Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis

Lian-Jiu Su, Jia-Hao Zhang, Hernando Gomez, Raghavan Murugan, Xing Hong, Dongxue Xu, Fan Jiang, Zhi-Yong Peng, Lian-Jiu Su, Jia-Hao Zhang, Hernando Gomez, Raghavan Murugan, Xing Hong, Dongxue Xu, Fan Jiang, Zhi-Yong Peng

Abstract

Reactive oxygen species- (ROS-) induced lipid peroxidation plays a critical role in cell death including apoptosis, autophagy, and ferroptosis. This fundamental and conserved mechanism is based on an excess of ROS which attacks biomembranes, propagates lipid peroxidation chain reactions, and subsequently induces different types of cell death. A highly evolved sophisticated antioxidant system exists that acts to protect the cells from oxidative damage. In this review, we discussed how ROS propagate lipid peroxidation chain reactions and how the products of lipid peroxidation initiate apoptosis and autophagy in current models. We also discussed the mechanism of lipid peroxidation during ferroptosis, and we summarized lipid peroxidation in pathological conditions of critical illness. We aim to bring a more global and integrative sight to know how different ROS-induced lipid peroxidation occurs among apoptosis, autophagy, and ferroptosis.

Conflict of interest statement

None of the other authors declared any conflict of interest in this work.

Copyright © 2019 Lian-Jiu Su et al.

Figures

Figure 1
Figure 1
Generation of ROS and lipid peroxidation in cell death. (a) Generation of ROS; ROS are derived from superoxide radical, whose formation is mainly through NADPH oxidases, xanthine oxidase, and the mitochondrial electron-transport chain. Polyunsaturated fatty acids containing phospholipids can generate alkoxyl (RO·) radicals by Fenton chemistry reaction. (b) The products of lipid peroxidation induce apoptosis and autophagy via different pathways. (c) GPX4 activity decreases and a depletion of GSH causes lipid peroxidation and consequently to ferroptosis.
Figure 2
Figure 2
Antioxidant system protects cell from ROS-induced lipid peroxidation.
Figure 3
Figure 3
Nonenzymatic autoxidation of polyunsaturated fatty acids. R is polyunsaturated fatty acids containing phospholipids; R· is an alkoxyl radical; ROO· is a peroxyl radical (ROO·); ROOH is a lipid hydroperoxide (ROOH); ROOR is PL-OO· to the bis-allylic position of another PL to form PL-OO-PL· dimers; ① means initiation stage; ② means propagation stage; ③ means termination stage.
Figure 4
Figure 4
The relationship among ROS, lipid peroxidation, and cell death.

References

    1. Ferreira C. A., Ni D., Rosenkrans Z. T., Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Research. 2018;11(10):4955–4984. doi: 10.1007/s12274-018-2092-y.
    1. Lundgren C. A. K., Sjöstrand D., Biner O., et al. Scavenging of superoxide by a membrane-bound superoxide oxidase. Nature Chemical Biology. 2018;14(8):788–793. doi: 10.1038/s41589-018-0072-x.
    1. Que X., Hung M. Y., Yeang C., et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature. 2018;558(7709):301–306. doi: 10.1038/s41586-018-0198-8.
    1. Dixon S. J., Lemberg K. M., Lamprecht M. R., et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi: 10.1016/j.cell.2012.03.042.
    1. Sakellariou G. K., Jackson M. J., Vasilaki A. Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radical Research. 2014;48(1):12–29. doi: 10.3109/10715762.2013.830718.
    1. Guerriero G., Trocchia S., Abdel-Gawad F. K., Ciarcia G. Roles of reactive oxygen species in the spermatogenesis regulation. Frontiers in Endocrinology. 2014;5:p. 56. doi: 10.3389/fendo.2014.00056.
    1. Wen X., Wu J., Wang F., Liu B., Huang C., Wei Y. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radical Biology and Medicine. 2013;65:402–410. doi: 10.1016/j.freeradbiomed.2013.07.013.
    1. Doll S., Conrad M. Iron and ferroptosis: a still ill-defined liaison. IUBMB Life. 2017;69(6):423–434. doi: 10.1002/iub.1616.
    1. Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutation Research. 2003;531(1-2):81–92. doi: 10.1016/j.mrfmmm.2003.08.004.
    1. Latunde-Dada G. O. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochimica et Biophysica Acta. 2017;1861(8):1893–1900. doi: 10.1016/j.bbagen.2017.05.019.
    1. He L., He T., Farrar S., Ji L., Liu T., Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry. 2017;44(2):532–553. doi: 10.1159/000485089.
    1. Wang Y., Branicky R., Noe A., Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. The Journal of Cell Biology. 2018;217(6):1915–1928. doi: 10.1083/jcb.201708007.
    1. Li S., Yang X., Feng Z., Wang P., Zhu W., Cui S. Catalase enhances viability of human chondrocytes in culture by reducing reactive oxygen species and counteracting tumor necrosis factor-α-induced apoptosis. Cellular Physiology and Biochemistry. 2018;49(6):2427–2442. doi: 10.1159/000493841.
    1. Zamponi E., Zamponi N., Coskun P., et al. Nrf2 stabilization prevents critical oxidative damage in Down syndrome cells. Aging Cell. 2018;17(5, article e12812) doi: 10.1111/acel.12812.
    1. Matoušková P., Hanousková B., Skálová L. MicroRNAs as potential regulators of glutathione peroxidases expression and their role in obesity and related pathologies. International Journal of Molecular Sciences. 2018;19(4, article 1199) doi: 10.3390/ijms19041199.
    1. Bela K., Horváth E., Gallé Á., Szabados L., Tari I., Csiszár J. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. Journal of Plant Physiology. 2015;176:192–201. doi: 10.1016/j.jplph.2014.12.014.
    1. Halušková L., Valentovičová K., Huttová J., Mistrík I., Tamás L. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiology and Biochemistry. 2009;47(11-12):1069–1074. doi: 10.1016/j.plaphy.2009.08.003.
    1. Tinkov A. A., Bjørklund G., Skalny A. V., et al. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cellular and Molecular Life Sciences. 2018;75(9):1567–1586. doi: 10.1007/s00018-018-2745-8.
    1. Prigge J. R., Coppo L., Martin S. S., et al. Hepatocyte hyperproliferation upon liver-specific co-disruption of thioredoxin-1, thioredoxin reductase-1, and glutathione reductase. Cell Reports. 2017;19(13):2771–2781. doi: 10.1016/j.celrep.2017.06.019.
    1. Rozanowska M., Cantrell A., Edge R., Land E. J., Sarna T., Truscott T. G. Pulse radiolysis study of the interaction of retinoids with peroxyl radicals. Free Radical Biology and Medicine. 2005;39(10):1399–1405. doi: 10.1016/j.freeradbiomed.2005.07.018.
    1. Grenier-Larouche T., Galinier A., Casteilla L., Carpentier A. C., Tchernof A. Omental adipocyte hypertrophy relates to coenzyme Q10 redox state and lipid peroxidation in obese women. Journal of Lipid Research. 2015;56(10):1985–1992. doi: 10.1194/jlr.P058578.
    1. Bullón P., Román-Malo L., Marín-Aguilar F., et al. Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement. Pharmacological Research. 2015;91:1–8. doi: 10.1016/j.phrs.2014.10.007.
    1. Barros A. I. R. N. A., Nunes F. M., Gonçalves B., Bennett R. N., Silva A. P. Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.) Food Chemistry. 2011;128(1):165–172. doi: 10.1016/j.foodchem.2011.03.013.
    1. Lee G. Y., Han S. N. The role of vitamin E in immunity. Nutrients. 2018;10(11):p. 1614. doi: 10.3390/nu10111614.
    1. Kawser Hossain M., Abdal Dayem A., Han J., et al. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International Journal of Molecular Sciences. 2016;17(4):p. 569. doi: 10.3390/ijms17040569.
    1. Marreiro D. D., Cruz K., Morais J., Beserra J., Severo J., de Oliveira A. Zinc and oxidative stress: current mechanisms. Antioxidants. 2017;6(2):p. 24. doi: 10.3390/antiox6020024.
    1. Idelman G., Smith D. L. H., Zucker S. D. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase. Redox Biology. 2015;5:398–408. doi: 10.1016/j.redox.2015.06.008.
    1. Hardeland R. Melatonin and the electron transport chain. Cellular and Molecular Life Sciences. 2017;74(21):3883–3896. doi: 10.1007/s00018-017-2615-9.
    1. Blasiak J., Reiter R. J., Kaarniranta K. Melatonin in retinal physiology and pathology: the case of age-related macular degeneration. Oxidative Medicine and Cellular Longevity. 2016;2016:12. doi: 10.1155/2016/6819736.6819736
    1. Xiao M., Zhong H., Xia L., Tao Y., Yin H. Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radical Biology and Medicine. 2017;111:316–327. doi: 10.1016/j.freeradbiomed.2017.04.363.
    1. Spiteller G., Afzal M. The action of peroxyl radicals, powerful deleterious reagents, explains why neither cholesterol nor saturated fatty acids cause atherogenesis and age-related diseases. Chemistry - A European Journal. 2014;20(46):14928–14945. doi: 10.1002/chem.201404383.
    1. Zarkovic K., Jakovcevic A., Zarkovic N. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases. Free Radical Biology and Medicine. 2017;111:110–126. doi: 10.1016/j.freeradbiomed.2016.12.009.
    1. Łuczaj W., Gęgotek A., Skrzydlewska E. Antioxidants and HNE in redox homeostasis. Free Radical Biology and Medicine. 2017;111:87–101. doi: 10.1016/j.freeradbiomed.2016.11.033.
    1. Lal M., Schöneich C., Mönig J., Asmus K. D. Rate constants for the reactions of halogenated organic radicals. International Journal of Radiation Biology. 1988;54(5):773–785. doi: 10.1080/09553008814552211.
    1. Gardner H. W. Oxygen radical chemistry of polyunsaturated fatty acids. Free Radical Biology and Medicine. 1989;7(1):65–86. doi: 10.1016/0891-5849(89)90102-0.
    1. Bang S., Park S., Lee Y. M., Hong S., Cho K. B., Nam W. Demonstration of the heterolytic O-O bond cleavage of putative nonheme iron(II)-OOH(R) complexes for Fenton and enzymatic reactions. Angewandte Chemie. 2014;53(30):7843–7847. doi: 10.1002/anie.201404556.
    1. Michalski M. C., Calzada C., Makino A., Michaud S., Guichardant M. Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk--a preliminary study. Molecular Nutrition and Food Research. 2008;52(12):1478–1485. doi: 10.1002/mnfr.200700451.
    1. Pratt D. A., Tallman K. A., Porter N. A. Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks. Accounts of Chemical Research. 2011;44(6):458–467. doi: 10.1021/ar200024c.
    1. Kagan V. E., Mao G., Qu F., et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology. 2017;13(1):81–90. doi: 10.1038/nchembio.2238.
    1. Kuhn H., Banthiya S., van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2015;1851(4):308–330. doi: 10.1016/j.bbalip.2014.10.002.
    1. Kuhn H., Belkner J., Wiesner R., Brash A. R. Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. The Journal of Biological Chemistry. 1990;265(30):18351–18361.
    1. Morgan L. T., Thomas C. P., Kuhn H., O'Donnell V. B. Thrombin-activated human platelets acutely generate oxidized docosahexaenoic-acid-containing phospholipids via 12-lipoxygenase. The Biochemical Journal. 2010;431(1):141–148. doi: 10.1042/BJ20100415.
    1. Clark S. R., Guy C. J., Scurr M. J., et al. Esterified eicosanoids are acutely generated by 5-lipoxygenase in primary human neutrophils and in human and murine infection. Blood. 2011;117(6):2033–2043. doi: 10.1182/blood-2010-04-278887.
    1. Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radical Biology and Medicine. 2009;47(5):469–484. doi: 10.1016/j.freeradbiomed.2009.05.032.
    1. Zhang J. R., Cazers A. R., Lutzke B. S., Hall E. D. HPLC-chemiluminescence and thermospray LC/MS study of hydroperoxides generated from phosphatidylcholine. Free Radical Biology and Medicine. 1995;18(1):1–10. doi: 10.1016/0891-5849(94)E0090-6.
    1. Ayala A., Munoz M. F., Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity. 2014;2014:31. doi: 10.1155/2014/360438.360438
    1. Niki E. Biomarkers of lipid peroxidation in clinical material. Biochimica et Biophysica Acta (BBA) - General Subjects. 2014;1840(2):809–817. doi: 10.1016/j.bbagen.2013.03.020.
    1. Lee Y. Y., Galano J. M., Oger C., et al. Assessment of isoprostanes in human plasma: technical considerations and the use of mass spectrometry. Lipids. 2016;51(11):1217–1229. doi: 10.1007/s11745-016-4198-x.
    1. Hall E. D., Andrus P. K. Measurement of oxygen radicals and lipid peroxidation in neural tissues. Current Protocols in Neuroscience. 2001;11:7.17.1–7.17.35. doi: 10.1002/0471142301.ns0717s11.
    1. Cheloni G., Slaveykova V. I. Optimization of the C11-BODIPY581/591 dye for the determination of lipid oxidation in Chlamydomonas reinhardtii by flow cytometry. Cytometry Part A. 2013;83:952–961. doi: 10.1002/cyto.a.22338.
    1. Zakeri Z., Bursch W., Tenniswood M., Lockshin R. A. Cell death: programmed, apoptosis, necrosis, or other? Cell Death & Differentiation. 1995;2(2):87–96.
    1. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic Pathology. 2007;35(4):495–516. doi: 10.1080/01926230701320337.
    1. Romero A., Novoa B., Figueras A. The complexity of apoptotic cell death in mollusks: an update. Fish & Shellfish Immunology. 2015;46(1):79–87. doi: 10.1016/j.fsi.2015.03.038.
    1. Ashkenazi A., Dixit V. M. Death receptors: signaling and modulation. Science. 1998;281(5381):1305–1308. doi: 10.1126/science.281.5381.1305.
    1. Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296(5573):1635–1636. doi: 10.1126/science.1071553.
    1. Green D. R., Llambi F. Cell death signaling. Cold Spring Harbor Perspectives in Biology. 2015;7(12) doi: 10.1101/cshperspect.a006080.
    1. Bao Q., Shi Y. Apoptosome: a platform for the activation of initiator caspases. Cell Death & Differentiation. 2007;14(1):56–65. doi: 10.1038/sj.cdd.4402028.
    1. Riedl S. J., Salvesen G. S. The apoptosome: signalling platform of cell death. Nature Reviews Molecular Cell Biology. 2007;8(5):405–413. doi: 10.1038/nrm2153.
    1. Trapani J. A., Smyth M. J. Functional significance of the perforin/granzyme cell death pathway. Nature Reviews Immunology. 2002;2(10):735–747. doi: 10.1038/nri911.
    1. Metkar S. S., Wang B., Ebbs M. L., et al. Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. The Journal of Cell Biology. 2003;160(6):875–885. doi: 10.1083/jcb.200210158.
    1. Grodzovski I., Lichtenstein M., Galski H., Lorberboum-Galski H. IL-2-granzyme A chimeric protein overcomes multidrug resistance (MDR) through a caspase 3-independent apoptotic pathway. International Journal of Cancer. 2011;128(8):1966–1980. doi: 10.1002/ijc.25527.
    1. Elkin E. R., Harris S. M., Loch-Caruso R. Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line. Toxicology and Applied Pharmacology. 2018;338:30–42. doi: 10.1016/j.taap.2017.11.006.
    1. Chaudhary P., Sharma R., Sharma A., et al. Mechanisms of 4-hydroxy-2-nonenal induced pro- and anti-apoptotic signaling. Biochemistry. 2010;49(29):6263–6275. doi: 10.1021/bi100517x.
    1. Zhong H., Xiao M., Zarkovic K., et al. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: a novel link between oxidative stress and cancer. Free Radical Biology and Medicine. 2017;102:67–76. doi: 10.1016/j.freeradbiomed.2016.10.494.
    1. Hoesel B., Schmid J. A. The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer. 2013;12(1):p. 86. doi: 10.1186/1476-4598-12-86.
    1. Page S., Fischer C., Baumgartner B., et al. 4-Hydroxynonenal prevents NF-κB activation and tumor necrosis factor expression by inhibiting IκB phosphorylation and subsequent proteolysis. Journal of Biological Chemistry. 1999;274(17):11611–11618. doi: 10.1074/jbc.274.17.11611.
    1. Bodur C., Kutuk O., Tezil T., Basaga H. Inactivation of Bcl-2 through IκB kinase (IKK)-dependent phosphorylation mediates apoptosis upon exposure to 4-hydroxynonenal (HNE) Journal of Cellular Physiology. 2012;227(11):3556–3565. doi: 10.1002/jcp.24057.
    1. Heckman C. A., Mehew J. W., Boxer L. M. NF-κB activates Bcl-2 expression in t(14;18) lymphoma cells. Oncogene. 2002;21(24):3898–3908. doi: 10.1038/sj.onc.1205483.
    1. Meng X., Zhang S. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology. 2013;51(1):245–266. doi: 10.1146/annurev-phyto-082712-102314.
    1. Lee K., Seo I., Choi M. H., Jeong D. Roles of mitogen-activated protein kinases in osteoclast biology. International journal of molecular sciences. 2018;19(10):p. 3004. doi: 10.3390/ijms19103004.
    1. Forman H. J., Dickinson D. A., Iles K. E. HNE--signaling pathways leading to its elimination. Molecular aspects of medicine. 2003;24(4-5):189–194. doi: 10.1016/S0098-2997(03)00013-X.
    1. Preston G. A., Zarella C. S., Pendergraft W. F., 3rd, et al. Novel effects of neutrophil-derived proteinase 3 and elastase on the vascular endothelium Involve In Vivo cleavage of NF-κB and proapoptotic changes in jnk, erk, and p38 mapk signaling pathways. Journal of the American Society of Nephrology. 2002;13(12):2840–2849. doi: 10.1097/01.ASN.0000034911.03334.C3.
    1. McElhanon K. E., Bose C., Sharma R., Wu L., Awasthi Y. C., Singh S. P. Gsta4 null mouse embryonic fibroblasts exhibit enhanced sensitivity to oxidants: role of 4-hydroxynonenal in oxidant toxicity. Open journal of apoptosis. 2013;02(01):1–11. doi: 10.4236/ojapo.2013.21001.
    1. Giorgi C., Agnoletto C., Baldini C., et al. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxidants & redox signaling. 2010;13(7):1051–1085. doi: 10.1089/ars.2009.2825.
    1. Violin J. D., Zhang J., Tsien R. Y., Newton A. C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. Journal of cell biology. 2003;161(5):899–909. doi: 10.1083/jcb.200302125.
    1. Chiarpotto E., Domenicotti C., Paola D., et al. Regulation of rat hepatocyte protein kinase C β isoenzymes by the lipid peroxidation product 4-hydroxy-2,3-nonenal: a signaling pathway to modulate vesicular transport of glycoproteins. Hepatology. 1999;29(5):1565–1572. doi: 10.1002/hep.510290510.
    1. Zhang J., Burrington C. M., Davenport S. K., et al. PKCδ regulates hepatic triglyceride accumulation and insulin signaling in Leprdb/db mice. Biochemical and biophysical research communications. 2014;450(4):1619–1625. doi: 10.1016/j.bbrc.2014.07.048.
    1. Zhao M., Xia L., Chen G. Q. Protein kinase cδ in apoptosis: a brief overview. Archivum Immunologiae et Therapiae Experimentalis. 2012;60(5):361–372. doi: 10.1007/s00005-012-0188-8.
    1. Mei S., Livingston M., Hao J., li L., Mei C., Dong Z. Autophagy is activated to protect against endotoxic acute kidney injury. Scientific Reports. 2016;6(1, article 22171) doi: 10.1038/srep22171.
    1. Scherz-Shouval R., Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends in cell biology. 2007;17(9):422–427. doi: 10.1016/j.tcb.2007.07.009.
    1. Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–741. doi: 10.1016/j.cell.2011.10.026.
    1. Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313–326. doi: 10.1016/j.cell.2010.01.028.
    1. Schaaf M. B. E., Keulers T. G., Vooijs M. A., Rouschop K. M. A. LC3/GABARAP family proteins: autophagy-(un)related functions. The FASEB journal. 2016;30(12):3961–3978. doi: 10.1096/fj.201600698R.
    1. Drake L. E., Springer M. Z., Poole L. P., Kim C. J., Macleod K. F. Expanding perspectives on the significance of mitophagy in cancer. Seminars in Cancer Biology. 2017;47:110–124. doi: 10.1016/j.semcancer.2017.04.008.
    1. Um J. H., Yun J. Emerging role of mitophagy in human diseases and physiology. BMB Reports. 2017;50(6):299–307. doi: 10.5483/bmbrep.2017.50.6.056.
    1. Bernardini J. P., Lazarou M., Dewson G. Parkin and mitophagy in cancer. Oncogene. 2017;36(10):1315–1327. doi: 10.1038/onc.2016.302.
    1. Bian X., Teng T., Zhao H., et al. Zinc prevents mitochondrial superoxide generation by inducing mitophagy in the setting of hypoxia/reoxygenation in cardiac cells. Free Radical Research. 2018;52(1):80–91. doi: 10.1080/10715762.2017.1414949.
    1. Fang E. F., Hou Y., Palikaras K., et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience. 2019;22(3):401–412. doi: 10.1038/s41593-018-0332-9.
    1. Chen Y.-F., Liu H., Luo X.-J., et al. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Critical Reviews in Oncology/Hematology. 2017;112:21–30. doi: 10.1016/j.critrevonc.2017.02.004.
    1. Dodson M., Wani W. Y., Redmann M., et al. Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons. Autophagy. 2017;13(11):1828–1840. doi: 10.1080/15548627.2017.1356948.
    1. Ma H., Guo R., Yu L., Zhang Y., Ren J. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. European Heart Journal. 2011;32(8):1025–1038. doi: 10.1093/eurheartj/ehq253.
    1. Krohne T. U., Kaemmerer E., Holz F. G., Kopitz J. Lipid peroxidation products reduce lysosomal protease activities in human retinal pigment epithelial cells via two different mechanisms of action. Experimental Eye Research. 2010;90(2):261–266. doi: 10.1016/j.exer.2009.10.014.
    1. Eisenberg-Lerner A., Kimchi A. The paradox of autophagy and its implication in cancer etiology and therapy. Apoptosis. 2009;14(4):376–391. doi: 10.1007/s10495-008-0307-5.
    1. Dunlop E. A., Tee A. R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Seminars in Cell & Developmental Biology. 2014;36:121–129. doi: 10.1016/j.semcdb.2014.08.006.
    1. Ito M., Yurube T., Kakutani K., et al. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthritis and Cartilage. 2017;25(12):2134–2146. doi: 10.1016/j.joca.2017.08.019.
    1. Dolinsky V. W., Chan A. Y. M., Robillard Frayne I., Light P. E., Des Rosiers C., Dyck J. R. B. Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation. 2009;119(12):1643–1652. doi: 10.1161/CIRCULATIONAHA.108.787440.
    1. Yan D., An G., Kuo M. T. C-Jun N-terminal kinase signalling pathway in response to cisplatin. Journal of Cellular and Molecular Medicine. 2016;20(11):2013–2019. doi: 10.1111/jcmm.12908.
    1. He C., Wei Y., Sun K., et al. Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell. 2013;154(5):1085–1099. doi: 10.1016/j.cell.2013.07.035.
    1. Klein S. R., Piya S., Lu Z., et al. C-Jun N-terminal kinases are required for oncolytic adenovirus-mediated autophagy. Oncogene. 2015;34(41):5295–5301. doi: 10.1038/onc.2014.452.
    1. Haberzettl P., Hill B. G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biology. 2013;1(1):56–64. doi: 10.1016/j.redox.2012.10.003.
    1. Stockwell B. R., Friedmann Angeli J. P., Bayir H., et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–285. doi: 10.1016/j.cell.2017.09.021.
    1. Masaldan S., Clatworthy S. A. S., Gamell C., et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biology. 2018;14:100–115. doi: 10.1016/j.redox.2017.08.015.
    1. Schreiber R., Buchholz B., Kraus A., et al. Lipid peroxidation drives renal cyst growth in vitro through activation of TMEM16A. Journal of the American Society of Nephrology. 2019;30(2):228–242. doi: 10.1681/ASN.2018010039.
    1. Conrad M., Kagan V. E., Bayir H., et al. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes & Development. 2018;32(9-10):602–619. doi: 10.1101/gad.314674.118.
    1. Seibt T. M., Proneth B., Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radical Biology and Medicine. 2019;133:144–152. doi: 10.1016/j.freeradbiomed.2018.09.014.
    1. Stoyanovsky D. A., Tyurina Y. Y., Shrivastava I., et al. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? Free Radical Biology and Medicine. 2019;133:153–161. doi: 10.1016/j.freeradbiomed.2018.09.008.
    1. Masaldan S., Bush A. I., Devos D., Rolland A. S., Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radical Biology and Medicine. 2019;133:221–233. doi: 10.1016/j.freeradbiomed.2018.09.033.
    1. Feng H., Stockwell B. R. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biology. 2018;16(5, article e2006203) doi: 10.1371/journal.pbio.2006203.
    1. Ribas V., García-Ruiz C., Fernández-Checa J. Ã.©. C. Glutathione and mitochondria. Frontiers in Pharmacology. 2014;5:p. 151. doi: 10.3389/fphar.2014.00151.
    1. Jelinek A., Heyder L., Daude M., et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radical Biology and Medicine. 2018;117:45–57. doi: 10.1016/j.freeradbiomed.2018.01.019.
    1. Kinowaki Y., Kurata M., Ishibashi S., et al. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Laboratory Investigation. 2018;98(5):609–619. doi: 10.1038/s41374-017-0008-1.
    1. Yang W. S., SriRamaratnam R., Welsch M. E., et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1-2):317–331. doi: 10.1016/j.cell.2013.12.010.
    1. Yang W. S., Stockwell B. R. Ferroptosis: death by lipid peroxidation. Trends in Cell Biology. 2016;26(3):165–176. doi: 10.1016/j.tcb.2015.10.014.
    1. Shin D., Kim E. H., Lee J., Roh J. L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radical Biology and Medicine. 2018;129:454–462. doi: 10.1016/j.freeradbiomed.2018.10.426.
    1. Friedmann Angeli J. P., Conrad M. Selenium and GPX4, a vital symbiosis. Free Radical Biology and Medicine. 2018;127:153–159. doi: 10.1016/j.freeradbiomed.2018.03.001.
    1. Ingold I., Conrad M. Selenium and iron, two elemental rivals in the ferroptotic death process. Oncotarget. 2018;9(32):22241–22242. doi: 10.18632/oncotarget.25295.
    1. Green D. R. An element of life. Cell. 2018;172(3):389–390. doi: 10.1016/j.cell.2018.01.003.
    1. Shimada K., Skouta R., Kaplan A., et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nature Chemical Biology. 2016;12(7):497–503. doi: 10.1038/nchembio.2079.
    1. Musgrave W. B., Yi H., Kline D., et al. Probing the origins of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Biochemical Journal. 2013;450(1):63–72. doi: 10.1042/BJ20121332.
    1. Koppula P., Zhang Y., Zhuang L., Gan B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Communications. 2018;38(1):p. 12. doi: 10.1186/s40880-018-0288-x.
    1. Dixon S. J., Patel D. N., Welsch M., et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife. 2014;3, article e02523 doi: 10.7554/eLife.02523.
    1. Firtina Karagonlar Z., Koc D., Iscan E., Erdal E., Atabey N. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Science. 2016;107(4):407–416. doi: 10.1111/cas.12891.
    1. Lachaier E., Louandre C., Godin C., et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Research. 2014;34(11):6417–6422.
    1. Kim E. H., Shin D., Lee J., Jung A. R., Roh J. L. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Letters. 2018;432:180–190. doi: 10.1016/j.canlet.2018.06.018.
    1. Nagakannan P., Islam M. I., Karimi-Abdolrezaee S., Eftekharpour E. Inhibition of VDAC1 protects against glutamate-induced oxytosis and mitochondrial fragmentation in hippocampal HT22 cells. Cellular and Molecular Neurobiology. 2019;39(1):73–85. doi: 10.1007/s10571-018-0634-1.
    1. Wang K., Zhu X., Zhang K., et al. Neuroprotective effect of puerarin on glutamate-induced cytotoxicity in differentiated Y-79 cells via inhibition of ROS generation and Ca2+ influx. International journal of molecular sciences. 2016;17(7):p. 1109. doi: 10.3390/ijms17071109.
    1. Lewerenz J., Klein M., Methner A. Cooperative action of glutamate transporters and cystine/glutamate antiporter system Xc- protects from oxidative glutamate toxicity. Journal of Neurochemistry. 2006;98(3):916–925. doi: 10.1111/j.1471-4159.2006.03921.x.
    1. Nishizawa S., Araki H., Ishikawa Y., et al. Low tumor glutathione level as a sensitivity marker for glutamate‑cysteine ligase inhibitors. Oncology Letters. 2018;15(6):8735–8743. doi: 10.3892/ol.2018.8447.
    1. Zhang J., Chen X. p53 tumor suppressor and iron homeostasis. The FEBS Journal. 2018;286(4):620–629. doi: 10.1111/febs.14638.
    1. Yien Y. Y., Shi J., Chen C., et al. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. Journal of Biological Chemistry. 2018;293(51):19797–19811. doi: 10.1074/jbc.RA118.002742.
    1. Zohora F., Bidad K., Pourpak Z., Moin M. Biological and immunological aspects of iron deficiency anemia in cancer development: a narrative review. Nutrition and Cancer. 2018;70(4):546–556. doi: 10.1080/01635581.2018.1460685.
    1. Silva I., Rausch V., Peccerella T., Millonig G., Seitz H. K., Mueller S. Hypoxia enhances H2O2-mediated upregulation of hepcidin: evidence for NOX4-mediated iron regulation. Redox Biology. 2018;16:1–10. doi: 10.1016/j.redox.2018.02.005.
    1. Stehling O., Sheftel A. D., Lill R. Chapter 12 twelve controlled expression of iron‐sulfur cluster assembly components for respiratory chain complexes in mammalian cells. Methods in Enzymology. 2009;456:209–231. doi: 10.1016/S0076-6879(08)04412-1.
    1. Mancias J. D., Wang X., Gygi S. P., Harper J. W., Kimmelman A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105–109. doi: 10.1038/nature13148.
    1. Ward D. M., Kaplan J. Ferroportin-mediated iron transport: expression and regulation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2012;1823(9):1426–1433. doi: 10.1016/j.bbamcr.2012.03.004.
    1. Krijt M., Jirkovska A., Kabickova T., Melenovsky V., Petrak J., Vyoral D. Detection and quantitation of iron in ferritin, transferrin and labile iron pool (LIP) in cardiomyocytes using 55Fe and storage phosphorimaging. Biochimica et Biophysica Acta (BBA) - General Subjects. 2018;1862(12):2895–2901. doi: 10.1016/j.bbagen.2018.09.005.
    1. Lv H., Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics. 2018;10(7):899–916. doi: 10.1039/c8mt00048d.
    1. Martin-Sanchez D., Ruiz-Andres O., Poveda J., et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid–induced AKI. Journal of the American Society of Nephrology. 2017;28(1):218–229. doi: 10.1681/ASN.2015121376.
    1. Friedmann Angeli J. P., Schneider M., Proneth B., et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology. 2014;16(12):1180–1191. doi: 10.1038/ncb3064.
    1. Wu G. J., Lin Y. W., Tsai H. C., Lee Y. W., Chen J. T., Chen R. M. Sepsis-induced liver dysfunction was ameliorated by propofol via suppressing hepatic lipid peroxidation, inflammation, and drug interactions. Life Sciences. 2018;213:279–286. doi: 10.1016/j.lfs.2018.10.038.
    1. Zhao J., Posa D. K., Kumar V., et al. Carnosine protects cardiac myocytes against lipid peroxidation products. Amino Acids. 2019;51(1):123–138. doi: 10.1007/s00726-018-2676-6.
    1. Anthonymuthu T. S., Kenny E. M., Bayir H. Therapies targeting lipid peroxidation in traumatic brain injury. Brain Research. 2016;1640, Part A:57–76. doi: 10.1016/j.brainres.2016.02.006.
    1. Marik P. E., Khangoora V., Rivera R., Hooper M. H., Catravas J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock. Chest. 2017;151(6):1229–1238. doi: 10.1016/j.chest.2016.11.036.
    1. Belsky J. B., Wira C. R., Jacob V., Sather J. E., Lee P. J. A review of micronutrients in sepsis: the role of thiamine, l-carnitine, vitamin C, selenium and vitamin D. Nutrition Research Reviews. 2018;31(2):281–290. doi: 10.1017/S0954422418000124.
    1. de Oliveira Nascimento Freitas R. G. B., Nogueira R. J. N., Cozzolino S. M. F., Vasques A. C. J., Hessel G. Influence of selenium supplementation on patients with inflammation: a pilot double blind randomized study. Nutrition. 2017;41:32–36. doi: 10.1016/j.nut.2017.03.007.
    1. Koekkoek W. A. C. (. K.)., van Zanten A. R. H. Antioxidant vitamins and trace elements in critical illness. Nutrition in Clinical Practice. 2016;31(4):457–474. doi: 10.1177/0884533616653832.

Source: PubMed

3
Abonnere