Neoadjuvant pyrotinib, trastuzumab, and docetaxel for HER2-positive breast cancer (PHEDRA): a double-blind, randomized phase 3 trial

Jiong Wu, Zefei Jiang, Zhenzhen Liu, Benlong Yang, Hongjian Yang, Jinhai Tang, Kun Wang, Yunjiang Liu, Haibo Wang, Peifen Fu, Shuqun Zhang, Qiang Liu, Shusen Wang, Jian Huang, Chuan Wang, Shu Wang, Yongsheng Wang, Linlin Zhen, Xiaoyu Zhu, Fei Wu, Xiang Lin, Jianjun Zou, Jiong Wu, Zefei Jiang, Zhenzhen Liu, Benlong Yang, Hongjian Yang, Jinhai Tang, Kun Wang, Yunjiang Liu, Haibo Wang, Peifen Fu, Shuqun Zhang, Qiang Liu, Shusen Wang, Jian Huang, Chuan Wang, Shu Wang, Yongsheng Wang, Linlin Zhen, Xiaoyu Zhu, Fei Wu, Xiang Lin, Jianjun Zou

Abstract

Background: Pyrotinib (an irreversible pan-ErbB inhibitor) plus capecitabine has survival benefits and acceptable tolerability in patients with HER2-positive metastatic breast cancer. We further assessed addition of pyrotinib to trastuzumab and docetaxel in the neoadjuvant setting.

Methods: In this multicenter, double-blind, phase 3 study (PHEDRA), treatment-naive women with HER2-positive early or locally advanced breast cancer were randomly assigned (1:1) to receive four neoadjuvant cycles of oral pyrotinib or placebo (400 mg) once daily, plus intravenous trastuzumab (8 mg/kg loading dose, followed by 6 mg/kg) and docetaxel (100 mg/m2) every 3 weeks. The primary endpoint was the total pathological complete response (tpCR; ypT0/is and ypN0) rate per independent central review.

Results: Between Jul 23, 2018, and Jan 8, 2021, 355 patients were randomly assigned, 178 to the pyrotinib group and 177 to the placebo group. The majority of patients completed four cycles of neoadjuvant treatment as planned (92.7% and 97.7% in the pyrotinib and placebo groups, respectively). The tpCR rate was 41.0% (95% CI 34.0 to 48.4) in the pyrotinib group compared with 22.0% (95% CI 16.6 to 28.7) in the placebo group (difference, 19.0% [95% CI 9.5 to 28.4]; one-sided P < 0.0001). The objective response rate per investigator was 91.6% (95% CI 86.6 to 94.8) in the pyrotinib group and 81.9% (95% CI 75.6 to 86.9) in the placebo group after the neoadjuvant treatment, resulting in an increase of 9.7% (95% CI 2.7 to 16.6). The most common grade 3 or worse adverse events were diarrhea (79 [44.4%] in the pyrotinib group and nine [5.1%] in the placebo group), neutropenia (33 [18.5%] and 36 [20.3%]), and decreased white blood cell count (29 [16.3%] and 24 [13.6%]). No deaths were reported during neoadjuvant treatment.

Conclusions: The primary endpoint of the study was met. Neoadjuvant pyrotinib, trastuzumab, and docetaxel significantly improved the tpCR rate compared with placebo, trastuzumab, and docetaxel, with manageable toxicity, providing a new option for HER2-positive early or locally advanced breast cancer.

Trial registration: ClinicalTrials.gov, NCT03588091.

Keywords: Breast cancer; HER2; Neoadjuvant treatment; Phase 3; Pyrotinib.

Conflict of interest statement

XZ, FW, XL, and JZ reported being employed by Hengrui when conducting this study. No other disclosures were reported.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Trial profile
Fig. 2
Fig. 2
Total pathological complete response (tpCR) rate and breast pathological complete response (bpCR) rate. A Per independent central review; B per local pathology review. Patients with missing or unevaluable pCR status were considered non-responders. Error bars show 95% CIs for the pCR rate in each group, which were calculated using the Wilson method. Comparison between groups was done using the Cochran-Mantel-Haenszel test stratified by the randomization strata, and the 95% CI for the between-group difference was calculated using the Wald method
Fig. 3
Fig. 3
Subgroup analysis of total pathological complete response (tpCR) per independent central review. Differences between pyrotinib and placebo groups in each subgroup were shown, with the 95% CI being calculated using the Wald method. ER estrogen receptor, PR progesterone receptor

References

    1. Sareyeldin RM, Gupta I, Al-Hashimi I, Al-Thawadi HA, Al Farsi HF, Vranic S, et al. Gene expression and miRNAs profiling: function and regulation in human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Cancers (Basel). 2019;11(5):646. doi: 10.3390/cancers11050646.
    1. Spring LM, Fell G, Arfe A, Sharma C, Greenup R, Reynolds KL, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin Cancer Res. 2020;26:2838–2848. doi: 10.1158/1078-0432.CCR-19-3492.
    1. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–172. doi: 10.1016/S0140-6736(13)62422-8.
    1. Patel A, Unni N, Peng Y. The changing paradigm for the treatment of HER2-positive breast cancer. Cancers (Basel) 2020;12(8):2081. doi: 10.3390/cancers12082081.
    1. Nahta R, Esteva FJ. Herceptin: mechanisms of action and resistance. Cancer Lett. 2006;232:123–138. doi: 10.1016/j.canlet.2005.01.041.
    1. Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:62. doi: 10.3389/fonc.2012.00062.
    1. Jackisch C, Cortazar P, Geyer CE, Jr, Gianni L, Gligorov J, Machackova Z, et al. Risk-based decision-making in the treatment of HER2-positive early breast cancer: recommendations based on the current state of knowledge. Cancer Treat Rev. 2021;99:102229. doi: 10.1016/j.ctrv.2021.102229.
    1. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5:317–328. doi: 10.1016/S1535-6108(04)00083-2.
    1. Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:25–32. doi: 10.1016/S1470-2045(11)70336-9.
    1. Shao Z, Pang D, Yang H, Li W, Wang S, Cui S, et al. Efficacy, safety, and tolerability of pertuzumab, trastuzumab, and docetaxel for patients with early or locally advanced ERBB2-positive breast cancer in Asia: the PEONY phase 3 randomized clinical trial. JAMA Oncol. 2020;6:e193692. doi: 10.1001/jamaoncol.2019.3692.
    1. Li X, Yang C, Wan H, Zhang G, Feng J, Zhang L, et al. Discovery and development of pyrotinib: a novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur J Pharm Sci. 2017;110:51–61. doi: 10.1016/j.ejps.2017.01.021.
    1. Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22:351–360. doi: 10.1016/S1470-2045(20)30702-6.
    1. Ma F, Ouyang Q, Li W, Jiang Z, Tong Z, Liu Y, et al. Pyrotinib or lapatinib combined with capecitabine in HER2-positive metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: a randomized, phase II study. J Clin Oncol. 2019;37:2610–2619. doi: 10.1200/JCO.19.00108.
    1. Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, et al. San Antonio Breast Cancer Symposium (SABCS): 2021. 2021. Updated overall survival results from the phase 3 PHOEBE trial of pyrotinib versus lapatinib in combination with capecitabine in patients with HER2-positive metastatic breast cancer.
    1. Ma F, Li Q, Chen S, Zhu W, Fan Y, Wang J, et al. Phase I study and biomarker analysis of pyrotinib, a novel irreversible pan-ErbB receptor tyrosine kinase inhibitor, in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2017;35:3105–3112. doi: 10.1200/JCO.2016.69.6179.
    1. Li Q, Guan X, Chen S, Yi Z, Lan B, Xing P, et al. Safety, efficacy, and biomarker analysis of pyrotinib in combination with capecitabine in HER2-positive metastatic breast cancer patients: a phase I clinical trial. Clin Cancer Res. 2019;25:5212–5220. doi: 10.1158/1078-0432.CCR-18-4173.
    1. Yan M, Bian L, Hu X, Zhang Q, Ouyang Q, Feng J, et al. Pyrotinib plus capecitabine for human epidermal factor receptor 2-positive metastatic breast cancer after trastuzumab and taxanes (PHENIX): a randomized, double-blind, placebo-controlled phase 3 study. Transl Breast Cancer Res. 2020;1:1–13. doi: 10.21037/tbcr-20-25.
    1. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013. doi: 10.1200/JCO.2013.50.9984.
    1. Cui L, Hung HM, Wang SJ. Modification of sample size in group sequential clinical trials. Biometrics. 1999;55:853–857. doi: 10.1111/j.0006-341X.1999.00853.x.
    1. Guarneri V, Frassoldati A, Bottini A, Cagossi K, Bisagni G, Sarti S, et al. Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study. J Clin Oncol. 2012;30:1989–1995. doi: 10.1200/JCO.2011.39.0823.
    1. Holmes FA, Espina V, Liotta LA, Nagarwala YM, Danso M, McIntyre KJ, et al. Pathologic complete response after preoperative anti-HER2 therapy correlates with alterations in PTEN, FOXO, phosphorylated Stat5, and autophagy protein signaling. BMC Res Notes. 2013;6:507. doi: 10.1186/1756-0500-6-507.
    1. Jacobs SA, Robidoux A, Abraham J, Perez-Garcia JM, La Verde N, Orcutt JM, et al. NSABP FB-7: a phase II randomized neoadjuvant trial with paclitaxel + trastuzumab and/or neratinib followed by chemotherapy and postoperative trastuzumab in HER2(+) breast cancer. Breast Cancer Res. 2019;21:133. doi: 10.1186/s13058-019-1196-y.
    1. Bonnefoi H, Jacot W, Saghatchian M, Moldovan C, Venat-Bouvet L, Zaman K, et al. Neoadjuvant treatment with docetaxel plus lapatinib, trastuzumab, or both followed by an anthracycline-based chemotherapy in HER2-positive breast cancer: results of the randomised phase II EORTC 10054 study. Ann Oncol. 2015;26:325–332. doi: 10.1093/annonc/mdu551.
    1. Carey LA, Berry DA, Cirrincione CT, Barry WT, Pitcher BN, Harris LN, et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J Clin Oncol. 2016;34:542–549. doi: 10.1200/JCO.2015.62.1268.
    1. Baselga J, Bradbury I, Eidtmann H, Di Cosimo S, de Azambuja E, Aura C, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2012;379:633–640. doi: 10.1016/S0140-6736(11)61847-3.
    1. Robidoux A, Tang G, Rastogi P, Geyer CE, Jr, Azar CA, Atkins JN, et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomised phase 3 trial. Lancet Oncol. 2013;14:1183–1192. doi: 10.1016/S1470-2045(13)70411-X.
    1. Xu F, Zhang Y, Miao Z, Zeng X, Wu B, Cai L, et al. Efficacy and safety of mecapegfilgrastim for prophylaxis of chemotherapy-induced neutropenia in patients with breast cancer: a randomized, multicenter, active-controlled phase III trial. Ann Transl Med. 2019;7:482. doi: 10.21037/atm.2019.07.95.

Source: PubMed

3
Abonnere