Towards Building a Quantitative Proteomics Toolbox in Precision Medicine: A Mini-Review

Alejandro Correa Rojo, Dries Heylen, Jan Aerts, Olivier Thas, Jef Hooyberghs, Gökhan Ertaylan, Dirk Valkenborg, Alejandro Correa Rojo, Dries Heylen, Jan Aerts, Olivier Thas, Jef Hooyberghs, Gökhan Ertaylan, Dirk Valkenborg

Abstract

Precision medicine as a framework for disease diagnosis, treatment, and prevention at the molecular level has entered clinical practice. From the start, genetics has been an indispensable tool to understand and stratify the biology of chronic and complex diseases in precision medicine. However, with the advances in biomedical and omics technologies, quantitative proteomics is emerging as a powerful technology complementing genetics. Quantitative proteomics provide insight about the dynamic behaviour of proteins as they represent intermediate phenotypes. They provide direct biological insights into physiological patterns, while genetics accounting for baseline characteristics. Additionally, it opens a wide range of applications in clinical diagnostics, treatment stratification, and drug discovery. In this mini-review, we discuss the current status of quantitative proteomics in precision medicine including the available technologies and common methods to analyze quantitative proteomics data. Furthermore, we highlight the current challenges to put quantitative proteomics into clinical settings and provide a perspective to integrate proteomics data with genomics data for future applications in precision medicine.

Keywords: bioinformatics; biomarker discovery; clinical diagnostics; precision medicine; protein quantitative trait loci; quantitative proteomics; targeted techniques.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Correa Rojo, Heylen, Aerts, Thas, Hooyberghs, Ertaylan and Valkenborg.

Figures

Figure 1
Figure 1
General workflow for quantitative proteomics. The figure describes the different types of targeted technologies, and the common methodologies to analyse quantitative proteomics data. These analyses potentially provide clinical applications in biomarker and drug discovery and patient stratification. Image created with BioRender.

References

    1. Adhikari S., Nice E. C., Deutsch E. W., Lane L., Omenn G. S., Pennington S. R., et al. . (2020). A high-stringency blueprint of the human proteome. Nat. Commun. 11:5301. 10.1038/s41467-020-19045-9
    1. Aggarwal S., Yadav A. K. (2016). False discovery rate estimation in proteomics. Methods Mol. Biol. 1362, 119–128. 10.1007/978-1-4939-3106-4_7, PMID:
    1. Assarsson E., Lundberg M., Holmquist G., Björkesten J., Bucht Thorsen S., Ekman D., et al. . (2014). Homogenous 96-Plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One 9:e95192. 10.1371/journal.pone.0095192, PMID:
    1. Benson M. D., Yang Q., Ngo D., Zhu Y., Shen D., Farrell L. A., et al. . (2018). Genetic architecture of the cardiovascular risk proteome. Circulation 137, 1158–1172. 10.1161/CIRCULATIONAHA.117.029536, PMID:
    1. Bolstad B. M., Irizarry R. A., Astrand M., Speed T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193. 10.1093/bioinformatics/19.2.185, PMID:
    1. Boonen K., Hens K., Menschaert G., Baggerman G., Valkenborg D., Ertaylan G. (2019). Beyond genes: re-Identifiability of proteomic data and its implications for personalized medicine. Gen. Dent. 10:682. 10.3390/genes10090682, PMID:
    1. Brennan D. J., O’Connor D. P., Rexhepaj E., Ponten F., Gallagher W. M. (2010). Antibody-based proteomics: fast-tracking molecular diagnostics in oncology. Nat. Rev. Cancer 10, 605–617. 10.1038/nrc2902, PMID:
    1. Bretherick A. D., Canela-Xandri O., Joshi P. K., Clark D. W., Rawlik K., Boutin T. S., et al. . (2020). Linking protein to phenotype with Mendelian randomization detects 38 proteins with causal roles in human diseases and traits. PLoS Genet. 16:e1008785. 10.1371/journal.pgen.1008785, PMID:
    1. Callister S. J., Barry R. C., Adkins J. N., Johnson E. T., Webb-Robertson B.-J. M., Smith R. D., et al. . (2007). Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res. 5, 277–286. 10.1021/pr050300l, PMID:
    1. Candia J., Cheung F., Kotliarov Y., Fantoni G., Sellers B., Griesman T., et al. . (2017). Assessment of variability in the SOMAscan assay. Sci. Rep. 7:14248. 10.1038/s41598-017-14755-5
    1. Carbon S., Ireland A., Mungall C. J., Shu S., Marshall B., Lewis S., et al. . (2009). AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289. 10.1093/bioinformatics/btn615, PMID:
    1. Chawade A., Alexandersson E., Levander F. (2014). Normalyzer: A tool for rapid evaluation of normalization methods for omics data sets. J. Proteome Res. 13, 3114–3120. 10.1021/pr401264n, PMID:
    1. Chen C., Hou J., Tanner J. J., Cheng J. (2020). Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int. J. Mol. Sci. 21:2873. 10.3390/ijms21082873, PMID:
    1. Dainis A. M., Ashley E. A. (2018). Cardiovascular precision medicine in the genomics era. JACC Basic Transl. Sci. 3, 313–326. 10.1016/j.jacbts.2018.01.003, PMID:
    1. Ding C., Qin Z., Li Y., Shi W., Li L., Zhan D., et al. . (2019). Proteomics and precision medicine. Small Methods 3:1900075. 10.1002/smtd.201900075
    1. Ellington A. A., Kullo I. J., Bailey K. R., Klee G. G. (2010). Antibody-based protein multiplex platforms: technical and operational challenges. Clin. Chem. 56, 186–193. 10.1373/clinchem.2009.127514, PMID:
    1. Emilsson V., Ilkov M., Lamb J. R., Finkel N., Gudmundsson E. F., Pitts R., et al. . (2018). Co-regulatory networks of human serum proteins link genetics to disease. Science 361, 769–773. 10.1126/science.aaq1327, PMID:
    1. Flores M., Glusman G., Brogaard K., Price N. D., Hood L. (2013). P4 medicine: how systems medicine will transform the healthcare sector and society. Per. Med. 10, 565–576. 10.2217/pme.13.57, PMID:
    1. Folkersen L., Gustafsson S., Wang Q., Hansen D. H., Hedman Å. K., Schork A., et al. . (2020). Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat. Metab. 2, 1135–1148. 10.1038/s42255-020-00287-2, PMID:
    1. Franzén B., Viktorsson K., Kamali C., Darai-Ramqvist E., Grozman V., Arapi V., et al. . (2021). Multiplex immune protein profiling of fine-needle aspirates from patients with non-small-cell lung cancer reveals signatures associated with PD-L1 expression and tumor stage. Mol. Oncol 12952. 10.1002/1878-0261.12952, [Epub ahead of print]
    1. Gold L., Ayers D., Bertino J., Bock C., Bock A., Brody E. N., et al. . (2010). Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004. 10.1371/journal.pone.0015004, PMID:
    1. Gudmundsdottir V., Zaghlool S. B., Emilsson V., Aspelund T., Ilkov M., Gudmundsson E. F., et al. . (2020). Circulating protein signatures and causal candidates for type 2 diabetes. Diabetes 69, 1843–1853. 10.2337/db19-1070
    1. Hawe J. S., Theis F. J., Heinig M. (2019). Inferring interaction networks From multi-omics data. Front. Genet. 10:535. 10.3389/fgene.2019.00535
    1. Hewitson L., Mathews J. A., Devlin M., Schutte C., Lee J., German D. C. (2021). Blood biomarker discovery for autism spectrum disorder: A proteomic analysis. PLoS One 16:e0246581. 10.1371/journal.pone.0246581, PMID:
    1. Howe K. L., Achuthan P., Allen J., Allen J., Alvarez-Jarreta J., Amode M. R., et al. . (2021). Ensembl 2021. Nucleic Acids Res. 49, D884–D891. 10.1093/nar/gkaa942, PMID:
    1. Jassal B., Matthews L., Viteri G., Gong C., Lorente P., Fabregat A., et al. . (2019). The reactome pathway knowledgebase. Nucleic Acids Res. 48:gkz1031. 10.1093/nar/gkz1031
    1. Jensen L. J., Julien P., Kuhn M., von Mering C., Muller J., Doerks T., et al. . (2007). eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, D250–D254. 10.1093/nar/gkm796, PMID:
    1. Jensen L. J., Kuhn M., Stark M., Chaffron S., Creevey C., Muller J., et al. . (2009). STRING 8—A global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416. 10.1093/nar/gkn760, PMID:
    1. Johnson W. E., Li C., Rabinovic A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127. 10.1093/biostatistics/kxj037, PMID:
    1. Kalla R., Adams A. T., Bergemalm D., Vatn S., Kennedy N. A., Ricanek P., et al. . (2021). Serum proteomic profiling at diagnosis predicts clinical course, and need for intensification of treatment in inflammatory bowel disease. J. Crohn’s Colitis 15, 699–708. 10.1093/ecco-jcc/jjaa230, PMID:
    1. Kammers K., Cole R. N., Tiengwe C., Ruczinski I. (2015). Detecting significant changes in protein abundance. EuPA Open Proteom. 7, 11–19. 10.1016/j.euprot.2015.02.002, PMID:
    1. Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462. 10.1093/nar/gkv1070, PMID:
    1. Karpievitch Y. V., Dabney A. R., Smith R. D. (2012). Normalization and missing value imputation for label-free LC-MS analysis. BMC Bioinf. 13:S5. 10.1186/1471-2105-13-S16-S5
    1. Kim M.-S., Pinto S. M., Getnet D., Nirujogi R. S., Manda S. S., Chaerkady R., et al. . (2014). A draft map of the human proteome. Nature 509, 575–581. 10.1038/nature13302, PMID:
    1. Kim C. H., Tworoger S. S., Stampfer M. J., Dillon S. T., Gu X., et al. . (2018). Stability and reproducibility of proteomic profiles measured with an aptamer-based platform. Sci. Rep. 8:8382. 10.1038/s41598-018-26640-w
    1. König I. R., Fuchs O., Hansen G., von Mutius E., Kopp M. V. (2017). What is precision medicine? Eur. Respir. J. 50:1700391. 10.1183/13993003.00391-2017
    1. Korthauer K., Kimes P. K., Duvallet C., Reyes A., Subramanian A., Teng M., et al. . (2019). A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 20:118. 10.1186/s13059-019-1716-1
    1. Kutmon M., van Iersel M. P., Bohler A., Kelder T., Nunes N., Pico A. R., et al. . (2015). PathVisio 3: An extendable pathway analysis toolbox. PLoS Comput. Biol. 11:e1004085. 10.1371/journal.pcbi.1004085, PMID:
    1. Leek J. T., Johnson W. E., Parker H. S., Jaffe A. E., Storey J. D. (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883. 10.1093/bioinformatics/bts034, PMID:
    1. Lewis C. M., Vassos E. (2020). Polygenic risk scores: from research tools to clinical instruments. Genome Med. 12:44. 10.1186/s13073-020-00742-5
    1. LifeLines cohort study. BIOS consortium. Zhernakova D. V., Le T. H., Kurilshikov A., Atanasovska B., et al. . (2018). Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nat. Genet. 50, 1524–1532. 10.1038/s41588-018-0224-7
    1. Liu X., Luo X., Jiang C., Zhao H. (2019). Difficulties and challenges in the development of precision medicine. Clin. Genet. 95, 569–574. 10.1111/cge.13511, PMID:
    1. Loos R. J. F. (2020). 15 years of genome-wide association studies and no signs of slowing down. Nat. Commun. 11:5900. 10.1038/s41467-020-19653-5
    1. Maes E., Hadiwikarta W. W., Mertens I., Baggerman G., Hooyberghs J., Valkenborg D. (2016). CONSTANd: A normalization method for isobaric labeled spectra by constrained optimization. Mol. Cell. Proteomics 15, 2779–2790. 10.1074/mcp.M115.056911, PMID:
    1. Maes E., Mertens I., Valkenborg D., Pauwels P., Rolfo C., Baggerman G. (2015). Proteomics in cancer research: are we ready for clinical practice? Crit. Rev. Oncol. Hematol. 96, 437–448. 10.1016/j.critrevonc.2015.07.006, PMID:
    1. Malone E. R., Oliva M., Sabatini P. J. B., Stockley T. L., Siu L. L. (2020). Molecular profiling for precision cancer therapies. Genet. Med. 12:8. 10.1186/s13073-019-0703-1
    1. Martens L. (2013). Bringing proteomics into the clinic: The need for the field to finally take itself seriously. Proteomics Clin. Appl. 7, 388–391. 10.1002/prca.201300020, PMID:
    1. Mohammadi A., Wit E. C. (2015). Bayesian structure learning in sparse Gaussian graphical models. Bayesian Anal. 10, 109–138. 10.1214/14-BA889
    1. Molendijk J., Parker B. L. (2021). Proteome-wide systems genetics to identify functional regulators of complex traits. Cell Sys. 12, 5–22. 10.1016/j.cels.2020.10.005, PMID:
    1. Morello G., Salomone S., D’Agata V., Conforti F. L., Cavallaro S. (2020). From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis. Front. Neurosci. 14:21, 33192262. 10.3389/fnins.2020.577755
    1. Olivier M., Asmis R., Hawkins G. A., Howard T. D., Cox L. A. (2019). The need for multi-omics biomarker signatures in precision medicine. Int. J. Mol. Sci. 13:4781. 10.3390/ijms20194781, PMID:
    1. Petrera A., von Toerne C., Behler J., Huth C., Thorand B., Hilgendorff A., et al. . (2021). Multiplatform approach for plasma proteomics: complementarity of Olink proximity extension assay technology to mass spectrometry-based protein profiling. J. Proteome Res. 20, 751–762. 10.1021/acs.jproteome.0c00641, PMID:
    1. Pietzner M., Wheeler E., Carrasco-Zanini J., Kerrison N. D., Oerton E., Koprulu M., et al. . (2021). Cross-platform proteomics to advance genetic prioritisation strategies. BioRxiv [Preprint]. 10.1101/2021.03.18.435919
    1. Prasad B., Vrana M., Mehrotra A., Johnson K., Bhatt D. K. (2017). The promises of quantitative proteomics in precision medicine. J. Pharm. Sci. 106, 738–744. 10.1016/j.xphs.2016.11.017, PMID:
    1. Quackenbush J. (2002). Microarray data normalization and transformation. Nat. Genet. 32, 496–501. 10.1038/ng1032, PMID:
    1. Raffield L. M., Dang H., Pratte K. A., Jacobson S., Gillenwater L. A., Ampleford E., et al. . (2020). Comparison of proteomic assessment methods in multiple cohort studies. Proteomics 20:1900278. 10.1002/pmic.201900278, PMID:
    1. Rausch T. K., Schillert A., Ziegler A., Lüking A., Zucht H.-D., Schulz-Knappe P. (2016). Comparison of pre-processing methods for multiplex bead-based immunoassays. BMC Genomics 17:601. 10.1186/s12864-016-2888-7, PMID:
    1. Rissin D. M., Kan C. W., Campbell T. G., Howes S. C., Fournier D. R., Song L., et al. . (2010). Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599. 10.1038/nbt.1641, PMID:
    1. Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., et al. . (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e47. 10.1093/nar/gkv007, PMID:
    1. Scott R. A., Scott L. J., Mägi R., Marullo L., Gaulton K. J., Kaakinen M., et al. . (2017). An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902. 10.2337/db16-1253, PMID:
    1. Ščupáková K., Balluff B., Tressler C., Adelaja T., Heeren R. M. A., Glunde K., et al. . (2020). Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges. Clin. Chem. Lab. Med. 58, 914–929. 10.1515/cclm-2019-0858, PMID:
    1. Siwy J., Mischak H., Zürbig P. (2019). Proteomics and personalized medicine: A focus on kidney disease. Expert Rev. Proteomics 16, 773–782. 10.1080/14789450.2019.1659138, PMID:
    1. Sjaarda J., Gerstein H. C., Kutalik Z., Mohammadi-Shemirani P., Pigeyre M., et al. . (2020). Influence of genetic ancestry on human serum proteome. Am. J. Hum. Genet. 106, 303–314. 10.1016/j.ajhg.2020.01.016, PMID:
    1. Slenter D. N., Kutmon M., Hanspers K., Riutta A., Windsor J., Nunes N., et al. . (2018). WikiPathways: A multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 46, D661–D667. 10.1093/nar/gkx1064, PMID:
    1. Smith J. G., Gerszten R. E. (2017). Emerging affinity-based proteomic Technologies for Large-Scale Plasma Profiling in cardiovascular disease. Circulation 135, 1651–1664. 10.1161/CIRCULATIONAHA.116.025446, PMID:
    1. Sonnenschein K., Fiedler J., de Gonzalo-Calvo D., Xiao K., Pfanne A., Just A., et al. . (2021). Blood-based protein profiling identifies serum protein c-KIT as a novel biomarker for hypertrophic cardiomyopathy. Sci. Rep. 11:1755. 10.1038/s41598-020-80868-z
    1. Stark C. (2006). BioGRID: A general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539. 10.1093/nar/gkj109, PMID:
    1. Suhre K., Arnold M., Bhagwat A. M., Cotton R. J., Engelke R., Raffler J., et al. . (2017). Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun. 8:14357. 10.1038/ncomms14357
    1. Suhre K., McCarthy M. I., Schwenk J. M. (2021). Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 22, 19–37. 10.1038/s41576-020-0268-2, PMID:
    1. Sun B. B., Maranville J. C., Peters J. E., Stacey D., Staley J. R., Blackshaw J., et al. . (2018). Genomic atlas of the human plasma proteome. Nature 558, 73–79. 10.1038/s41586-018-0175-2, PMID:
    1. Suvarna K., Biswas D., Pai M. G. J., Acharjee A., Bankar R., Palanivel V., et al. . (2021). Proteomics and machine learning approaches reveal a set of prognostic markers for COVID-19 severity With drug repurposing potential. Front. Physiol. 12:652799. 10.3389/fphys.2021.652799
    1. Tait B. D., Hudson F., Cantwell L., Brewin G., Holdsworth R., Bennett G., et al. . (2009). Review article: Luminex technology for HLA antibody detection in organ transplantation. Nephrology 14, 247–254. 10.1111/j.1440-1797.2008.01074.x, PMID:
    1. Tam V., Patel N., Turcotte M., Bossé Y., Paré G., Meyre D. (2019). Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484. 10.1038/s41576-019-0127-1, PMID:
    1. The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74. 10.1038/nature11247, PMID:
    1. The UniProt Consortium. Bateman A., Martin M.-J., Orchard S., Magrane M., Agivetova R., et al. . (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489. 10.1093/nar/gkaa1100, PMID:
    1. Välikangas T., Suomi T., Elo L. L. (2016). A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief. Bioinf. 19:bbw095. 10.1093/bib/bbw095
    1. Van Eyk J. E., Snyder M. P. (2018). Precision medicine: Role of proteomics in changing clinical management and care. J. Proteome Res. 18, 1–6. 10.1021/acs.jproteome.8b00504
    1. Williams S. A., Kivimaki M., Langenberg C., Hingorani A. D., Casas J. P., Bouchard C., et al. . (2019). Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857. 10.1038/s41591-019-0665-2, PMID:
    1. Wilson D. H., Rissin D. M., Kan C. W., Fournier D. R., Piech T., Campbell T. G., et al. . (2016). The Simoa HD-1 analyzer: A novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J. Lab. Autom. 21, 533–547. 10.1177/2211068215589580, PMID:
    1. Wingo A. P., Liu Y., Gerasimov E. S., Gockley J., Logsdon B. A., Duong D. M., et al. . (2021). Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146. 10.1038/s41588-020-00773-z, PMID:
    1. Yeh C. Y., Adusumilli R., Kullolli M., Mallick P., John E. M., Pitteri S. J. (2017). Assessing biological and technological variability in protein levels measured in pre-diagnostic plasma samples of women with breast cancer. Biomarker Res. 5:30. 10.1186/s40364-017-0110-y
    1. Zaghlool S. B., Sharma S., Molnar M., Matías-García P. R., Elhadad M. A., Waldenberger M., et al. . (2021). Revealing the role of the human blood plasma proteome in obesity using genetic drivers. Nat. Commun. 12:1279. 10.1038/s41467-021-21542-4
    1. Zhang F., Ge W., Ruan G., Cai X., Guo T. (2020). Data-independent acquisition mass spectrometry-based proteomics and software tools: A glimpse in 2020. Proteomics 20:1900276. 10.1002/pmic.201900276
    1. Zhong W., Edfors F., Gummesson A., Bergström G., Fagerberg L., Uhlén M. (2021). Next generation plasma proteome profiling to monitor health and disease. Nat. Commun. 12:2493. 10.1038/s41467-021-22767-z

Source: PubMed

3
Abonnere