Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders

Ann Smith, Russell J McCulloh, Ann Smith, Russell J McCulloh

Abstract

The goal here is to describe our current understanding of heme metabolism and the deleterious effects of "free" heme on immunological processes, endothelial function, systemic inflammation, and various end-organ tissues (e.g., kidney, lung, liver, etc.), with particular attention paid to the role of hemopexin (HPX). Because heme toxicity is the impetus for much of the pathology in sepsis, sickle cell disease (SCD), and other hemolytic conditions, the biological importance and clinical relevance of HPX, the predominant heme binding protein, is reinforced. A perspective on the function of HPX and haptoglobin (Hp) is presented, updating how these two proteins and their respective receptors act simultaneously to protect the body in clinical conditions that entail hemolysis and/or systemic intravascular (IVH) inflammation. Evidence from longitudinal studies in patients supports that HPX plays a Hp-independent role in genetic and non-genetic hemolytic diseases without the need for global Hp depletion. Evidence also supports that HPX has an important role in the prognosis of complex illnesses characterized predominantly by the presence of hemolysis, such as SCD, sepsis, hemolytic-uremic syndrome, and conditions involving IVH and extravascular hemolysis (EVH), such as that generated by extracorporeal circulation during cardiopulmonary bypass (CPB) and from blood transfusions. We propose that quantitating the amounts of plasma heme, HPX, Hb-Hp, heme-HPX, and heme-albumin levels in various disease states may aid in the diagnosis and treatment of the above-mentioned conditions, which is crucial to developing targeted plasma protein supplementation (i.e., "replenishment") therapies for patients with heme toxicity due to HPX depletion.

Keywords: erythrophagocytosis; haptoglobin; heme; hemolysis; hemolytic index; hemopexin; iron; plasma protein therapeutics.

Figures

Figure 1
Figure 1
Model for the development of HPX depletion states. This model is based on data from rhesus monkeys given heme i.v. (Foidart et al., 1982), HPX metabolism studies in humans (Foidart et al., 1983), known induction of HPX by heme (Smith, ; He et al., 2010), normal recycling of HPX after heme delivery (Smith and Morgan, 1978, 1979), and HPX catabolism after i.v. administration of heme several fold higher than the binding capacity of HPX (Sears, ; Lane et al., 1972). As heme-HPX forms in plasma, uptake of this complex by receptor-mediated endocytosis into liver parenchymal cells raises heme levels. In HPX deficiency states, heme will traffic unregulated into cells. HOs initially degrade this heme releasing redox active ferrous iron, CO, and biliverdin, which is converted to bilirubin by cytosolic biliverdin reductase. Heme also travels to the nucleus to de-repress Bach 1 target genes including HO-1 and also to induce other genes including the HPX gene. As intracellular levels of heme rise in liver cells in response to increases in plasma heme, changes in HPX synthesis and catabolism are reflected in plasma HPX levels as indicated. Heme is a normal component of bile and as hemolysis progresses, unregulated heme diffusion into cells raises heme levels such that any unmetabolized heme can potentially be exported into the bile (Petryka et al., ; McCormack et al., 1982).
Figure 2
Figure 2
Kicking heme toxicity. As originally suggested by Delanghe et al. (2010) and Drieghe et al. (2013), there is at the bedside a currently unrecognized and potentially quite frequent need to distinguish impaired heme clearance from ongoing hemolysis. Several major organs may be involved in the pathology of heme toxicity, including the liver, lungs, heart, spleen, intestine, and kidney. Certain immune-privileged sites such as the brain and gonads are initially protected by strong endothelial barriers with tight junctions, and certain immune-privileged cells exist in an immunosuppressive environment. Thus, endothelial cells provide a physical barrier and epithelial cells provide a selective cell gate. Several markers in blood and urine samples are indicated here, in addition to the standard liver and kidney function tests and parameters used for the hemolytic index. If routinely measured, e.g., free heme, free HPX and free Hp in plasma, and heme in urine should prove useful in diagnosis and help discern when there is impaired heme clearance due to a HPX deficiency state. As endothelial cells die and lyse they may be the principal source of plasma HO1 (Ghosh et al., 2011) and also raise LDH levels Drieghe et al., . The soluble ectodomain (sed) of scavenger receptors are released into the circulation by proteolysis and it is expected that sedCD163 will bind Hb and/or Hp-Hb, and sedLRP1/CD91 may bind heme-HPX.

References

    1. Adornato B. T., Kagen L. J., Garver F. A., Engel W. K. (1978). Depletion of serum hemopexin in fulminant rhabdomyolysis evidence for an interaction of hemopexin with myoglobin- derived heme. Arch. Neurol. 35, 547–548. 10.1001/archneur.1978.00500320067016
    1. Aird W. C. (2005). Spatial and temporal dynamics of the endothelium. J. Thromb. Haemost. 3, 1392–1406. 10.1111/j.1538-7836.2005.01328.x
    1. Akerstrom B., Gram M. (2014). A1M, an extravascular tissue cleaning and housekeeping protein. Free Radic. Biol. Med. 74, 274–282. 10.1016/j.freeradbiomed.2014.06.025
    1. Alam J., Smith A. (1989). Receptor-mediated transport of heme by hemopexin regulates gene expression in mammalian cells. J. Biol. Chem. 264, 17637–17640.
    1. Almog C., Isakov A., Ayalon D., Burke M., Shapira I. (1987). Serum myoglobin in detection of myocardial necrosis in patients with “coronary insufficiency.” Clin. Cardiol. 10, 347–349. 10.1002/clc.4960100510
    1. Andersen C. B., Torvund-Jensen M., Nielsen M. J., De Oliveira C. L., Hersleth H. P., Andersen N. H., et al. . (2012). Structure of the haptoglobin-haemoglobin complex. Nature 489, 456–459. 10.1038/nature11369
    1. Balla G., Jacob H. S., Balla J., Rosenberg M., Nath K., Apple F., et al. . (1992). Ferritin: a cytoprotective antioxidant strategem of endothelium. J. Biol. Chem. 267, 18148–18153.
    1. Balla G., Jacob H. S., Eaton J. W., Belcher J. D., Vercellotti G. M. (1991a). Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler. Thromb. 11, 1700–1711. 10.1161/01.ATV.11.6.1700
    1. Balla G., Vercellotti G. M., Muller-Eberhard U., Eaton J., Jacob H. S. (1991b). Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab. Invest. 64, 648–655.
    1. Balla J., Jacob H. S., Balla G., Nath K., Eaton J. W., Vercellotti G. M. (1993). Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc. Natl. Acad. Sci. U.S.A. 90, 9285–9289. 10.1073/pnas.90.20.9285
    1. Baumann H., Morella K. K., Jahreis G. P., Marinkovic S. (1990). Distinct regulation of the interleukin-1 and interleukin-6 response elements of the rat haptoglobin gene in rat and human hepatoma cells. Mol. Cell. Biol. 10, 5967–5976.
    1. Belcher J. D., Chen C., Nguyen J., Milbauer L., Abdulla F., Alayash A. I., et al. . (2014). Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123, 377–390. 10.1182/blood-2013-04-495887
    1. Bui L., Rish K., Jaronczyk K., Bourque S., Mclaughlin B. E., Brien J. F., et al. . (2004). The source of heme for vascular heme oxygenase I: heme uptake in rat aorta. Can. J. Physiol. Pharmacol. 82, 209–217. 10.1139/y04-014
    1. Bunn H. F., Jandl J. H. (1968). Exchange of heme among hemoglobins and between hemoglobin and albumin. J. Biol. Chem. 243, 465–475.
    1. Camejo G., Halberg C., Manschik-Lundin A., Hurt-Camejo E., Rosengren B., Olsson H., et al. . (1998). Hemin binding and oxidation of lipoproteins in serum: mechanisms and effect on the interaction of LDL with human macrophages. J. Lipid Res. 39, 755–766.
    1. Chen G., Zhang D., Fuchs T. A., Manwani D., Wagner D. D., Frenette P. S. (2014). Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123, 3818–3827. 10.1182/blood-2013-10-529982
    1. Chen L., Zhang X., Chen-Roetling J., Regan R. F. (2011). Increased striatal injury and behavioral deficits after intracerebral hemorrhage in hemopexin knockout mice. J. Neurosurg. 114, 1159–1167. 10.3171/2010.10.JNS10861
    1. Chen W., Lu H., Dutt K., Smith A., Hunt D. M., Hunt R. C. (1998). Expression of the protective proteins hemopexin and haptoglobin by cells of the neural retina. Exp. Eye Res. 67, 83–93. 10.1006/exer.1998.0494
    1. Connor J. R., Menzies S. L. (1996). Relationship of iron to oligodendrocytes and myelination. Glia 17, 83–93.
    1. Davies D. M., Smith A., Muller-Eberhard U., Morgan W. T. (1979). Hepatic subcellular metabolism of heme from heme-hemopexin: incorporation of iron into ferritin. Biochem. Biophys. Res. Commun. 91, 1504–1511. 10.1016/0006-291X(79)91235-X
    1. Delanghe J. R., Langlois M. R. (2001). Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin. Chim. Acta 312, 13–23. 10.1016/S0009-8981(01)00586-1
    1. Delanghe J. R., Langlois M. R. (2002). Haptoglobin polymorphism and body iron stores. Clin. Chem. Lab. Med. 40, 212–216. 10.1515/CCLM.2002.035
    1. Delanghe J. R., Langlois M. R., Boelaert J. R., Van Acker J., Van Wanzeele F., Van Der Groen G., et al. . (1998). Haptoglobin polymorphism, iron metabolism and mortality in HIV infection AIDS 12, 1027–1032. 10.1097/00002030-199809000-00010
    1. Delanghe J. R., Philippé J., Moerman F., De Buyzere M. L., Vynckier L. L., Verstraete A. G., et al. . (2010). Impaired hemoglobin scavenging during an acute HIV-1 retroviral syndrome. Clin. Chim. Acta 411, 521–523. 10.1016/j.cca.2010.01.006
    1. Drabkin D. L. (1971). Heme binding and transport–a spectrophotometric study of plasma glycoglobulin hemochromogens. Proc. Natl. Acad. Sci. U.S.A. 68, 609–613. 10.1073/pnas.68.3.609
    1. Drieghe S., Stove V., Decruyenaere J., Delanghe J. (2013). Interpretation of hemolysis tests following administration of a second-generation hemoglobin-based oxygen carrier. Acta Clin. Belg. 68, 282–286. 10.2143/ACB.3309
    1. Elin R. J., Foidart M., Adornato B. T., Engel W. K., Gralnick H. R. (1982). Quantification of acute phase reactants after muscle biopsy. J. Lab. Clin. Med. 100, 566–573.
    1. Etzerodt A., Kjolby M., Nielsen M. J., Maniecki M., Svendsen P., Moestrup S. K. (2013). Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption. Antioxid. Redox Signal. 18, 2254–2263. 10.1089/ars.2012.4605
    1. Eyster M. E., Edgington T. S., Liem H. H., Muller-Eberhard U. (1972). Plasma hemopexin levels following aortic valve replacement: a valuable screening test for assessing the severity of cardiac hemolysis. J. Lab. Clin. Med. 80, 112–116.
    1. Fabriek B. O., Van Bruggen R., Deng D. M., Ligtenberg A. J., Nazmi K., Schornagel K., et al. . (2009). The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 113, 887–892. 10.1182/blood-2008-07-167064
    1. Fagoonee S., Caorsi C., Giovarelli M., Stoltenberg M., Silengo L., Altruda F., et al. . (2008). Lack of plasma protein hemopexin dampens mercury-induced autoimmune response in mice. J. Immunol. 181, 1937–1947. 10.4049/jimmunol.181.3.1937
    1. Faye A., Ramey G., Foretz M., Vaulont S. (2007). Haptoglobin is degraded by iron in C57BL/6 mice: a possible link with endoplasmic reticulum stress. Blood Cells Mol. Dis. 39, 229–237. 10.1016/j.bcmd.2007.05.008
    1. Figueiredo R. T., Fernandez P. L., Mourao-Sa D. S., Porto B. N., Dutra F. F., Alves L. S., et al. . (2007). Characterization of heme as activator of Toll-like receptor 4. J. Biol. Chem. 282, 20221–20229. 10.1074/jbc.M610737200
    1. Foidart M., Eiseman J., Engel W. K., Adornato B. T., Liem H. H., Muller-Eberhard U. (1982). Effect of heme administration on hemopexin metabolism in the rhesus monkey. J. Lab. Clin. Med. 100, 451–460.
    1. Foidart M., Liem H. H., Adornato B. T., Engel W. K., Muller-Eberhard U. (1983). Hemopexin metabolism in patients with altered serum levels. J. Lab. Clin. Med. 102, 838–846.
    1. Fortes G. B., Alves L. S., De Oliveira R., Dutra F. F., Rodrigues D., Fernandez P. L., et al. . (2012). Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 119, 2368–2375. 10.1182/blood-2011-08-375303
    1. Frey C. F. (1979). Hemorrhagic pancreatitis. Am. J. Surg. 137, 616–623. 10.1016/0002-9610(79)90034-5
    1. Friedman-Mor Z., Chalon J., Gorstein F., Turndorf H., Chuba J. V., Orkin L. R. (1978). Abnormal heme-protein patterns in hemorrhagic shock. J. Trauma. 18, 104–107. 10.1097/00005373-197802000-00005
    1. Garby L., Noyes W. D. (1959). J. Clin. Invest. 38, 1479–1488. 10.1172/JCI103925
    1. Ghosh S., Adisa O. A., Chappa P., Tan F., Jackson K. A., Archer D. R., et al. . (2013). Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J. Clin. Invest. 123, 4809–4820. 10.1172/JCI64578
    1. Ghosh S., Tan F., Yu T., Li Y., Adisa O., Mosunjac M., et al. . (2011). Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease. PLoS ONE 6:e18399. 10.1371/journal.pone.0018399
    1. Ghuman J., Zunszain P. A., Petitpas I., Bhattacharya A. A., Otagiri M., Curry S. (2005). Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 353, 38–52. 10.1016/j.jmb.2005.07.075
    1. Giles F. J., Kantarjian H. M., Kornblau S. M., Thomas D. A., Garcia-Manero G., Waddelow T. A., et al. (2001). Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 92, 406–413. 10.1002/1097-0142(20010715)92:2<406::AID-CNCR1336>;2-U
    1. Gladwin M. T., Ofori-Acquah S. F. (2014). Erythroid DAMPs drive inflammation in SCD. Blood 123, 3689–3690. 10.1182/blood-2014-03-563874
    1. Graca-Souza A. V., Arruda M. A., De Freitas M. S., Barja-Fidalgo C., Oliveira P. L. (2002). Neutrophil activation by heme: implications for inflammatory processes. Blood 99, 4160–4165. 10.1182/blood.V99.11.4160
    1. Gutteridge J. M., Smith A. (1988). Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation. Biochem. J. 256, 861–865.
    1. Hahl P., Davis T., Washburn C., Rogers J. T., Smith A. (2013). Mechanisms of neuroprotection by hemopexin: modeling the control of heme and iron homeostasis in brain neurons in inflammatory states. J. Neurochem. 125, 89–101. 10.1111/jnc.12165
    1. Halliwell B., Gutteridge J. M. (1990). The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 280, 1–8. 10.1016/0003-9861(90)90510-6
    1. Hanstein A., Muller-Eberhard U. (1968). Concentration of serum hemopexin in healthy children and adults and in those with a variety of hematological disorders. J. Lab. Clin. Invest. 71, 232–239.
    1. He Y., Hua Y., Lee J. Y., Liu W., Keep R. F., Wang M. M., et al. . (2010). Brain alpha- and beta-globin expression after intracerebral hemorrhage. Transl. Stroke Res. 1, 48–56. 10.1007/s12975-009-0004-x
    1. Hebbel R. P., Morgan W. T., Eaton J. W., Hedlund B. E. (1988). Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 85, 237–241. 10.1073/pnas.85.1.237
    1. Homann B., Kult J., Weis K. H. (1977). [On the use of concentrated haptoglobin in the treatment of a haemolytic transfusion accident of the ABO-system (author's transl)]. Anaesthesist 26, 485–488.
    1. Hrkal Z., Vodrazka Z., Kalousek I. (1974). Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. Eur. J. Biochem. 43, 73–78. 10.1111/j.1432-1033.1974.tb03386.x
    1. Hunt R. C., Hunt D. M., Gaur N., Smith A. (1996). Hemopexin in the human retina: protection of the retina against heme-mediated toxicity. J. Cell Physiol. 168, 71–80.
    1. Hvidberg V., Maniecki M. B., Jacobsen C., Hojrup P., Moller H. J., Moestrup S. K. (2005). Identification of the receptor scavenging hemopexin-heme complexes. Blood 106, 2572–2579. 10.1182/blood-2005-03-1185
    1. Imaizumi H., Tsunoda K., Ichimiya N., Okamoto T., Namiki A. (1994). Repeated large-dose haptoglobin therapy in an extensively burned patient: case report. J. Emerg. Med. 12, 33–37. 10.1016/0736-4679(94)90009-4
    1. Jeney V., Balla J., Yachie A., Varga Z., Vercellotti G. M., Eaton J. W., et al. . (2002). Pro-oxidant and cytotoxic effects of circulating heme. Blood 100, 879–887. 10.1182/blood.V100.3.879
    1. Jung J. Y., Kwak Y. H., Kim K. S., Kwon W. Y., Suh G. J. (2015). Change of hemopexin level is associated with the severity of sepsis in endotoxemic rat model and the outcome of septic patients. J. Crit. Care 30, 525–530. 10.1016/j.jcrc.2014.12.009
    1. Kondo H., Saito K., Grasso J. P., Aisen P. (1988). Iron metabolism in the erythrophagocytosing Kupffer cell. Hepatology 8, 32–38. 10.1002/hep.1840080108
    1. Kovtunovych G., Eckhaus M. A., Ghosh M. C., Ollivierre-Wilson H., Rouault T. A. (2010). Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116, 6054–6062. 10.1182/blood-2010-03-272138
    1. Kovtunovych G., Ghosh M. C., Ollivierre W., Weitzel R. P., Eckhaus M. A., Tisdale J. F., Yachie A., et al. . (2014). Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice. Blood 124, 1522–1530. 10.1182/blood-2014-02-554162
    1. Kumar Y., Liang C., Bo Z., Rajapakse J. C., Ooi E. E., Tannenbaum S. R. (2012). Serum proteome and cytokine analysis in a longitudinal cohort of adults with primary dengue infection reveals predictive markers of DHF. PLoS Negl. Trop. Dis. 6:e1887. 10.1371/journal.pntd.0001887
    1. Kushner I., Edgington T. S., Trimble C., Liem H. H., Muller-Eberhard U. (1972). Plasma hemopexin homeostasis during the acute phase response. J. Lab. Clin. Med. 80, 18–25.
    1. Lane R. S., Rangeley D. M., Liem H. H., Wormsley S., Muller-Eberhard U. (1973). Plasma clearance of 125I-labelled haemopexin in normal and haem- loaded rabbits. Br. J. Haematol. 25, 533–540. 10.1111/j.1365-2141.1973.tb01764.x
    1. Lane R. S., Rangeley D. M., Liem H., Wormsley S., Muller-Eberhard U. (1972). Hemopexin metabolism in the rabbit. J. Lab. Clin. Med. 79, 935–941.
    1. Langley R. J., Tipper J. L., Bruse S., Baron R. M., Tsalik E. L., Huntley J., et al. . (2014). Integrative “omic” analysis of experimental bacteremia identifies a metabolic signature that distinguishes human sepsis from systemic inflammatory response syndromes. Am. J. Respir. Crit. Care Med. 190, 445–455. 10.1164/rccm.201404-0624OC
    1. Langley R. J., Tsalik E. L., Van Velkinburgh J. C., Glickman S. W., Rice B. J., Wang C., et al. . (2013). An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci. Transl. Med. 5:195ra195. 10.1126/scitranslmed.3005893
    1. Larsen R., Gozzelino R., Jeney V., Tokaji L., Bozza F. A., Japiassu A. M., et al. . (2010). A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl. Med. 2:51ra71. 10.1126/scitranslmed.3001118
    1. Li R. C., Saleem S., Zhen G., Cao W., Zhuang H., Lee J., et al. . (2009). Heme-hemopexin complex attenuates neuronal cell death and stroke damage. J. Cereb. Blood Flow Metab. 29, 953–964. 10.1038/jcbfm.2009.19
    1. Liang X., Lin T., Sun G., Beasley-Topliffe L., Cavaillon J. M., Warren H. S. (2009). Hemopexin down-regulates LPS-induced proinflammatory cytokines from macrophages. J. Leukoc. Biol. 86, 229–235. 10.1189/jlb.1208742
    1. Liem H. H. (1976). Catabolism of homologous and heterologous hemopexin in the rat and uptake of hemopexin by isolated perfused rat liver. Ann. Clin. Res. 8, 233–238.
    1. Liem H. H., Spector J. I., Conway T. P., Morgan W. T., Muller-Eberhard U. (1975). Effect of hemoglobin and hematin on plasma clearance of hemopexin, photo-inactivated hemopexin and albumin (38575). Proc. Soc. Exp. Biol. Med. 148, 519–522. 10.3181/00379727-148-38575
    1. Lim S. K., Ferraro B., Moore K., Halliwell B. (2001). Role of haptoglobin in free hemoglobin metabolism. Redox Rep. 6, 219–227. 10.1179/135100001101536364
    1. Lull M. E., Carkaci-Salli N., Freeman W. M., Myers J. L., Midgley F. M., Thomas N. J., et al. . (2008). Plasma biomarkers in pediatric patients undergoing cardiopulmonary bypass. Pediatr. Res. 63, 638–644. 10.1203/PDR.0b013e31816e391f
    1. Maniecki M. B., Hasle H., Friis-Hansen L., Lausen B., Nielsen O. J., Bendix K., et al. . (2008). Impaired CD163-mediated hemoglobin-scavenging and severe toxic symptoms in patients treated with gemtuzumab ozogamicin. Blood 112, 1510–1514. 10.1182/blood-2007-09-114165
    1. Marro S., Chiabrando D., Messana E., Stolte J., Turco E., Tolosano E., et al. . (2010). Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter. Haematologica 95, 1261–1268. 10.3324/haematol.2009.020123
    1. May K., Rosenlof L., Olsson M. G., Centlow M., Morgelin M., Larsson I., et al. . (2011). Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by alpha1-microglobulin. Placenta 32, 323–332. 10.1016/j.placenta.2011.01.017
    1. McCarthy R. C., Kosman D. J. (2014). Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS ONE 9:e89003. 10.1371/journal.pone.0089003
    1. McCormack L. R., Liem H. H., Strum W. B., Grundy S. M., Muller-Eberhard U. (1982). Effects of haem infusion on biliary secretion of porphyrins, haem and bilirubin in man. Eur. J. Clin. Invest. 12, 257–262. 10.1111/j.1365-2362.1982.tb01001.x
    1. Morello N., Bianchi F. T., Marmiroli P., Tonoli E., Rodriguez Menendez V., Silengo L., et al. . (2011). A role for hemopexin in oligodendrocyte differentiation and myelin formation. PLoS ONE 6:e20173. 10.1371/journal.pone.0020173
    1. Morello N., Tonoli E., Logrand F., Fagoonee S., Turco E., Silengo L., et al. . (2007). Brain iron accumulation and oxidative stress in hemopexin null mice, in European Iron Club London, 13–15 September. 10.1111/j.1582-4934.2008.00611.x
    1. Moreno R., Vincent J. L., Matos R., Mendonca A., Cantraine F., Thijs L., et al. . (1999). The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Med. 25, 686–696. 10.1007/s001340050931
    1. Morris C. M., Candy J. M., Edwardson J. A., Bloxham C. A., Smith A. (1993). Evidence for the localization of haemopexin immunoreactivity in neurones in the human brain. Neurosci. Lett. 149, 141–144. 10.1016/0304-3940(93)90756-B
    1. Moss D., Fargion S., Fracanzani A. L., Levi S., Cappellini M. D., Arosio P., et al. . (1992). Functional roles of the ferritin receptors of human liver, hepatoma, lymphoid and erythroid cells. J. Inorg. Biochem. 47, 219–227. 10.1016/0162-0134(92)84067-W
    1. Muller-Eberhard U., Cleve H. (1963). Immunoelectrophoretic studies of the beta1-haem-binding globulin (haemopexin) in hereditary haemolytic disorders. Nature 197, 602–603. 10.1038/197602a0
    1. Muller-Eberhard U., Fraig M. (1993). Bioactivity of heme and its containment. Am. J. Hematol. 42, 59–62. 10.1002/ajh.2830420112
    1. Muller-Eberhard U., Javid J., Liem H. H., Hanstein A., Hanna M. (1968). Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 32, 811–815.
    1. Muller-Eberhard U., Liem H. H. (1975). Hemopexin, the heme binding serum b glycoprotein. La Ricercha Clin. Lab. 5, 275–291.
    1. Muller-Eberhard U., Liem H. H., Hanstein A., Saarinen P. A. (1969). Studies on the disposal of intravascular heme in the rabbit. J. Lab. Clin. Med. 73, 210–218.
    1. Nagy E., Eaton J. W., Jeney V., Soares M. P., Varga Z., Galajda Z., et al. . (2010). Red cells, hemoglobin, heme, iron, and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 30, 1347–1353. 10.1161/ATVBAHA.110.206433
    1. Nemeth E., Tuttle M. S., Powelson J., Vaughn M. B., Donovan A., Ward D. M., et al. . (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093. 10.1126/science.1104742
    1. Noyes W. D., Bothwell T. H., Finch C. A. (1960). The role of the reticulo-endothelial cell in iron metabolism. Br. J. Haematol. 6, 43–55. 10.1111/j.1365-2141.1960.tb06216.x
    1. Oliviero S., Cortese R. (1989). The human haptoglobin gene promoter: interleukin-6-responsive elements interact with a DNA-binding protein induced by interleukin-6. EMBO J. 8, 1145–1151.
    1. Oliviero S., Morrone G., Cortese R. (1987). The human haptoglobin gene: transcriptional regulation during development and acute phase induction. EMBO J. 6, 1905–1912.
    1. Paoli M., Anderson B. F., Baker H. M., Morgan W. T., Smith A., Baker E. N. (1999). Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two beta-propeller domains. Nat. Struct. Biol. 6, 926–931. 10.1038/13294
    1. Petryka Z. J., Pierach C. A., Smith A., Goertz M. N., Edwards P. S. (1977). Biliary excretion of exogenous hematin in rats. Life Sci. 21, 1015–1020. 10.1016/0024-3205(77)90269-7
    1. Philippidis P., Mason J. C., Evans B. J., Nadra I., Taylor K. M., Haskard D. O., et al. . (2004). Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ. Res. 94, 119–126. 10.1161/01.RES.0000109414.78907.F9
    1. Polfliet M. M., Fabriek B. O., Daniels W. P., Dijkstra C. D., van den Berg T. K. (2006). The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production. Immunobiology 211, 419–425. 10.1016/j.imbio.2006.05.015
    1. Poli V., Oliviero S., Morrone G., Cortese R. (1989). Characterization of an IL-6-responsive element (IL6RE) present on liver-specific genes and identification of the cognate IL-6-dependent DNA-binding protein (IL6DBP). Ann. N. Y. Acad. Sci. 557, 297–309. 10.1111/j.1749-6632.1989.tb24022.x
    1. Poole-Smith B. K., Gilbert A., Gonzalez A. L., Beltran M., Tomashek K. M., Ward B. J., et al. . (2014). Discovery and characterization of potential prognostic biomarkers for dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 91, 1218–1226. 10.4269/ajtmh.14-0193
    1. Ritter M., Buechler C., Kapinsky M., Schmitz G. (2001). Interaction of CD163 with the regulatory subunit of casein kinase II (CKII) and dependence of CD163 signaling on CKII and protein kinase C. Eur. J. Immunol. 31, 999–1009. 10.1002/1521-4141(200104)31
    1. Sakata S., Yoshioka N., Atassi M. Z. (1986). Human haptoglobin binds to human myoglobin. Biochim. Biophys. Acta 873, 312–315. 10.1016/0167-4838(86)90060-9
    1. Sallach S. M., Nowak R., Hudson M. P., Tokarski G., Khoury N., Tomlanovich M. C., et al. . (2004). A change in serum myoglobin to detect acute myocardial infarction in patients with normal troponin I levels. Am. J. Cardiol. 94, 864–867. 10.1016/j.amjcard.2004.06.019
    1. Schaer D. J., Buehler P. W., Alayash A. I., Belcher J. D., Vercellotti G. M. (2013). Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121, 1276–1284. 10.1182/blood-2012-11-451229
    1. Schaer D. J., Vinchi F., Ingoglia G., Tolosano E., Buehler P. W. (2014). Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front. Physiol. 5:415. 10.3389/fphys.2014.00415
    1. Sears D. (1999). Overview of Hemoglobin's Structure/Function Relationships. Available online at: .
    1. Sears D. A. (1968). Plasma heme-binding in patients with hemolytic disorders. J. Lab. Clin. Med. 71, 484–494.
    1. Sears D. A. (1970). Disposal of plasma heme in normal man and patients with intravascular hemolysis. J. Clin. Invest. 49, 5–14. 10.1172/JCI106222
    1. Seok J., Warren H. S., Cuenca A. G., Mindrinos M. N., Baker H. V., Xu W., et al. . (2013). Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. U.S.A. 110, 3507–3012. 10.1073/pnas.1222878110
    1. Sheftel A. D., Kim S. F., Ponka P. (2007). Non-heme induction of heme oxygenase-1 does not alter cellular iron metabolism. J. Biol. Chem. 282, 10480–10486. 10.1074/jbc.M700240200
    1. Smith A. (1990). Biosynthesis of Heme and Chlorophylls, Chapter 9. New York, NY: McGraw-Hill Inc.
    1. Smith A. (1999). Role of redox-active metals in the regulation of the metallothionein and heme oxygenase gene by heme and hemopexin, in Iron Metabolism. Inorganic Biochemistry and Regulatory Mechanisms of Iron Metabolism, eds Ferreira G. C., Moura J. J. G., Franco R. (Weinheim: Wiley-VCH Publishing Co.), 65–93.
    1. Smith A. (2009). Novel heme-protein interactions: some more radical than others, in Tetrapyrroles: Birth, Life and Death, eds Warren M. J., Smith A. G. (Austin; New York: Landes Bioscience; Springer Science+Business, LLC; ), 184–207. 10.1007/978-0-387-78518-9_11
    1. Smith A. (2011a). Iron salvage pathways, in Iron Physiology and Pathophysiology in Humans, eds Anderson G. J., Mclaren G. D. (New York, NY: Humana Press; ), 141–172.
    1. Smith A. (2011b). Mechanisms of cytoprotection by hemopexin, in Handbook of Porphyrin Science. Biochemistry of Tetrapyrroles, eds Kadish K. M., Smith K. M., Guilard R. (Singapore: World Scientific Publishing Co. Pte. Ltd; ), 217–356.
    1. Smith A. (2013). Protection against heme toxicity: hemopexin rules, OK?, in Handbook of Porphyrin Science, ed Ferreira G. (Singapore: World Scientific Publishing Co; ), 311–338.
    1. Smith A., Hunt R. C. (1990). Hemopexin joins transferrin as representative members of a distinct class of receptor-mediated endocytic transport systems. Eur. J. Cell Biol. 53, 234–245.
    1. Smith A., Ledford B. E. (1988). Expression of the haemopexin-transport system in cultured mouse hepatoma cells. Links between haemopexin and iron metabolism. Biochem. J. 256, 941–950.
    1. Smith A., Morgan W. T. (1978). Transport of heme by hemopexin to the liver: evidence for receptor-mediated uptake. Biochem. Biophys. Res. Commun. 84, 151–157. 10.1016/0006-291X(78)90276-0
    1. Smith A., Morgan W. T. (1979). Haem transport to the liver by haemopexin. Receptor-mediated uptake with recycling of the protein. Biochem. J. 182, 47–54.
    1. Smith A., Morgan W. T. (1981). Hemopexin-mediated transport of heme into isolated rat hepatocytes. J. Biol. Chem. 256, 10902–10909.
    1. Sung L., Morales P., Shibata M., Shipulina N., Smith A. (2000). Defenses against extracellular heme-mediated oxidative damage: use of iron and copper chelators to investigate the role of redox active iron, copper and heme in the hemopexin heme transport system, in Iron Chelators: New Development Strategies, eds Badman D. G., Bergeron R. J., Brittenham G. M. (Sarotoga, FL: Saratoga Publishing Group; ), 67–86.
    1. Tanaka K., Kanamori Y., Sato T., Kondo C., Katayama Y., Yada I., et al. . (1991). Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO Trans. 37, M482–M483.
    1. Tolosano E., Cutufia M. A., Hirsch E., Silengo L., Altruda F. (1996). Specific expression in brain and liver driven by the hemopexin promoter in transgenic mice. Biochem. Biophys. Res. Commun. 218, 694–703. 10.1006/bbrc.1996.0124
    1. Tolosano E., Fagoonee S., Hirsch E., Berger F. G., Baumann H., Silengo L., et al. . (2002). Enhanced splenomegaly and severe liver inflammation in haptoglobin/hemopexin double-null mice after acute hemolysis. Blood 100, 4201–4208. 10.1182/blood-2002-04-1270
    1. Tolosano E., Hirsch E., Patrucco E., Camaschella C., Navone R., Silengo L., et al. . (1999). Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94, 3906–3914.
    1. Tsalik E. L., Langley R. J., Dinwiddie D. L., Miller N. A., Yoo B., van Velkinburgh J. C., et al. . (2014). An integrated transcriptome and expressed variant analysis of sepsis survival and death. Genome Med. 6, 111. 10.1186/s13073-014-0111-5
    1. van den Heuvel M. M., Tensen C. P., Van As J. H., van den Berg T. K., Fluitsma D. M., Dijkstra C. D., et al. . (1999). Regulation of CD 163 on human macrophages: cross-linking of CD163 induces signaling and activation. J. Leukoc. Biol. 66, 858–866.
    1. Vercellotti G. M., Khan F. B., Nguyen J., Chen C., Bruzzone C. M., Bechtel H., et al. (2014). H-ferritin ferroxidase induces cytoprotective pathways and inhibits microvascular stasis in transgenic sickle mice. Front. Pharmacol. 5:79 10.3389/fphar.2014.00079
    1. Vinchi F., Gastaldi S., Silengo L., Altruda F., Tolosano E. (2008). Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. Am. J. Pathol. 173, 289–299. 10.2353/ajpath.2008.071130
    1. Vladutiu A. O., Kim J. S. (1981). Absence of beta-globulin band in the serum protein electropherogram of a patient with liver disease. Clin. Chem. 27, 334–336.
    1. Wang B., Jenkins J. R., Trayhurn P. (2005). Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture: integrated response to TNF-alpha. Am. J. Physiol. Endocrinol. Metab. 288, E731–E740. 10.1152/ajpendo.00475.2004
    1. Wester-Rosenlof L., Casslen V., Axelsson J., Edstrom-Hagerwall A., Gram M., Holmqvist M., et al. . (2014). A1M/alpha1-microglobulin protects from heme-induced placental and renal damage in a pregnant sheep model of preeclampsia. PLoS ONE 9:e86353. 10.1371/journal.pone.0086353
    1. Wichterman K. A., Baue A. E., Chaudry I. H. (1980). Sepsis and septic shock–a review of laboratory models and a proposal. J. Surg. Res. 29, 189–201. 10.1016/0022-4804(80)90037-2
    1. Yachie A., Niida Y., Wada T., Igarashi N., Kaneda H., Toma T., et al. . (1999). Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103, 129–135. 10.1172/JCI4165
    1. Yang Z., Philips J. D., Doty R. T., Giraudi P., Ostrow J. D., Tiribelli C., et al. . (2010). Kinetics and specificity of feline leukemia virus subgroup C receptor (FLVCR) export function and its dependence on hemopexin. J. Biol. Chem. 285, 28874–28882. 10.1074/jbc.M110.119131
    1. Yoshioka T., Sugimoto T., Ukai T., Oshiro T. (1985). Haptoglobin therapy for possible prevention of renal failure following thermal injury: a clinical study. J. Trauma 25, 281–287. 10.1097/00005373-198504000-00001

Source: PubMed

3
Abonnere