-Analysis

Amaranta De Miguel-Rubio, M Dolores Rubio, Alejandro Salazar, Jose A Moral-Munoz, Francisco Requena, Rocio Camacho, David Lucena-Anton, Amaranta De Miguel-Rubio, M Dolores Rubio, Alejandro Salazar, Jose A Moral-Munoz, Francisco Requena, Rocio Camacho, David Lucena-Anton

Abstract

Virtual reality (VR) is an emerging tool used in the neurological rehabilitation of patients with spinal cord injury (SCI), focused on recovering balance, mobility, and motor function, among other functional outcomes. The main objective of this study was to analyze the effectiveness of VR systems to recover balance in patients with SCI. The literature search was performed between October and December 2019 in the following databases: Embase, Web of Science, CINAHL, Scopus, Medline, Physiotherapy Evidence Database (PEDro), PubMed, and the Cochrane Central Register of Controlled Trials. The methodological quality of each study was assessed using the Spinal Cord Injury Rehabilitation Evidence (SCIRE) system and the PEDro scale, while the risk of bias was analyzed by the Cochrane Collaboration's tool. A total of 12 studies, involving 188 participants, were included in the systematic review, of which two were included in the meta-analysis. Statistical analysis showed favorable results for balance measured by the modified Functional Reach Test (standardized mean difference (SMD) = 3.42; 95% confidence interval: 2.54 to 4.29) and by the t-shirt test (SMD= -2.29; 95% confidence interval: -3.00 to -1.59). The results showed that VR interventions provided potential benefits, in addition to conventional physical therapy, to recover balance in patients with SCI.

Keywords: neurological rehabilitation; physical therapy; postural balance; spinal cord injuries; virtual reality.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Information flow diagram of the selection process of the systematic review and meta-analysis.
Figure 2
Figure 2
Risk of bias of the studies included in the systematic review.
Figure 3
Figure 3
Overall risk of bias. Each category is presented by percentages.
Figure 4
Figure 4
Forest plot for balance measured by the modified Functional Reach Test. Green block indicates the weight assigned to the study and the horizontal line depicts the confidence interval. Black rhombus shows the overall result.
Figure 5
Figure 5
Forest plot for balance measured by the t-shirt test. Green block indicates the weight assigned to the study and the horizontal line depicts the confidence interval. Black rhombus shows the overall result.

References

    1. Yoon S.Y., Leigh J.-H., Lee J., Kim W.H. Comparing Activity and Participation between Acquired Brain Injury and Spinal-Cord Injury in Community-Dwelling People with Severe Disability Using WHODAS 2.0. Int. J. Environ. Res. Public Health. 2020;17:3031. doi: 10.3390/ijerph17093031.
    1. Ortiz-Zalama A., Cano-de La Cuerda R., Ortiz-Zalama L.I., Gil-Agudo A.M. New technologies for gait training in patients with incomplete spinal cord injury. A systematic review. Rehabilitacion. 2015;49:90–101. doi: 10.1016/j.rh.2014.09.001.
    1. De Miguel-Rubio A., Rubio M.D., Salazar A., Camacho R., Lucena-Anton D. Effectiveness of virtual reality on functional performance after spinal cord injury: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Med. 2020;9:2065. doi: 10.3390/jcm9072065.
    1. Horak F.B. Clinical assessment of balance disorders. Gait Posture. 1997;6:76–84. doi: 10.1016/S0966-6362(97)00018-0.
    1. Huxham F.E., Goldie P.A., Patla A.E. Theoretical considerations in balance assessment. Aust. J. Physiother. 2001;47:89–100. doi: 10.1016/S0004-9514(14)60300-7.
    1. Imam B., Jarus T. Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehabil. Res. Pract. 2014;2014:594540. doi: 10.1155/2014/594540.
    1. Henderson A., Korner-Bitensky N., Levin M. Virtual reality in stroke rehabilitation: A systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 2007;14:52–61. doi: 10.1310/tsr1402-52.
    1. Sin H., Lee G. Additional virtual reality training using Xbox kinect in stroke survivors with hemiplegia. Am. J. Phys. Med. Rehabil. 2013;92:871–880. doi: 10.1097/PHM.0b013e3182a38e40.
    1. Kim J.H., Jang S.H., Kim C.S., Jung J.H., You J.H. Use of virtual reality to enhance balance and ambulation in chronic stroke: A double-blind, randomized controlled study. Am. J. Phys. Med. Rehabil. 2016;88:693–701. doi: 10.1097/PHM.0b013e3181b33350.
    1. Dominguez-Tellez P., Moral-Munoz J.A., Casado-Fernandez E., Salazar A., Lucena-Anton D. Effects of virtual reality on balance and gait in stroke: A systematic review and meta-analysis. Rev. Neurol. 2019;69:223–234.
    1. Booth A.T.C., Buizer A.I., Meyns P., Oude Lansink I.L.B., Steenbrink F., Van der Krogt M.M. The efficacy of functional gait training in children and young adults with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2018;60:866–883. doi: 10.1111/dmcn.13708.
    1. Johansen T., Strøm V., Simic J., Rike P.-O. Effectiveness of training with motion-controlled commercial video games for hand and arm function in people with cerebral palsy: A systematic review and meta-analysis. J. Rehabil. Med. 2020;52:jrm00012. doi: 10.2340/16501977-2633.
    1. Feng H., Li C., Liu J., Wang L., Ma J., Li G., Gan L., Shang X., Wu Z. Virtual reality rehabilitation versus conventional physical therapy for improving balance and gait in parkinson’s disease patients: A randomized controlled trial. Med. Sci. Monit. 2019;25:4186–4192. doi: 10.12659/MSM.916455.
    1. Lei C., Sunzi K., Dai F., Liu X., Wang Y., Zhang B., He L., Ju M. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PLoS ONE. 2019;14:e0224819. doi: 10.1371/journal.pone.0224819.
    1. Moreno-Verdú M., Ferreira-Sánchez M.R., Cano-De-La-Cuerda R., Jiménez-Antona C. Efficacy of virtual reality on balance and gait in multiple sclerosis. Systematic review of randomized controlled trials. Rev. Neurol. 2019;68:357–368.
    1. Norouzi E., Gerber M., Pühse U., Vaezmosavi M., Brand S. Combined virtual reality and physical training improved the bimanual coordination of women with multiple sclerosis. Neuropsychol. Rehabil. 2020:1–18. doi: 10.1080/09602011.2020.1715231.
    1. Maggio M.G., Russo M., Cuzzola M.F., Destro M., La Rosa G., Molonia F., Bramanti P., Lombardo G., De Luca R., Salvatore Calabrò R. Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. J. Clin. Neurosci. 2019;65:106–111. doi: 10.1016/j.jocn.2019.03.017.
    1. Peñasco-Martín B., De Los Reyes-Guzmán A., Gil-Agudo Á., Bernal-Sahún A., Pérez-Aguilar B., De La Peña-González A.I. Application of virtual reality in the motor aspects of neurorehabilitation Introduction. Rev. Neurol. 2010;51:481–488.
    1. Dimbwadyo-Terrer I., Trincado-Alonso F., De Los Reyes-Guzmán A., Bernal-Sahún A., López-Monteagudo P., Polonio-López B., Gil-Agudo A. Clinical, functional and kinematic correlations using the Virtual Reality System toyra® as upper limb rehabilitation tool in people with spinal cord injury; Proceedings of the NEUROTECHNIX, International Congress on Neurotechnology, Electronics and Information; Algarve, Portugal. 18–20 September 2013; pp. 81–88.
    1. Dimbwadyo-Terrer I., Gil-Agudo A., Segura-Fragoso A., De Los Reyes-Guzmán A., Trincado-Alonso F., Piazza S., Polonio-López B. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial. Biomed. Res. Int. 2016;2016:6397828. doi: 10.1155/2016/6397828.
    1. Dimbwadyo-Terrer I., Trincado-Alonso F., De los Reyes-Guzmán A., Aznar M.A., Alcubilla C., Pérez-Nombela S., Del Alma-Espinosa A., Polonio-López B., Gil-Agudo A. Upper limb rehabilitation after spinal cord injury: A treatment based on a data glove and an immersive virtual reality environment. Disabil. Rehabil. Assist. Technol. 2016;11:462–467. doi: 10.3109/17483107.2015.1027293.
    1. D’Addio G., Iuppariello L., Gallo F., Bifulco P., Cesarelli M., Lanzillo B. Comparison between clinical and instrumental assessing using Wii Fit system on balance control. IEEE Int. Symp. Med. Meas. Appl. 2014:1–5. doi: 10.1109/MeMeA.2014.6860124.
    1. Kowalczewski J., Chong S.L., Galea M., Prochazka A. In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabil. Neural. Repair. 2011;25:412–422. doi: 10.1177/1545968310394869.
    1. Gil-Agudo A., Dimbwadyo-Terrer I., Peñasco-Martín B., De Los Reyes-Guzmán A., Bernal-Sahún A., Berbel-García A. Clinical experience regarding the application of the TOyRA virtual reality system in neuro-rehabiliation of patients with spinal cord lesion. Rehabilitacion. 2012;46:41–48. doi: 10.1016/j.rh.2011.10.005.
    1. Fung V., Ho A., Shaffer J., Chung E., Gomez M. Use of Nintendo Wii FitTM In the rehabilitation of outpatients following total knee replacement: A preliminary randomised controlled trial. Physiotherapy. 2012;98:183–188. doi: 10.1016/j.physio.2012.04.001.
    1. Fager S.K., Burnfield J.M. Patients’ experiences with technology during inpatient rehabilitation: Opportunities to support independence and therapeutic engagement. Disabil. Rehabil. Assist. Technol. 2014;9:121–127. doi: 10.3109/17483107.2013.787124.
    1. Franco J.R., Jacobs K., Inzerillo C., Kluzik J. The effect of the Nintendo Wii Fit and exercise in improving balance and quality of life in community dwelling elders. Technol. Heal. Care. 2012;20:95–115. doi: 10.3233/THC-2011-0661.
    1. Yeo E., Chau B., Chi B., Ruckle D.E., Ta P. Virtual Reality Neurorehabilitation for Mobility in Spinal Cord Injury: A Structured Review. Innov. Clin. Neurosci. 2019;16:13–20.
    1. De Araújo A.V.L., Neiva J.F.D.O., Monteiro C.B.D.M., Magalhães F.H. Efficacy of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review. Biomed. Res. Int. 2019;2019:7106951. doi: 10.1155/2019/7106951.
    1. Abou L., Malala V.D., Yarnot R., Alluri A., Rice L.A. Effects of Virtual Reality Therapy on Gait and Balance Among Individuals With Spinal Cord Injury: A Systematic Review and Meta-analysis. Neurorehabil. Neural Repair. 2020;34:375–388. doi: 10.1177/1545968320913515.
    1. Hutton B., Catalá-López F., Moher D. The PRISMA statement extension for systematic reviews incorporating network meta-analysis: PRISMA-NMA. Med. Clin. (Barc) 2016;147:262–266. doi: 10.1016/j.medcli.2016.02.025.
    1. World Confederation for Physical Therapy Curricula for Physical Therapists Delivering Quality Exercise Programmes across the Life Span: Guideline. [(accessed on 21 August 2020)];2011 Available online: .
    1. Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savovic ’ J., Schulz K.F., Weeks L., Sterne J.C.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Eng J.J., Teasell R.W., Miller W.C., Wolfe D.L., Townson A.F., Aubut J.A., Abramson C., Hsieh J.T., Connoly S., Konnyu K. Spinal cord injury rehabilitation evidence: Method of the SCIRE systematic review. Top. Spinal Cord Inj. Rehabil. 2007;13:1–10. doi: 10.1310/sci1301-1.
    1. Maher C.G., Sherrington C., Herbert R.D., Moseley A.M., Elkins M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003;83:713–721. doi: 10.1093/ptj/83.8.713.
    1. Moseley A.M., Herbert R.D., Sherrington C., Maher C.G. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro) Aust. J. Physiother. 2002;48:43–49. doi: 10.1016/S0004-9514(14)60281-6.
    1. Khurana M., Walia S., Noohu M.M. Study on the effectiveness of virtual reality game-based training on balance and functional performance in individuals with paraplegia. Top. Spinal Cord Inj. Rehabil. 2017;23:263–270. doi: 10.1310/sci16-00003.
    1. Roopchand-Martin S., Bateman S. An exploration of the concept of using the Nintendo Wii for balance training in patients with paraplegia. New Zeal. J. Physiother. 2012;40:13–16.
    1. Villiger M., Liviero J., Awai L., Stoop R., Pyk P., Clijsen R., Curt A., Eng K., Bolliger M. Home-based virtual reality-augmented training improves lower limb muscle strength, balance, and functional mobility following chronic incomplete spinal cord injury. Front. Neurol. 2017;8:635. doi: 10.3389/fneur.2017.00635.
    1. Sayenko D.G., Alekhina M.I., Masani K., Vette A.H., Obata H., Popovic M.R., Nakazawa K. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord. 2010;48:886–893. doi: 10.1038/sc.2010.41.
    1. Villiger M., Bohli D., Kiper D., Pyk P., Spillmann J., Meilick B., Curt A., Hepp-Reymond M.-C., Hotz-Boendermarker S., Eng K. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil. Neural Repair. 2013;27:675–683. doi: 10.1177/1545968313490999.
    1. Villiger M., Grabher P., Hepp-Reymond M.-C., Kiper D., Curt A., Bolliger M., Hotz-Boendermarker S., Kollias S., Eng K., Freund P. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: A longitudinal pilot study. Front. Hum. Neurosci. 2015;9:254. doi: 10.3389/fnhum.2015.00254.
    1. Fizzotti G., Rognoni C., Imarisio A., Meneghini A., Pistarini C., Quaglini S. Tablet Technology for Rehabilitation after Spinal Cord Injury: A Proof-of-Concept. Stud. Health Technol. Inform. 2015;210:479–483.
    1. Tak S., Choi W., Lee S. Game-based virtual reality training improves sitting balance after spinal cord injury: A single-blinded, randomized controlled trial. Med. Sci. Technol. 2015;56:53–59.
    1. Wall T., Feinn R., Chui K., Cheng M.S. The effects of the NintendoTM Wii Fit on gait, balance, and quality of life in individuals with incomplete spinal cord injury. J. Spinal Cord Med. 2015;38:777–783. doi: 10.1179/2045772314Y.0000000296.
    1. An C.-M., Park Y.-H. The effects of semi-immersive virtual reality therapy on standing balance and upright mobility function in individuals with chronic incomplete spinal cord injury: A preliminary study. J. Spinal Cord Med. 2018;41:223–229. doi: 10.1080/10790268.2017.1369217.
    1. Van Dijsseldonk R.B., De Jong L.A.F., Groen B.E., Van Der Hulst M.V., Geurts A.C.H., Keijsers N.L.W. Gait stability training in a virtual environment improves gait and dynamic balance capacity in incomplete spinal cord injury patients. Front. Neurol. 2018;9:963. doi: 10.3389/fneur.2018.00963.
    1. Sullivan K.J., Cen S.Y. Model of Disablement and Recovery: Knowledge Translation in Rehabilitation Research and Practice. Phys. Ther. 2011;91:1892–1904. doi: 10.2522/ptj.20110003.
    1. Domínguez-Téllez P., Moral-Muñoz J.A., Salazar A., Casado-Fernández E., Lucena-Antón D. Game-Based Virtual Reality Interventions to Improve Upper Limb Motor Function and Quality of Life after Stroke: Systematic Review and Meta-analysis. Games Health J. 2020;9:1–10. doi: 10.1089/g4h.2019.0043.
    1. Miot H.A. Sample size in clinical and experimental trials. J. Vasc. Bras. 2011;10:275–278. doi: 10.1590/S1677-54492011000400001.

Source: PubMed

3
Abonnere