Immunohistochemical comparison of lateral bone augmentation using a synthetic TiO2 block or a xenogeneic graft in chronic alveolar defects

Minh Khai Le Thieu, Sabine Stoetzel, Maryam Rahmati, Thaqif El Khassawna, Anders Verket, Javier Sanz-Esporrin, Mariano Sanz, Jan Eirik Ellingsen, Håvard Jostein Haugen, Minh Khai Le Thieu, Sabine Stoetzel, Maryam Rahmati, Thaqif El Khassawna, Anders Verket, Javier Sanz-Esporrin, Mariano Sanz, Jan Eirik Ellingsen, Håvard Jostein Haugen

Abstract

Objectives: To evaluate osteogenic markers and alveolar ridge profile changes in guided bone regeneration (GBR) of chronic noncontained bone defects using a nonresorbable TiO2 block.

Materials and methods: Three buccal bone defects were created in each hemimandible of eight beagle dogs and allowed to heal for 8 weeks before GBR. Treatment was assigned by block randomization: TiO2 block: TiO2 -scaffold and a collagen membrane, DBBM particulates: Deproteinized bovine bone mineral (DBBM) and a collagen membrane, Empty control: Only collagen membrane. Bone regeneration was assessed on two different healing timepoints: early (4 weeks) and late healing (12 weeks) using several immunohistochemistry markers including alpha-smooth muscle actin (α-SMA), osteopontin, osteocalcin, tartrate-resistant acid phosphatase, and collagen type I. Histomorphometry was performed on Movat Pentachrome-stained and Von Kossa/Van Gieson-stained sections. Stereolithographic (STL) models were used to compare alveolar profile changes.

Results: The percentage of α-SMA and osteopontin increased in TiO2 group after 12 weeks of healing at the bone-scaffold interface, while collagen type I increased in the empty control group. In the defect area, α-SMA decreased in the empty control group, while collagen type I increased in the DBBM group. All groups maintained alveolar profile from 4 to 12 weeks, but TiO2 group demonstrated the widest soft tissue contour profile.

Conclusions: The present findings suggested contact osteogenesis when GBR is performed with a TiO2 block or DBBM particulates. The increase in osteopontin indicated a potential for bone formation beyond 12 weeks. The alveolar profile data indicated a sustained lateral increase in lateral bone augmentation using a TiO2 block and a collagen membrane, as compared with DBBM and a collagen membrane or a collagen membrane alone.

Keywords: animal experimentation; bone regeneration; bone substitutes; guided tissue regeneration; immunohistochemistry; xenografts.

Conflict of interest statement

Haugen and Ellingsen hold patents for the technology for the TiO2 bone graft substitute (EP Patent 2121053, US Patent 9629941 US Patent App. 14/427901, US Patent App. 14/427683, and US Patent App. 14/427854). The rights for these patents are shared between the University of Oslo and Corticalis AS. Haugen and Ellingsen are shareholders and board members of Corticalis AS. The other authors report no conflicts of interest related to this study.

© 2022 The Authors. Clinical Implant Dentistry and Related Research published by Wiley Periodicals LLC.

Figures

FIGURE 1
FIGURE 1
(A) Timeline of the study design. (B) Guided bone regeneration (GBR) procedure on noncontained defects. Showing the anterior defect with deproteinized bovine bone mineral particulates, middle defect with a TiO2 block secured with a fixation screw and the empty posterior defect. Cortical perforations were performed at all recipient sites. All sites were covered with a collagen membrane stabilized by pin fixation.
FIGURE 2
FIGURE 2
Illustrations of the different regions of interest (ROIs) analyzed. ROItot showing a TiO2 sample with osteocalcin stain, ROI400 μm showing a deproteinized bovine bone mineral (DBBM) sample with collagen stain and ROI40 μm showing a negative control sample with osteopontin stain. Area with graft material was excluded. Box plots with statistical significance denoted by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001. α‐SMA, alpha‐smooth muscle actin
FIGURE 3
FIGURE 3
(A) Deproteinized bovine bone mineral (DBBM) particulates seen as light green, mineralized bone in dark yellow, and unmineralized collagen in bright yellow. Percentage of collagen in region of interest (ROI)tot (B), ROI400 μm (C) and ROI40 μm (D). Statistical significance denoted by asterisks: *p < 0.05. 4 W, 4 weeks; 12 W, 12 weeks
FIGURE 4
FIGURE 4
(A) TiO2 group. Mineralized bone, including deproteinized bovine bone mineral (DBBM) particulates, stained black by Von Kossa/Van Gieson, while TiO2 appeared dark gray to black. An extracellular matrix is stained pink within the TiO2 scaffold and presents less intensity than the surrounding soft tissue and epithelium. Some voids from fracture and tearing of the scaffold are seen. Note migrated DBBM particulates at the bottom of the defect. Percentage of extracellular matrix in region of interest (ROI)tot (B), ROI400 μm (C), and ROI40 μm (D). Statistical significance denoted by asterisks: *p < 0.05, ***p < 0.001
FIGURE 5
FIGURE 5
(A) Osteoclast in a Howship lacuna, (B) Double asterisks denote statistical significance (p < 0.01). DBBM, deproteinized bovine bone mineral; TRAP, tartrate‐resistant acid phosphatase
FIGURE 6
FIGURE 6
(A) Superimposed stereolithographic images of TiO2 sample 4 weeks after guided bone regeneration. The baseline in purple and 4 weeks healing in green. Area difference in ROI is illustrated in yellow. Shown distance from the alveolar crest divides the top, mid, and low segments. (B) Area differences for alveolar contour. Statistical significance denoted by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001. DBBM, deproteinized bovine bone mineral

References

    1. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315‐337. doi:10.1111/eos.12364
    1. McAllister BS, Haghighat K. Bone augmentation techniques. J Periodontol. 2007;78(3):377‐396. doi:10.1902/jop.2007.060048
    1. Araujo M, Linder E, Wennstrom J, Lindhe J. The influence of Bio‐Oss collagen on healing of an extraction socket: an experimental study in the dog. Int J Periodontics Restorative Dent. 2008;28(2):123‐135.
    1. Hammerle CH, Olah AJ, Schmid J, et al. The biological effect of natural bone mineral on bone neoformation on the rabbit skull. Clin Oral Implants Res. 1997;8(3):198‐207. doi:10.1034/j.1600-0501.1997.080306.x
    1. Schmid J, Hammerle CH, Fluckiger L, et al. Blood‐filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in the rabbit using bioresorbable membranes. Clin Oral Implants Res. 1997;8(2):75‐81. doi:10.1034/j.1600-0501.1997.080201.x
    1. Stavropoulos A, Kostopoulos L, Mardas N, Nyengaard JR, Karring T. Deproteinized bovine bone used as an adjunct to guided bone augmentation: an experimental study in the rat. Clin Implant Dent Relat Res. 2001;3(3):156‐165. doi:10.1111/j.1708-8208.2001.tb00136.x
    1. Thieu MKL, Haugen HJ, Sanz‐Esporrin J, Sanz M, Lyngstadaas SP, Verket A. Guided bone regeneration of chronic non‐contained bone defects using a volume stable porous block TiO2 scaffold: an experimental in vivo study. Clin Oral Implants Res. 2021;32(3):369‐381. doi:10.1111/clr.13708
    1. Probst A, Spiegel HU. Cellular mechanisms of bone repair. J Invest Surg. 1997;10(3):77‐86. doi:10.3109/08941939709032137
    1. Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol. 2008;19(5):459‐466. doi:10.1016/j.semcdb.2008.07.004
    1. Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiol Rev. 1996;76(2):593‐629. doi:10.1152/physrev.1996.76.2.593
    1. Sanz M, Ferrantino L, Vignoletti F, de Sanctis M, Berglundh T. Guided bone regeneration of non‐contained mandibular buccal bone defects using deproteinized bovine bone mineral and a collagen membrane: an experimental in vivo investigation. Clin Oral Implants Res. 2017;28(11):1466‐1476. doi:10.1111/clr.13014
    1. Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. doi:10.1371/journal.pbio.3000410
    1. Movat HZ. Demonstration of all connective tissue elements in a single section; pentachrome stains. AMA Arch Pathol. 1955;60(3):289‐295.
    1. Rahmati M, Stotzel S, Khassawna TE, et al. Early osteoimmunomodulatory effects of magnesium‐calcium‐zinc alloys. J Tissue Eng. 2021;12:20417314211047100. doi:10.1177/20417314211047100
    1. Malhan D, Muelke M, Rosch S, et al. An optimized approach to perform bone Histomorphometry. Front Endocrinol (Lausanne). 2018;9(666):666. doi:10.3389/fendo.2018.00666
    1. Cignoni, P. , Callieri, M. , Corsini, M. , Dellepiane, M. , Ganovelli, F. , & Ranzuglia, G. Meshlab: an open‐source mesh processing tool. Paper Presented at the Eurographics Italian Chapter Conference; 2008.
    1. Di Raimondo R, Sanz‐Esporrin J, Sanz‐Martin I, et al. Hard and soft tissue changes after guided bone regeneration using two different barrier membranes: an experimental in vivo investigation. Clin Oral Investig. 2021;25(4):2213‐2227. doi:10.1007/s00784-020-03537-5
    1. Verket A, Muller B, Wohlfahrt JC, et al. TiO2 scaffolds in peri‐implant dehiscence defects: an experimental pilot study. Clin Oral Implants Res. 2016;27(10):1200‐1206. doi:10.1111/clr.12725
    1. Verket A, Tiainen H, Haugen HJ, Lyngstadaas SP, Nilsen O, Reseland JE. Enhanced osteoblast differentiation on scaffolds coated with TiO2 compared to SiO2 and CaP coatings. Biointerphases. 2012;7(1‐4):36. doi:10.1007/s13758-012-0036-8
    1. Araújo MG, Liljenberg B, Lindhe J. Dynamics of Bio‐Oss® Collagen incorporation in fresh extraction wounds: an experimental study in the dog. Clinical oral implants research. 2010;21(1):55‐64. doi:10.1111/j.1600-0501.2009.01854.x
    1. Lindhe J, Araújo MG, Bufler M, Liljenberg B. Biphasic alloplastic graft used to preserve the dimension of the edentulous ridge: an experimental study in the dog. Clinical oral implants research. 2013;24(10):1158‐1163. doi:10.1111/j.1600-0501.2012.02527.x
    1. Ortiz‐Vigón A, Martinez‐Villa S, Suarez I, Vignoletti F, Sanz M. Histomorphometric and immunohistochemical evaluation of collagen containing xenogeneic bone blocks used for lateral bone augmentation in staged implant placement. Int J Implant Dent. 2017;3(1):24. doi:10.1186/s40729-017-0087-1
    1. Mark MP, Butler WT, Prince CW, Finkelman RD, Ruch J‐V. Developmental expression of 44‐kDa bone phosphoprotein (osteopontin) and bone γ‐carboxyglutamic acid (Gla)‐containing protein (osteocalcin) in calcifying tissues of rat. Differentiation. 1988;37(2):123‐136. doi:10.1111/j.1432-0436.1988.tb00804.x
    1. Mark MP, Prince CW, Oosawa T, Gay S, Bronckers AL, Butler WT. Immunohistochemical demonstration of a 44‐KD phosphoprotein in developing rat bones. Journal of Histochemistry & Cytochemistry. 1987;35(7):707‐715. doi:10.1177/35.7.3295029
    1. Reinholt FP, Hultenby K, Oldberg A, Heinegård D. Osteopontin‐‐a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A. 1990;87(12):4473‐5. doi:10.1073/pnas.87.12.447
    1. Trombelli L, Lee MB, Promsudthi A, Guglielmoni PG, Wikesjo UM. Periodontal repair in dogs: histologic observations of guided tissue regeneration with a prostaglandin E1 analog/methacrylate composite. J Clin Periodontol. 1999;26(6):381‐387. doi:10.1034/j.1600-051x.1999.260608.x
    1. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672‐676. doi:10.1097/00006534-198805000-00004
    1. Lundgren D, Lundgren AK, Sennerby L, Nyman S. Augmentation of intramembraneous bone beyond the skeletal envelope using an occlusive titanium barrier. An experimental study in the rabbit. Clin Oral Implants Res. 1995;6(2):67‐72. doi:10.1034/j.1600-0501.1995.060201.x
    1. Bragger U, Pasquali L, Kornman KS. Remodelling of interdental alveolar bone after periodontal flap procedures assessed by means of computer‐assisted densitometric image analysis (CADIA). J Clin Periodontol. 1988;15(9):558‐564. doi:10.1111/j.1600-051x.1988.tb02129.x
    1. Mir‐Mari J, Wui H, Jung RE, Hämmerle CH, Benic GI. Influence of blinded wound closure on the volume stability of different GBR materials: an in vitro cone‐beam computed tomographic examination. Clin Oral Implants Res. 2016;27(2):258‐265. doi:10.1111/clr.12590
    1. Mertens C, Braun S, Krisam J, Hoffmann J. The influence of wound closure on graft stability: an in vitro comparison of different bone grafting techniques for the treatment of one‐wall horizontal bone defects. Clin Implant Dent Relat Res. 2019;21(2):284‐291. doi:10.1111/cid.12728
    1. Sanz‐Sanchez I, Ortiz‐Vigon A, Sanz‐Martin I, Figuero E, Sanz M. Effectiveness of lateral bone augmentation on the alveolar crest dimension: a systematic review and meta‐analysis. J Dent Res. 2015;94(9 Suppl):128s‐142s. doi:10.1177/0022034515594780
    1. Schwarz F, Herten M, Ferrari D, et al. Guided bone regeneration at dehiscence‐type defects using biphasic hydroxyapatite + beta tricalcium phosphate (bone ceramic) or a collagen‐coated natural bone mineral (Bio‐Oss collagen): an immunohistochemical study in dogs. Int J Oral Maxillofac Surg. 2007;36(12):1198‐1206. doi:10.1016/j.ijom.2007.07.014
    1. Cha JK, Pla R, Vignoletti F, Jung UW, Sanz‐Esporrin J, Sanz M. Immunohistochemical characteristics of lateral bone augmentation using different biomaterials around chronic peri‐implant dehiscence defects: an experimental in vivo study. Clin Oral Implants Res. 2021;32(5):569‐580. doi:10.1111/clr.13726
    1. Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci. 2007;12(8):3068‐3092. doi:10.2741/2296
    1. Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The sage‐Schliff (sawing and grinding) technique. J Oral Pathol. 1982;11(4):318‐326. doi:10.1111/j.1600-0714.1982.tb00172.x
    1. Kunert‐Keil C, Richter H, Zeidler‐Rentzsch I, Bleeker I, Gredes T. Histological comparison between laser microtome sections and ground specimens of implant‐containing tissues. Ann Anat. 2019;222:153‐157. doi:10.1016/j.aanat.2018.12.001
    1. Russell WMS, Burch RL. The Principles of Humane Experimental Technique. Methuen; 1959.

Source: PubMed

3
Abonnere