Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation

Jeffrey E Gold, Ramazan A Okyay, Warren E Licht, David J Hurley, Jeffrey E Gold, Ramazan A Okyay, Warren E Licht, David J Hurley

Abstract

Coronavirus disease 2019 (COVID-19) patients sometimes experience long-term symptoms following resolution of acute disease, including fatigue, brain fog, and rashes. Collectively these have become known as long COVID. Our aim was to first determine long COVID prevalence in 185 randomly surveyed COVID-19 patients and, subsequently, to determine if there was an association between occurrence of long COVID symptoms and reactivation of Epstein-Barr virus (EBV) in 68 COVID-19 patients recruited from those surveyed. We found the prevalence of long COVID symptoms to be 30.3% (56/185), which included 4 initially asymptomatic COVID-19 patients who later developed long COVID symptoms. Next, we found that 66.7% (20/30) of long COVID subjects versus 10% (2/20) of control subjects in our primary study group were positive for EBV reactivation based on positive titers for EBV early antigen-diffuse (EA-D) IgG or EBV viral capsid antigen (VCA) IgM. The difference was significant (p < 0.001, Fisher's exact test). A similar ratio was observed in a secondary group of 18 subjects 21-90 days after testing positive for COVID-19, indicating reactivation may occur soon after or concurrently with COVID-19 infection. These findings suggest that many long COVID symptoms may not be a direct result of the SARS-CoV-2 virus but may be the result of COVID-19 inflammation-induced EBV reactivation.

Keywords: COVID-19; EBV; Epstein–Barr virus; Epstein–Barr virus reactivation; PACS; SARS-CoV-2; chronic COVID syndrome; coronavirus; long COVID; post-acute COVID-19 syndrome.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
The relationship between EBV VCA IgG antibody titers and reported long COVID symptoms in the 68 subjects making up the primary and secondary groups was not significant (r = −0.014, p = 0.75).
Figure A2
Figure A2
The relationship between EBV nuclear antigen 1 (EBNA-1) IgG antibody titers and reported long COVID symptoms in the 68 subjects making up the primary and secondary groups was not significant (r = −0.23, p = 0.09).
Figure 1
Figure 1
The relationship between EBV early antigen-diffuse (EA-D) IgG antibody titers and reported long COVID symptoms in the 68 subjects making up the primary and secondary groups was significant (r = 0.34, p < 0.001).
Figure 2
Figure 2
The number of subjects reporting each of 13 clinical manifestations of long COVID, as reported by the 29 subjects from both our long-term and short-term long COVID groups who tested positive for Epstein–Barr virus (EBV) reactivation. The percent of subjects with EBV reactivation reporting each symptom was: fatigue 58.6%, insomnia 48.3%, headaches 44.8%, myalgia 44.8%, confusion/brain fog 41.4%, weakness 37.9%, rash 31.0%, pharyngitis 24.1%, abdominal pain 24.1%, tinnitus 24.1%, fever over 101° F 13.8%, neck lymphadenopathy 13.8%, and mild-to-moderate hearing loss 6.9%.
Figure 3
Figure 3
Skin manifestations of six long COVID subjects positive for EBV reactivation (two photos of each subject).
Figure 4
Figure 4
One subject experienced COVID toes at four months and another at nine months after testing positive for Coronavirus disease 2019 (COVID-19).
Figure 5
Figure 5
The dynamics of EBV viral capsid antigen (VCA) IgM titers, EBV early antigen-diffuse (EA-D) IgG titers, and serum EBV DNA over time after EBV infection or reactivation [14,26,27,28].
Figure 6
Figure 6
Primary inclusion: subjects were included only if they provided the requested background, including documentation of their COVID-19 diagnosis, most often in the form of SARS-CoV-2 polymerase chain reaction (PCR) results. Secondary inclusion: subjects were included only if between the ages of 21–74, with no exclusionary health conditions.

References

    1. Logue J.K., Franko N.M., McCulloch D.J., McDonald D., Magedson A., Wolf C.R., Chu H.Y. Sequelae in Adults at 6 Months After COVID-19 Infection. JAMA Netw. Open. 2021;4:e210830. doi: 10.1001/jamanetworkopen.2021.0830.
    1. Greenhalgh T., Knight M., A’Court C., Buxton M., Husain L. Management of post-acute covid-19 in primary care. BMJ. 2020;370:m3026. doi: 10.1136/bmj.m3026.
    1. Al-Jahdhami I., Al-Naamani K., Al-Mawali A. The Post-acute COVID-19 Syndrome (Long COVID) Oman Med. J. 2021;36:e220. doi: 10.5001/omj.2021.91.
    1. Garrigues E., Janvier P., Kherabi Y., Le Bot A., Hamon A., Gouze H., Doucet L., Berkani S., Oliosi E., Mallart E., et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 2020;81:e4–e6. doi: 10.1016/j.jinf.2020.08.029.
    1. Huang C., Huang L., Wang Y., Li X., Ren L., Gu X., Kang L., Guo L., Liu M., Zhou X., et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet. 2021;397:220–232. doi: 10.1016/S0140-6736(20)32656-8.
    1. Callard F., Perego E. How and why patients made Long Covid. Soc. Sci. Med. 2021;268:113426. doi: 10.1016/j.socscimed.2020.113426.
    1. Neves M., Marinho-Dias J., Ribeiro J., Sousa H. Epstein-Barr virus strains and variations: Geographic or disease-specific variants? J. Med. Virol. 2017;89:373–387. doi: 10.1002/jmv.24633.
    1. Kanda T., Yajima M., Ikuta K. Epstein-Barr virus strain variation and cancer. Cancer Sci. 2019;110:1132–1139. doi: 10.1111/cas.13954.
    1. Misko I.S., Cross S.M., Khanna R., Elliott S.L., Schmidt C., Pye S.J., Silins S.L. Crossreactive recognition of viral, self, and bacterial peptide ligands by human class I-restricted cytotoxic T lymphocyte clonotypes: Implications for molecular mimicry in autoimmune disease. Proc. Natl. Acad. Sci. USA. 1999;96:2279–2284. doi: 10.1073/pnas.96.5.2279.
    1. Houen G., Trier N.H. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front. Immunol. 2020;11:587380. doi: 10.3389/fimmu.2020.587380.
    1. Straus S.E., Tosato G., Armstrong G., Lawley T., Preble O.T., Henle W., Davey R., Pearson G., Epstein J., Brus I., et al. Persisting illness and fatigue in adults with evidence of Epstein-Barr virus infection. Ann. Intern. Med. 1985;102:7–16. doi: 10.7326/0003-4819-102-1-7.
    1. Stowe R.P., Pierson D.L., Feeback D.L., Barrett A.D. Stress-induced reactivation of Epstein-Barr virus in astronauts. Neuroimmunomodulation. 2000;8:51–58. doi: 10.1159/000026453.
    1. Schaade L., Kleines M., Hausler M. Application of virus-specific immunoglobulin M (IgM), IgG, and IgA antibody detection with a polyantigenic enzyme-linked immunosorbent assay for diagnosis of Epstein-Barr virus infections in childhood. J. Clin. Microbiol. 2001;39:3902–3905. doi: 10.1128/JCM.39.11.3902-3905.2001.
    1. Smatti M.K., Al-Sadeq D.W., Ali N.H., Pintus G., Abou-Saleh H., Nasrallah G.K. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Front. Oncol. 2018;8:211. doi: 10.3389/fonc.2018.00211.
    1. Baeck M., Herman A. COVID toes: Where do we stand with the current evidence? Int. J. Infect. Dis. 2021;102:53–55. doi: 10.1016/j.ijid.2020.10.021.
    1. Kasl S.V., Evans A.S., Niederman J.C. Psychosocial risk factors in the developmental of infectious mononucleosis. Psychosom. Med. 1979;41:445–466. doi: 10.1097/00006842-197910000-00002.
    1. Glaser R., Rice J., Sheridan J., Fertel R., Stout J., Speicher C., Pinsky D., Kotur M., Post A., Beck M., et al. Stress-related immune suppression: Health implications. Brain Behav. Immun. 1987;1:7–20. doi: 10.1016/0889-1591(87)90002-X.
    1. Glaser R., Kiecolt-Glaser J. Stress-associated immune modulation and its implications for reactivation of latent herpesviruses. Hum. Herpesvirus Infect. 1994;13:245.
    1. Chen T., Song J., Liu H., Zheng H., Chen C. Positive Epstein-Barr virus detection in coronavirus disease 2019 (COVID-19) patients. Sci. Rep. 2021;11:10902. doi: 10.1038/s41598-021-90351-y.
    1. Paolucci S., Cassaniti I., Novazzi F., Fiorina L., Piralla A., Comolli G., Bruno R., Maserati R., Gulminetti R., Novati S., et al. EBV DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count. Int. J. Infect. Dis. 2020;104:315–319. doi: 10.1016/j.ijid.2020.12.051.
    1. Simonnet A., Engelmann I., Moreau A.S., Garcia B., Six S., Kalioubie A.E., Robriquet L., Hober D., Jourdain M. High incidence of Epstein-Barr virus, cytomegalovirus, and human-herpes virus-6 reactivations in critically-ill patients with Covid-19. Infect. Dis. Now. 2021;51:296–299. doi: 10.1016/j.idnow.2021.01.005.
    1. Lehner G.F., Klein S.J., Zoller H., Peer A., Bellmann R., Joannidis M. Correlation of interleukin-6 with Epstein-Barr virus levels in COVID-19. Crit. Care. 2020;24:657. doi: 10.1186/s13054-020-03384-6.
    1. Singh V., Upadhyay P., Reddy J., Granger J. SARS-CoV-2 Respiratory Co-Infections: Incidence of Viral and Bacterial Co-Pathogens. Int. J. Infect. Dis. 2021;105:617–620. doi: 10.1016/j.ijid.2021.02.087.
    1. Dowd J.B., Palermo T., Brite J., McDade T.W., Aiello A. Seroprevalence of Epstein-Barr virus infection in U.S. children ages 6–19, 2003–2010. PLoS ONE. 2013;8:e64921. doi: 10.1371/journal.pone.0064921.
    1. Bauer G. Simplicity through complexity: Immunoblot with recombinant antigens as the new gold standard in Epstein-Barr virus serology. Clin. Lab. 2001;47:223–230.
    1. Lam W.K.J., Jiang P., Chan K.C.A., Cheng S.H., Zhang H., Peng W., Tse O.Y.O., Tong Y.K., Gai W., Zee B.C.Y., et al. Sequencing-based counting and size profiling of plasma Epstein-Barr virus DNA enhance population screening of nasopharyngeal carcinoma. Proc. Natl. Acad. Sci. USA. 2018;115:E5115–E5124. doi: 10.1073/pnas.1804184115.
    1. Chan K.C.A., Woo J.K.S., King A., Zee B.C.Y., Lam W.K.J., Chan S.L., Chu S.W.I., Mak C., Tse I.O.L., Leung S.Y.M., et al. Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer. N. Engl. J. Med. 2017;377:513–522. doi: 10.1056/NEJMoa1701717.
    1. Odumade O.A., Hogquist K.A., Balfour H.H., Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin. Microbiol. Rev. 2011;24:193–209. doi: 10.1128/CMR.00044-10.
    1. Drago F., Herzum A., Ciccarese G., Parodi A. May syphilis protect against human papillomavirus infection? An example of heterologous immunity. G. Ital. Dermatol. Venereol. 2019;154:719–721. doi: 10.23736/S0392-0488.18.05985-0.
    1. Spencer S.A., Fenske N.A., Espinoza C.G., Hamill J.R., Cohen L.E., Espinoza L.R. Granuloma annulare-like eruption due to chronic Epstein-Barr virus infection. Arch. Dermatol. 1988;124:250–255. doi: 10.1001/archderm.1988.01670020068020.
    1. Goodlad J. Epstein-Barr Virus Associated Lymphoproliferative Disorders in the Skin. [(accessed on 15 June 2021)]; Available online: .
    1. Fiorini G.F., Sinico R.A., Winearls C., Custode P., De Giuli-Morghen C., D’Amico G. Persistent Epstein-Barr virus infection in patients with type II essential mixed cryoglobulinemia. Clin. Immunol. Immunopathol. 1988;47:262–269. doi: 10.1016/S0090-1229(88)80004-7.
    1. Ichinose K., Origuchi T., Tashiro N., Kawashiri S.Y., Iwamoto N., Fujikawa K., Aramaki T., Arima K., Tamai M., Yamasaki S., et al. An elderly patient with chronic active Epstein-Barr virus infection with mixed cryoglobulinemia and review of the literature. Mod. Rheumatol. 2013;23:1022–1028. doi: 10.3109/s10165-012-0731-9.
    1. Rabinowitz H.K. Infectious mononucleosis presenting as Raynaud’s phenomenon. J. Fam. Pract. 1989;29:311–315.
    1. Blereau R.P. Idiopathic Raynaud Disease. [(accessed on 15 June 2021)];Consultant360. 2013 194 Available online: .
    1. Nirenberg M.S., Herrera M. Foot manifestations in a patient with COVID-19 and Epstein-Barr virus: A case study. Foot. 2020;46:101707. doi: 10.1016/j.foot.2020.101707.
    1. Arslan F., Karagz E., Bekz H.S., Ceylan B., Mert A. Epstein-Barr virus-associated haemophagocytic lymphohistiocytosis presenting with acute sensorineural hearing loss: A case report and review of the literature. Infez. Med. 2017;25:277–280.
    1. Williams L.L., Lowery H.W., Glaser R. Sudden hearing loss following infectious mononucleosis: Possible effect of altered immunoregulation. Pediatrics. 1985;75:1020–1027.
    1. Sun R., Liu H., Wang X. Mediastinal Emphysema, Giant Bulla, and Pneumothorax Developed during the Course of COVID-19 Pneumonia. Korean J. Radiol. 2020;21:541–544. doi: 10.3348/kjr.2020.0180.
    1. Fidan V. New type of corona virus induced acute otitis media in adult. Am. J. Otolaryngol. 2020;41:102487. doi: 10.1016/j.amjoto.2020.102487.
    1. Lechien J.R., Chiesa-Estomba C.M., Place S., Van Laethem Y., Cabaraux P., Mat Q., Huet K., Plzak J., Horoi M., Hans S., et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J. Intern. Med. 2020;288:335–344. doi: 10.1111/joim.13089.
    1. Yang Y., Gao F. Clinical characteristics of primary and reactivated Epstein-Barr virus infection in children. J. Med. Virol. 2020;92:3709–3716. doi: 10.1002/jmv.26202.
    1. Chimenti C., Verardo R., Grande C., Francone M., Frustaci A. Infarct-like myocarditis with coronary vasculitis and aneurysm formation caused by Epstein-Barr virus infection. ESC Heart Fail. 2020;7:938–941. doi: 10.1002/ehf2.12611.
    1. Chimenti C., Russo A., Pieroni M., Calabrese F., Verardo R., Thiene G., Russo M.A., Maseri A., Frustaci A. Intramyocyte detection of Epstein-Barr virus genome by laser capture microdissection in patients with inflammatory cardiomyopathy. Circulation. 2004;110:3534–3539. doi: 10.1161/01.CIR.0000148823.08092.0E.
    1. Binkley P.F., Cooke G.E., Lesinski A., Taylor M., Chen M., Laskowski B., Waldman W.J., Ariza M.E., Williams M.V., Jr., Knight D.A., et al. Evidence for the role of Epstein Barr Virus infections in the pathogenesis of acute coronary events. PLoS ONE. 2013;8:e54008. doi: 10.1371/journal.pone.0054008.
    1. Jaumally B.A., Salem A., Robinett K. Epstein-Barr Virus-Related Multisystem Failure in an Immunocompetent Young Man. Crit. Care Med. 2018;46:323. doi: 10.1097/01.ccm.0000528689.41046.a8.
    1. Young L.S., Yap L.F., Murray P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92.
    1. Hoshino Y., Katano H., Zou P., Hohman P., Marques A., Tyring S.K., Follmann D., Cohen J.I. Long-term administration of valacyclovir reduces the number of Epstein-Barr virus (EBV)-infected B cells but not the number of EBV DNA copies per B cell in healthy volunteers. J. Virol. 2009;83:11857–11861. doi: 10.1128/JVI.01005-09.
    1. Verma D., Thompson J., Swaminathan S. Spironolactone blocks Epstein-Barr virus production by inhibiting EBV SM protein function. Proc. Natl. Acad. Sci. USA. 2016;113:3609–3614. doi: 10.1073/pnas.1523686113.
    1. Kotfis K., Lechowicz K., Drozdzal S., Niedzwiedzka-Rystwej P., Wojdacz T.K., Grywalska E., Biernawska J., Wisniewska M., Parczewski M. COVID-19-The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection. Pharmaceuticals. 2021;14:71. doi: 10.3390/ph14010071.
    1. Mareev V.Y., Orlova Y.A., Plisyk A.G., Pavlikova E.P., Matskeplishvili S.T., Akopyan Z.A., Seredenina E.M., Potapenko A.V., Agapov M.A., Asratyan D.A., et al. Results of Open-Label non-Randomized Comparative Clinical Trial: “BromhexIne and Spironolactone for Coronsmall a, CyrillicvirUs Infection requiring hospiTalization (BISCUIT) Kardiologiia. 2020;60:4–15. doi: 10.18087/cardio.2020.11.n1440.
    1. Liu J., Zhang S., Wu Z., Shang Y., Dong X., Li G., Zhang L., Chen Y., Ye X., Du H., et al. Clinical outcomes of COVID-19 in Wuhan, China: A large cohort study. Ann. Intensive Care. 2020;10:99. doi: 10.1186/s13613-020-00706-3.

Source: PubMed

3
Abonnere