Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes

Andrea Mario Bolla, Amelia Caretto, Andrea Laurenzi, Marina Scavini, Lorenzo Piemonti, Andrea Mario Bolla, Amelia Caretto, Andrea Laurenzi, Marina Scavini, Lorenzo Piemonti

Abstract

Low-carb and ketogenic diets are popular among clinicians and patients, but the appropriateness of reducing carbohydrates intake in obese patients and in patients with diabetes is still debated. Studies in the literature are indeed controversial, possibly because these diets are generally poorly defined; this, together with the intrinsic complexity of dietary interventions, makes it difficult to compare results from different studies. Despite the evidence that reducing carbohydrates intake lowers body weight and, in patients with type 2 diabetes, improves glucose control, few data are available about sustainability, safety and efficacy in the long-term. In this review we explored the possible role of low-carb and ketogenic diets in the pathogenesis and management of type 2 diabetes and obesity. Furthermore, we also reviewed evidence of carbohydrates restriction in both pathogenesis of type 1 diabetes, through gut microbiota modification, and treatment of type 1 diabetes, addressing the legitimate concerns about the use of such diets in patients who are ketosis-prone and often have not completed their growth.

Keywords: carbohydrates; diabetes; dietary patterns; ketogenic; nutritional intervention.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. International Diabetes Federation IDF Diabetes Atlas, 8th ed. Brussels, Belgium: International Diabetes Federation. [(accessed on 31 March 2019)];2017 Available online: .
    1. Ioannidis J.P.A. The challenge of reforming nutritional epidemiologic research. JAMA. 2018;320:969–970. doi: 10.1001/jama.2018.11025.
    1. American Diabetes Association 5. Lifestyle Management: Standards of Medical Care in Diabetes—2019. Diabetes Care. 2019;42(Suppl. S1):S46–S60. doi: 10.2337/dc19-S005.
    1. Hussain T.A., Mathew T.C., Dashti A.A., Asfar S., Al-Zaid N., Dashti H.M. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28:1016–1021. doi: 10.1016/j.nut.2012.01.016.
    1. Brouns F. Overweight and diabetes prevention: Is a low-carbohydrate–high-fat diet recommendable? Eur. J. Nutr. 2018;57:1301–1312. doi: 10.1007/s00394-018-1636-y.
    1. Hamdy O., Tasabehji M.W., Elseaidy T., Tomah S., Ashrafzadeh S., Mottalib A. Fat versus carbohydrate-based energy-restricted diets for weight loss in patients with type 2 diabetes. Curr. Diab. Rep. 2018;18:128. doi: 10.1007/s11892-018-1103-4.
    1. Adam-Perrot A., Clifton P., Brouns F. Low-carbohydrate diets: Nutritional and physiological aspects. Obes. Rev. 2006;7:49–58. doi: 10.1111/j.1467-789X.2006.00222.x.
    1. Abbasi J. Interest in the Ketogenic diet grows for weight loss and type 2 diabetes. JAMA. 2018;319:215–217. doi: 10.1001/jama.2017.20639.
    1. Paoli A., Rubini A., Volek J.S., Grimaldi K.A. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic ) diets. Eur. J. Clin. Nutr. 2013;67:789–796. doi: 10.1038/ejcn.2013.116.
    1. Neal E.G., Chaffe H., Schwartz R.H., Lawson M.S., Edwards N., Fitzsimmons G., Whitney A., Cross J.H. The ketogenic diet for the treatment of childhood epilepsy: A randomised controlled trial. Lancet Neurol. 2008;7:500–506. doi: 10.1016/S1474-4422(08)70092-9.
    1. Winesett S.P., Bessone S.K., Kossoff E.H. The ketogenic diet in pharmacoresistant childhood epilepsy. Expert Rev. Neurother. 2015;15:621–628.
    1. Veggiotti P., De Giorgis V. Dietary treatments and new therapeutic perspective in GLUT1 deficiency syndrome. Curr. Treat. Options Neurol. 2014;16:291. doi: 10.1007/s11940-014-0291-8.
    1. Schwartz M.W., Seeley R.J., Zeltser L.M., Drewnowski A., Ravussin E., Redman L.M., Leibel R.L. Obesity pathogenesis: An endocrine society scientific statement. Endocr. Rev. 2017;38:267–296.
    1. Ludwig D.S., Ebbeling C.B. The carbohydrate-insulin model of obesity: Beyond “Calories In, Calories Out”. JAMA Intern. Med. 2018;178:1098–1103. doi: 10.1001/jamainternmed.2018.2933.
    1. Leibel R.L., Rosenbaum M., Hirsch J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 1995;332:621–628. doi: 10.1056/NEJM199503093321001.
    1. Ludwig D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA. 2002;287:2414–2423. doi: 10.1001/jama.287.18.2414.
    1. Wolever T.M., Bolognesi C. Prediction of glucose and insulin responses of normal subjects after consuming mixed meals varying in energy, protein, fat, carbohydrate and glycemic index. J. Nutr. 1996;126:2807–2812.
    1. Accurso A., Bernstein R.K., Dahlqvist A., Draznin B., Feinman R.D., Fine E.J., Gleed A., Jacobs D.B., Larson G., Lustig R.H., et al. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: Time for a critical appraisal. Nutr. MeTable. 2008;5:9. doi: 10.1186/1743-7075-5-9.
    1. Roberts M.N., Wallace M.A., Tomilov A.A., Zhou Z., Marcotte G.R., Tran D., Perez G., Gutierrez-Casado E., Koike S., Knotts T.A., et al. A ketogenic diet extends longevity and healthspan in adult mice short article a ketogenic diet extends longevity and healthspan in adult mice. Cell MeTable. 2017;26:539–546. doi: 10.1016/j.cmet.2017.08.005.
    1. Yamazaki T., Okawa S., Takahashi M. The effects on weight loss and gene expression in adipose and hepatic tissues of very-low carbohydrate and low-fat isoenergetic diets in diet-induced obese mice. Nutr. MeTable. 2016;13:78. doi: 10.1186/s12986-016-0139-1.
    1. Kabir M., Rizkalla S.W., Champ M., Luo J., Boillot J., Bruzzo F., Slama G. Dietary amylose-amylopectin starch content affects glucose and lipid metabolism in adipocytes of normal and diabetic rats. J. Nutr. 1998;128:35–43. doi: 10.1093/jn/128.1.35.
    1. Kabir M., Rizkalla S.W., Quignard-Boulangé A., Guerre-Millo M., Boillot J., Ardouin B., Luo J., Slama G. A high glycemic index starch diet affects lipid storage-related enzymes in normal and to a lesser extent in diabetic rats. J. Nutr. 1998;128:1878–1883. doi: 10.1093/jn/128.11.1878.
    1. Lerer-Metzger M., Rizkalla S.W., Luo J., Champ M., Kabir M., Bruzzo F., Bornet F., Slama G. Effects of long-term low-glycaemic index starchy food on plasma glucose and lipid concentrations and adipose tissue cellularity in normal and diabetic rats. Br. J. Nutr. 1996;75:723–732. doi: 10.1079/BJN19960176.
    1. Pawlak D.B., Kushner J.A., Ludwig D.S. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet. 2004;364:778–785. doi: 10.1016/S0140-6736(04)16937-7.
    1. Ellenbroek J.H., van Dijck L., Töns H.A., Rabelink T.J., Carlotti F., Ballieux B.E.P.B., de Koning E.J.P. Long-term ketogenic diet causes glucose intolerance and reduced β- and α-cell mass but no weight loss in mice. Am. J. Physiol. Endocrinol. MeTable. 2014;306:E552–E558. doi: 10.1152/ajpendo.00453.2013.
    1. Astley C.M., Todd J.N., Salem R.M., Vedantam S., Ebbeling C.B., Huang P.L., Ludwig D.S., Hirschhorn J.N., Florez J.C. Genetic evidence that carbohydrate-stimulated insulin secretion leads to obesity. Clin. Chem. 2018;64:192–200. doi: 10.1373/clinchem.2017.280727.
    1. Le Stunff C., Fallin D., Schork N.J., Bougnères P. The insulin gene VNTR is associated with fasting insulin levels and development of juvenile obesity. Nat. Genet. 2000;26:444–446. doi: 10.1038/82579.
    1. Shungin D., Winkler T.W., Croteau-Chonka D.C., Ferreira T., Locke A.E., Mägi R., Strawbridge R.J., Pers T.H., Fischer K., Justice A.E., et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–196.
    1. Locke A.E., Kahali B., Berndt S.I., Justice A.E., Pers T.H., Day F.R., Powell C., Vedantam S., Buchkovich M.L., Yang J., et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.
    1. Hall K.D., Guyenet S.J., Leibel R.L. The carbohydrate-insulin model of obesity is difficult to reconcile with current evidence. JAMA Intern. Med. 2018;178:1103–1105. doi: 10.1001/jamainternmed.2018.2920.
    1. Shai I., Schwarzfuchs D., Henkin Y., Shahar D.R., Witkow S., Greenberg I., Golan R., Fraser D., Bolotin A., Vardi H., et al. Dietary Intervention Randomi, zed Controlled Trial (DIRECT) group. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 2008;359:229–241. doi: 10.1056/NEJMoa0708681.
    1. Mansoor N., Vinknes K.J., Veierød M.B., Retterstøl K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2016;115:466–479. doi: 10.1017/S0007114515004699.
    1. Larsen T.M., Dalskov S.-M., van Baak M., Jebb S.A., Papadaki A., Pfeiffer A.F.H., Martinez J.A., Handjieva-Darlenska T., Kunešová M., Pihlsgård M., et al. Diet, obesity, and genes (Diogenes) project. diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 2010;363:2102–2113. doi: 10.1056/NEJMoa1007137.
    1. Gardner C.D., Trepanowski J.F., Del Gobbo L.C., Hauser M.E., Rigdon J., Ioannidis J.P.A., Desai M., King A.C. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS randomized clinical trial. JAMA. 2018;319:667–679. doi: 10.1001/jama.2018.0245.
    1. Ebbeling C.B., Feldman H.A., Klein G.L., Wong J.M.W., Bielak L., Steltz S.K., Luoto P.K., Wolfe R.R., Wong W.W., Ludwig D.S. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: Randomized trial. BMJ. 2018;363:k4583. doi: 10.1136/bmj.k4583.
    1. Dehghan M., Mente A., Zhang X., Swaminathan S., Li W., Mohan V., Iqbal R., Kumar R., Wentzel-Viljoen E., Rosengren A., et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet. 2017;390:2050–2062. doi: 10.1016/S0140-6736(17)32252-3.
    1. Ravichandran M., Grandl G., Ristow M. Dietary carbohydrates impair healthspan and promote mortality. Cell MeTable. 2017;26:585–587. doi: 10.1016/j.cmet.2017.09.011.
    1. Mann J., Meerpohl J., Nishida C., McLean R., Te Morenga L. Associations of fats and carbohydrates with cardiovascular disease and mortality—PURE and simple? Lancet. 2018;391:1676. doi: 10.1016/S0140-6736(18)30804-3.
    1. Reynolds A.N. Associations of fats and carbohydrates with cardiovascular disease and mortality—PURE and simple? Lancet. 2018;391:1676. doi: 10.1016/S0140-6736(18)30845-6.
    1. Miller V., Mente A., Dehghan M., Rangarajan S., Zhang X., Swaminathan S., Dagenais G., Gupta R., Mohan V., Lear S., et al. Prospective Urban Rural Epidemiology (PURE) study investigators. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. Lancet. 2017;390:2037–2049. doi: 10.1016/S0140-6736(17)32253-5.
    1. Kahleova H., Crosby L., Levin S., Barnard N.D. Associations of fats and carbohydrates with cardiovascular disease and mortality-PURE and simple? Lancet (London, England) 2018;391:1676–1677. doi: 10.1016/S0140-6736(18)30805-5.
    1. Hjorth M.F., Ritz C., Blaak E.E., Saris W.H., Langin D., Poulsen S.K., Larsen T.M., Sørensen T.I., Zohar Y., Astrup A. Pretreatment fasting plasma glucose and insulin modify dietary weight loss success: Results from 3 randomized clinical trials. Am. J. Clin. Nutr. 2017;106:499–505. doi: 10.3945/ajcn.117.155200.
    1. Chambers E.S., Byrne C.S., Frost G. Carbohydrate and human health: Is it all about quality? Lancet. 2019;393:384–386. doi: 10.1016/S0140-6736(18)32468-1.
    1. Seidelmann S.B., Claggett B., Cheng S., Henglin M., Shah A., Steffen L.M., Folsom A.R., Rimm E.B., Willett W.C., Solomon S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Heal. 2018;3:e419–e428. doi: 10.1016/S2468-2667(18)30135-X.
    1. Reynolds A., Mann J., Cummings J., Winter N., Mete E., Te Morenga L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet. 2019;393:434–445. doi: 10.1016/S0140-6736(18)31809-9.
    1. Wang L.L., Wang Q., Hong Y., Ojo O., Jiang Q., Hou Y.Y., Huang Y.H., Wang X.H. The effect of low-carbohydrate diet on glycemic control in patients with type 2 diabetes mellitus. Nutrients. 2018;10:e661. doi: 10.3390/nu10060661.
    1. Tay J., Luscombe-Marsh N.D., Thompson C.H., Noakes M., Buckley J.D., Wittert G.A., Yancy W.S.Jr., Brinkworth G.D. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: A randomized trial. Am. J. Clin. Nutr. 2015;102:780–790. doi: 10.3945/ajcn.115.112581.
    1. Tay J., Thompson C.H., Luscombe-Marsh N.D., Wycherley T.P., Noakes M., Buckley J.D., Wittert G.A., Yancy W.S., Brinkworth G.D. Effects of an energy-restricted low-carbohydrate, high unsaturated fat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: A 2-year randomized clinical trial. Diabetes Obes. MeTable. 2018;20:858–871. doi: 10.1111/dom.13164.
    1. Von Bibra H., Wulf G., St John Sutton M., Pfützner A., Schuster T., Heilmeyer P. Low-carbohydrate/high-protein diet improves diastolic cardiac function and the metabolic syndrome in overweight-obese patients with type 2 diabetes. IJC Metab. Endocr. 2014;2:11–18. doi: 10.1016/j.ijcme.2013.12.001.
    1. Goday A., Bellido D., Sajoux I., Crujeiras A.B., Burguera B., García-Luna P.P., Oleaga A., Moreno B., Casanueva F.F. Short-Term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutr. Diabetes. 2016;6:e230. doi: 10.1038/nutd.2016.36.
    1. Willi S.M., Martin K., Datko F.M., Brant B.P. Treatment of type 2 diabetes in childhood using a very-low-calorie diet. Diabetes Care. 2004;27:348–353. doi: 10.2337/diacare.27.2.348.
    1. Saslow L.R., Kim S., Daubenmier J.J., Moskowitz J.T., Phinney S.D., Goldman V., Murphy E.J., Cox R.M., Moran P., Hecht F.M. A randomized pilot trial of a moderate carbohydrate diet compared to a very low carbohydrate diet in overweight or obese individuals with type 2 diabetes mellitus or prediabetes. PLoS One. 2014;9:e91027. doi: 10.1371/journal.pone.0091027.
    1. Saslow L.R., Mason A.E., Kim S., Goldman V., Ploutz-Snyder R., Bayandorian H., Daubenmier J., Hecht F.M., Moskowitz J.T. An online intervention comparing a very low-carbohydrate ketogenic diet and lifestyle recommendations versus a plate method diet in overweight individuals with type 2 diabetes: a randomized controlled trial. J. Med. Internet Res. 2017;19:e36. doi: 10.2196/jmir.5806.
    1. Hallberg S.J., McKenzie A.L., Williams P.T., Bhanpuri N.H., Peters A.L., Campbell W.W., Hazbun T.L., Volk B.M., McCarter J.P., Phinney S.D., et al. Effectiveness and Safety of a novel care model for the management of type 2 diabetes at 1 year: An open-label, non-randomized, controlled study. Diabetes Ther. 2018;9:583–612. doi: 10.1007/s13300-018-0373-9.
    1. Vilar-Gomez E., Athinarayanan S.J., Adams R.N., Hallberg S.J., Bhanpuri N.H., Mckenzie A.L., Campbell W.W., Mccarter J.P., Phinney S.D., Volek J.S., et al. Post hoc analyses of surrogate markers of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis in patients with type 2 diabetes in a digitally supported continuous care intervention: An open-label, non-randomised controlled study. BMJ Open. 2019;9:e023597. doi: 10.1136/bmjopen-2018-023597.
    1. Bhanpuri N.H., Hallberg S.J., Williams P.T., McKenzie A.L., Ballard K.D., Campbell W.W., McCarter J.P., Phinney S.D., Volek J.S. Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: An open label, non-randomized, controlled study. Cardiovasc. Diabetol. 2018;17:56. doi: 10.1186/s12933-018-0698-8.
    1. Athinarayanan S.J., Adams R.N., Hallberg S.J., Mckenzie A.L., Bhanpuri N.H., Campbell W.W., Volek J.S., Phinney S.D., Mccarter J.P. Long-term effects of a novel continuous remote care intervention including nutritional ketosis for the management of type 2 diabetes: a 2-year non-randomized clinical trial. BioRxiv. 2018. Under review.
    1. Sainsbury E., Kizirian N.V., Partridge S.R., Gill T., Colagiuri S., Gibson A.A. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2018;139:239–252. doi: 10.1016/j.diabres.2018.02.026.
    1. Esposito K., Maiorino M.I., Petrizzo M., Bellastella G., Giugliano D. The effects of a Mediterranean diet on the need for diabetes drugs and remission of newly diagnosed type 2 diabetes: Follow-up of a randomized trial. Diabetes Care. 2014;37:1824–1830. doi: 10.2337/dc13-2899.
    1. Esposito K., Maiorino M.I., Bellastella G., Chiodini P., Panagiotakos D., Giugliano D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses. BMJ Open. 2015;5:e008222. doi: 10.1136/bmjopen-2015-008222.
    1. Gomez-Marin B., Gomez-Delgado F., Lopez-Moreno J., Alcala-Diaz J.F., Jimenez-Lucena R., Torres-Peña J.D., Garcia-Rios A., Ortiz-Morales A.M., Yubero-Serrano E.M., del Mar Malagon M., et al. Long-term consumption of a Mediterranean diet improves postprandial lipemia in patients with type 2 diabetes: The Cordioprev randomized trial. Am. J. Clin. Nutr. 2018;108:963–970. doi: 10.1093/ajcn/nqy144.
    1. Azadbakht L., Fard N.R.P., Karimi M., Baghaei M.H., Surkan P.J., Rahimi M., Esmaillzadeh A., Willett W.C. Effects of the Dietary Approaches to Stop Hypertension (DASH) Eating plan on cardiovascular risks among type 2 diabetic patients: A randomized crossover clinical trial. Diabetes Care. 2010;34:55–57. doi: 10.2337/dc10-0676.
    1. Jung C.H., Choi K.M. Impact of high-carbohydrate diet on metabolic parameters in patients with type 2 diabetes. Nutrients. 2017;9:e322. doi: 10.3390/nu9040322.
    1. Forouhi N.G., Misra A., Mohan V., Taylor R., Yancy W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ. 2018;361:k2234. doi: 10.1136/bmj.k2234.
    1. Davies M.J., Alessio D.A.D., Fradkin J., Kernan W.N., Mathieu C., Mingrone G., Rossing P., Tsapas A., Wexler D.J., Buse J.B. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA ) and the European Association for the Study of Diabetes ( EASD ) Diabetologia. 2018;41:2669–2701.
    1. Handelsman Y., Henry R.R., Bloomgarden Z.T., Dagogo-Jack S., DeFronzo R.A., Einhorn D., Ferrannini E., Fonseca V.A., Garber A.J., Grunberger G., et al. American association of clinical endocrinologists and american college of endocrinology position statement on the association of sglt-2 inhibitors and diabetic ketoacidosis. Endocr. Pract. 2016;22:753–762. doi: 10.4158/.
    1. Vaarala O., Atkinson M. a., Neu J. The “perfect storm” for type 1 diabetes: The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes. 2008;57:2555–2562. doi: 10.2337/db08-0331.
    1. Petta I., Fraussen J., Somers V., Kleinewietfeld M. Interrelation of diet, gut microbiome, and autoantibody production. Front. Immunol. 2018;9:439. doi: 10.3389/fimmu.2018.00439.
    1. Conlon M.A., Bird A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2015;7:17–44. doi: 10.3390/nu7010017.
    1. Mariño E., Richards J.L., McLeod K.H., Stanley D., Yap Y.A., Knight J., McKenzie C., Kranich J., Oliveira A.C., Rossello F.J., et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 2017;18:552–562. doi: 10.1038/ni.3713.
    1. Pellegrini S., Sordi V., Bolla A.M., Saita D., Ferrarese R., Canducci F., Clementi M., Invernizzi F., Mariani A., Bonfanti R., et al. Duodenal mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and microbiota. J. Clin. Endocrinol. Metab. 2017;102:1468–1477. doi: 10.1210/jc.2016-3222.
    1. De Goffau M.C., Luopajärvi K., Knip M., Ilonen J., Ruohtula T., Härkönen T., Orivuori L., Hakala S., Welling G.W., Harmsen H.J., Vaarala O. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013;62:1238–1244. doi: 10.2337/db12-0526.
    1. Endesfelder D., Engel M., Davis-Richardson A.G., Ardissone A.N., Achenbach P., Hummel S., Winkler C., Atkinson M., Schatz D., Triplett E., et al. Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production. Microbiome. 2016;4:17. doi: 10.1186/s40168-016-0163-4.
    1. Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B., Nakamura M., Zhu T.H., et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017;15:73.
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. Ley R., Bäckhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Moschen A.R., Wieser V., Tilg H. Dietary factors: Major regulators of the Gut’s microbiota. Gut Liver. 2012;6:411–416. doi: 10.5009/gnl.2012.6.4.411.
    1. Agans R., Gordon A., Kramer D.L., Perez-Burillo S., Rufián-Henares J.A., Paliy O. Dietary Fatty acids sustain the growth of the human gut microbiota. Appl. Environ. Microbiol. 2018;84 doi: 10.1128/AEM.01525-18.
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107.
    1. Russell W.R., Gratz S.W., Duncan S.H., Holtrop G., Ince J., Scobbie L., Duncan G., Johnstone A.M., Lobley G.E., Wallace R.J., et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 2011;93:1062–1072. doi: 10.3945/ajcn.110.002188.
    1. Choi I.Y., Lee C., Longo V.D. Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol. Cell. Endocrinol. 2017;455:4–12. doi: 10.1016/j.mce.2017.01.042.
    1. Cheng C.-W., Villani V., Buono R., Wei M., Kumar S., Yilmaz O.H., Cohen P., Sneddon J.B., Perin L., Longo V.D. Fasting-mimicking diet promotes ngn3-driven β-cell regeneration to reverse diabetes. Cell. 2017;168:775–788. doi: 10.1016/j.cell.2017.01.040.
    1. Osler W., McCrae T. The principles and practice of medicine. Appleton and Company; New York, NY, USA: London, UK: 1921.
    1. Foster N.C., Beck R.W., Miller K.M., Clements M.A., Rickels M.R., DiMeglio L.A., Maahs D.M., Tamborlane W.V., Bergenstal R., Smith E., et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol. Ther. 2019;21:66–72. doi: 10.1089/dia.2018.0384.
    1. DAFNE Study Group Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: Dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ. 2002;325:746. doi: 10.1136/bmj.325.7367.746.
    1. Bell K.J., King B.R., Shafat A., Smart C.E. The relationship between carbohydrate and the mealtime insulin dose in type 1 diabetes. J. Diabetes Complications. 2015;29:1323–1329. doi: 10.1016/j.jdiacomp.2015.08.014.
    1. Feinman R.D., Pogozelski W.K., Astrup A., Bernstein R.K., Fine E.J., Westman E.C., Accurso A., Frassetto L., Gower B.A., McFarlane S.I., et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition. 2015;31:1–13. doi: 10.1016/j.nut.2014.06.011.
    1. Krebs J.D., Parry Strong A., Cresswell P., Reynolds A.N., Hanna A., Haeusler S. A randomised trial of the feasibility of a low carbohydrate diet vs standard carbohydrate counting in adults with type 1 diabetes taking body weight into account. Asia Pac. J. Clin. Nutr. 2016;25:78–84.
    1. Turton J.L., Raab R., Rooney K.B. Low-carbohydrate diets for type 1 diabetes mellitus: A systematic review. PLoS ONE. 2018;13:e0194987. doi: 10.1371/journal.pone.0194987.
    1. Dressler A., Reithofer E., Trimmel-Schwahofer P., Klebermasz K., Prayer D., Kasprian G., Rami B., Schober E., Feucht M. Type 1 diabetes and epilepsy: Efficacy and safety of the ketogenic diet. Epilepsia. 2010;51:1086–1089. doi: 10.1111/j.1528-1167.2010.02543.x.
    1. Aylward N.M., Shah N., Sellers E.A. The ketogenic diet for the treatment of myoclonic astatic epilepsy in a child with type 1 diabetes mellitus. Can. J. Diabetes. 2014;38:223–224. doi: 10.1016/j.jcjd.2014.05.002.
    1. Aguirre Castaneda R.L., Mack K.J., Lteif A. Successful treatment of type 1 diabetes and seizures with combined ketogenic diet and insulin. Pediatrics. 2012;129:e511–e514. doi: 10.1542/peds.2011-0741.
    1. Leow Z.Z.X., Guelfi K.J., Davis E.A., Jones T.W., Fournier P.A. The glycaemic benefits of a very-low-carbohydrate ketogenic diet in adults with Type 1 diabetes mellitus may be opposed by increased hypoglycaemia risk and dyslipidaemia. Diabet. Med. 2018;35:1258–1263. doi: 10.1111/dme.13663.
    1. Tóth C., Clemens Z. Type 1 diabetes mellitus successfully managed with the paleolithic ketogenic diet. Int. J. Case Reports Images. 2014;5:699. doi: 10.5348/ijcri-2014124-CR-10435.
    1. Schölin A., Nyström L., Arnqvist H., Bolinder J., Björk E., Berne C., Karlsson F.A. Diabetes Incidence Study Group in Sweden (DISS). Proinsulin/C-peptide ratio, glucagon and remission in new-onset Type 1 diabetes mellitus in young adults. Diabet. Med. 2011;28:156–161. doi: 10.1111/j.1464-5491.2010.03191.x.
    1. de Bock M., Lobley K., Anderson D., Davis E., Donaghue K., Pappas M., Siafarikas A., Cho Y.H., Jones T., Smart C. Endocrine and metabolic consequences due to restrictive carbohydrate diets in children with type 1 diabetes: An illustrative case series. Pediatr. Diabetes. 2018;19:129–137. doi: 10.1111/pedi.12527.
    1. Nielsen J.V., Gando C., Joensson E., Paulsson C. Low carbohydrate diet in type 1 diabetes, long-term improvement and adherence: A clinical audit. Diabetol. Metab. Syndr. 2012;4:23. doi: 10.1186/1758-5996-4-23.
    1. Lennerz B.S., Barton A., Bernstein R.K., Dikeman R.D., Diulus C., Hallberg S., Rhodes E.T., Ebbeling C.B., Westman E.C., Yancy W.S., et al. Management of type 1 diabetes with a very low–carbohydrate diet. Pediatrics. 2018;141:e20173349. doi: 10.1542/peds.2017-3349.
    1. Bernstein R.K. Dr. Bernstein’s Diabetes Solution: The Complete Guide to Achieving Normal Blood Sugars. 4th ed. Little, Brown & Company; Boston, MA, USA: 2011.
    1. McClean A.-M., Montorio L., McLaughlin D., McGovern S., Flanagan N. Can a ketogenic diet be safely used to improve glycaemic control in a child with type 1 diabetes? Arch. Dis. Child. 2018;104:501–504. doi: 10.1136/archdischild-2018-314973.
    1. Güntner A.T., Kompalla J.F., Landis H., Theodore S.J., Geidl B., Sievi N.A., Kohler M., Pratsinis S.E., Gerber P.A. Guiding Ketogenic Diet with Breath Acetone Sensors. Sensors (Basel) 2018;18:3655. doi: 10.3390/s18113655.
    1. Colberg S.R., Sigal R.J., Yardley J.E., Riddell M.C., Dunstan D.W., Dempsey P.C., Horton E.S., Castorino K., Tate D.F. Physical activity/exercise and diabetes: A Position statement of the american diabetes association. Diabetes Care. 2016;39:2065–2079. doi: 10.2337/dc16-1728.

Source: PubMed

3
Abonnere