Nutritional strategies to attenuate postprandial glycemic response

Kenneth Pasmans, Ruth C R Meex, Luc J C van Loon, Ellen E Blaak, Kenneth Pasmans, Ruth C R Meex, Luc J C van Loon, Ellen E Blaak

Abstract

Maintaining good glycemic control to prevent complications is crucial in people with type 2 diabetes and in people with prediabetes and in the general population. Different strategies to improve glycemic control involve the prescription of blood glucose-lowering drugs and the modulation of physical activity and diet. Interestingly, lifestyle intervention may be more effective in lowering hyperglycemia than pharmaceutical intervention. Regulation of postprandial glycemia is complex, but specific nutritional strategies can be applied to attenuate postprandial hyperglycemia. These strategies include reducing total carbohydrate intake, consuming carbohydrates with a lower glycemic index, the addition of or substitution by sweeteners and fibers, using food compounds which delay or inhibit gastric emptying or carbohydrate digestion, and using food compounds which inhibit intestinal glucose absorption. Nevertheless, it must be noted that every individual may respond differently to certain nutritional interventions. Therefore, a personalized approach is of importance to choose the optimal nutritional strategy to improve postprandial glycemia for each individual, but this requires a better understanding of the mechanisms explaining the differential responses between individuals.

Keywords: dietary fiber; postprandial hyperglycemia; type 2 diabetes; α-glucosidase inhibitor.

Conflict of interest statement

KP has received funding for conducting a study involving L‐arabinose from Sensus B.V. (Royal Cosun). LvL has received research grants, consulting fees, and speaking honoraria for work on postprandial muscle metabolism; a full overview is provided at https://www.maastrichtuniversity.nl/l.vanloon. RM and EB have no conflict of interest to declare.

© 2022 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.

References

    1. Kim MK, Han K, Park YM, et al. Associations of variability in blood pressure, glucose and cholesterol concentrations, and body mass index with mortality and cardiovascular outcomes in the general population. Circulation. 2018;138(23):2627‐2637. doi:10.1161/CIRCULATIONAHA.118.034978
    1. Jang JY, Moon S, Cho S, Cho KH, Oh CM. Visit‐to‐visit HbA1c and glucose variability and the risks of macrovascular and microvascular events in the general population. Sci Rep. 2019;9(1):1374. doi:10.1038/s41598-018-37834-7
    1. Blaak EE, Antoine JM, Benton D, et al. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev. 2012;13(10):923‐984. doi:10.1111/j.1467-789X.2012.01011.x
    1. Perreault L, Pan Q, Mather KJ, Watson KE, Hamman RF, Kahn SE. Effect of regression from prediabetes to normal glucose regulation on long‐term reduction in diabetes risk: results from the Diabetes Prevention Program Outcomes Study. Lancet. 2012;379(9833):2243‐2251. doi:10.1016/S0140-6736(12)60525-X
    1. Alssema M, Ruijgrok C, Blaak EE, et al. Effects of alpha‐glucosidase‐inhibiting drugs on acute postprandial glucose and insulin responses: a systematic review and meta‐analysis. Nutr Diabetes. 2021;11(1):11. doi:10.1038/s41387-021-00152-5
    1. Goldberg RB, Temprosa M, Haffner S, et al. Effect of progression from impaired glucose tolerance to diabetes on cardiovascular risk factors and its amelioration by lifestyle and metformin intervention: the Diabetes Prevention Program randomized trial by the Diabetes Prevention Program Research Group. Diabetes Care. 2009;32(4):726‐732. doi:10.2337/dc08-0494
    1. Kitabchi AE, Temprosa M, Knowler WC, The Diabetes Prevention Program Research Group . Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes. 2005;54(8):2404‐2414. doi:10.2337/diabetes.54.8.2404
    1. van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96‐105. doi:10.1093/ajcn/72.1.96
    1. van Loon LJ, Kruijshoop M, Menheere PP, Wagenmakers AJ, Saris WH, Keizer HA. Amino acid ingestion strongly enhances insulin secretion in patients with long‐term type 2 diabetes. Diabetes Care. 2003;26(3):625‐630. doi:10.2337/diacare.26.3.625
    1. Kim IY, Suh SH, Lee IK, Wolfe RR. Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp Mol Med. 2016;48(1):e203. doi:10.1038/emm.2015.97
    1. Bruce CR, Hamley S, Ang T, Howlett KF, Shaw CS, Kowalski GM. Translating glucose tolerance data from mice to humans: Insights from stable isotope labelled glucose tolerance tests. Mol Metab. 2021;53:101281. doi:10.1016/j.molmet.2021.101281
    1. Eelderink C, Noort MWJ, Sozer N, et al. Difference in postprandial GLP‐1 response despite similar glucose kinetics after consumption of wheat breads with different particle size in healthy men. Eur J Nutr. 2017;56(3):1063‐1076. doi:10.1007/s00394-016-1156-6
    1. Pasmans K, Meex RCR, Trommelen J, et al. L‐arabinose co‐ingestion delays glucose absorption derived from sucrose in healthy men and women: a double‐blind, randomised crossover trial. Br J Nutr. 2021;1‐10. doi:10.1017/S0007114521004153
    1. Scientific Advisory Committee on Nutrition . Carbohydrates and Health. London, England; 2015.
    1. Augustin LS, Kendall CW, Jenkins DJ, et al. Glycemic index, glycemic load and glycemic response: an International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25(9):795‐815. doi:10.1016/j.numecd.2015.05.005
    1. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta‐analyses. Lancet. 2019;393(10170):434‐445. doi:10.1016/S0140-6736(18)31809-9
    1. Zafar MI, Mills KE, Zheng J, et al. Low‐glycemic index diets as an intervention for diabetes: a systematic review and meta‐analysis. Am J Clin Nutr. 2019;110(4):891‐902. doi:10.1093/ajcn/nqz149
    1. Livesey G, Taylor R, Livesey HF, et al. Dietary glycemic index and load and the risk of type 2 diabetes: assessment of causal relations. Nutrients. 2019;11(6):1436. doi:10.3390/nu11061436
    1. Ojo O, Ojo OO, Adebowale F, Wang XH. The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: a systematic review and meta‐analysis of randomized controlled trials. Nutrients. 2018;10(3):373. doi:10.3390/nu10030373
    1. van Bakel MM, Slimani N, Feskens EJ, et al. Methodological challenges in the application of the glycemic index in epidemiological studies using data from the European Prospective Investigation into Cancer and Nutrition. J Nutr. 2009;139(3):568‐575. doi:10.3945/jn.108.097121
    1. Brouwer‐Brolsma EM, Berendsen AAM, Sluik D, et al. The glycaemic index‐food‐frequency questionnaire: development and validation of a food frequency questionnaire designed to estimate the dietary intake of glycaemic index and glycaemic load: an effort by the PREVIEW Consortium. Nutrients. 2018;11(1):13. doi:10.3390/nu11010013
    1. Ruijgrok C, Blaak EE, Egli L, et al. Reducing postprandial glucose in dietary intervention studies and the magnitude of the effect on diabetes‐related risk factors: a systematic review and meta‐analysis. Eur J Nutr. 2020;60(1):259‐273. doi:10.1007/s00394-020-02240-1
    1. Rodrigues N, Peng M, Oey I, Venn BJ. Glycaemic, uricaemic and blood pressure response to beverages with partial fructose replacement of sucrose. Eur J Clin Nutr. 2018;72(12):1717‐1723. doi:10.1038/s41430-018-0134-x
    1. Pang MD, Goossens GH, Blaak EE. The Impact of artificial sweeteners on body weight control and glucose homeostasis. Front Nutr. 2020;7:598340. doi:10.3389/fnut.2020.598340
    1. O'Connor D, Pang M, Castelnuovo G, et al. A rational review on the effects of sweeteners and sweetness enhancers on appetite, food reward and metabolic/adiposity outcomes in adults. Food Funct. 2021;12(2):442‐465. doi:10.1039/D0FO02424D
    1. van Can JG, Ijzerman TH, van Loon LJ, Brouns F, Blaak EE. Reduced glycaemic and insulinaemic responses following trehalose ingestion: implications for postprandial substrate use. Br J Nutr. 2009;102(10):1395‐1399. doi:10.1017/S000711450999050X
    1. Yoshizane C, Mizote A, Yamada M, et al. Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutr J. 2017;16(1):9. doi:10.1186/s12937-017-0233-x
    1. van Can JG, van Loon LJ, Brouns F, Blaak EE. Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: implications for postprandial substrate use in impaired glucose‐tolerant subjects. Br J Nutr. 2012;108(7):1210‐1217. doi:10.1017/S0007114511006714
    1. van Can JG, Ijzerman TH, van Loon LJ, Brouns F, Blaak EE. Reduced glycaemic and insulinaemic responses following isomaltulose ingestion: implications for postprandial substrate use. Br J Nutr. 2009;102(10):1408‐1413. doi:10.1017/S0007114509990687
    1. Lina BA, Jonker D, Kozianowski G. Isomaltulose (Palatinose): a review of biological and toxicological studies. Food Chem Toxicol. 2002;40(10):1375‐1381. doi:10.1016/S0278-6915(02)00105-9
    1. Henry CJ, Kaur B, Quek RYC, Camps SG. A low glycaemic index diet incorporating isomaltulose is associated with lower glycaemic response and variability, and promotes fat oxidation in Asians. Nutrients. 2017;9(5):473. doi:10.3390/nu9050473
    1. Suraphad P, Suklaew PO, Ngamukote S, Adisakwattana S, Mäkynen K. The effect of isomaltulose together with green tea on glycemic response and antioxidant capacity: a single‐blind, crossover study in healthy subjects. Nutrients. 2017;9(5):464. doi:10.3390/nu9050464
    1. Tan WS, Tan SY, Henry CJ. Ethnic variability in glycemic response to sucrose and isomaltulose. Nutrients. 2017;9(4):347. doi:10.3390/nu9040347
    1. Rogers PJ, Appleton KM. The effects of low‐calorie sweeteners on energy intake and body weight: a systematic review and meta‐analyses of sustained intervention studies. Int J Obes (Lond). 2021;45(3):464‐478. doi:10.1038/s41366-020-00704-2
    1. Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181‐186. doi:10.1038/nature13793
    1. Lohner S, Kuellenberg de Gaudry D, Toews I, Ferenci T, Meerpohl JJ. Non‐nutritive sweeteners for diabetes mellitus. Cochrane Database Syst Rev. 2020;5(5):Cd012885. doi:10.1002/14651858.CD012885.pub2
    1. Hardy DS, Garvin JT, Xu H. Carbohydrate quality, glycemic index, glycemic load and cardiometabolic risks in the US, Europe and Asia: a dose‐response meta‐analysis. Nutr Metab Cardiovasc Dis. 2020;30(6):853‐871. doi:10.1016/j.numecd.2019.12.050
    1. Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: systematic review and meta‐analyses. PLoS Med. 2020;17(3):e1003053. doi:10.1371/journal.pmed.1003053
    1. Stephen AM, Champ MM, Cloran SJ, et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev. 2017;30(2):149‐190. doi:10.1017/S095442241700004X
    1. Tieri M, Ghelfi F, Vitale M, et al. Whole grain consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr. 2020;71(6):668‐677. doi:10.1080/09637486.2020.1715354
    1. Blaak EE, Riccardi G, Cho L. Carbohydrates: separating fact from fiction. Atherosclerosis. 2021;328:114‐123. doi:10.1016/j.atherosclerosis.2021.03.025
    1. Chutkan R, Fahey G, Wright WL, McRorie J. Viscous versus nonviscous soluble fiber supplements: mechanisms and evidence for fiber‐specific health benefits. J am Acad Nurse Pract. 2012;24(8):476‐487. doi:10.1111/j.1745-7599.2012.00758.x
    1. McRorie JW Jr, McKeown NM. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence‐based approach to resolving enduring misconceptions about insoluble and soluble fiber. J Acad Nutr Diet. 2017;117(2):251‐264. doi:10.1016/j.jand.2016.09.021
    1. Xie Y, Gou L, Peng M, Zheng J, Chen L. Effects of soluble fiber supplementation on glycemic control in adults with type 2 diabetes mellitus: a systematic review and meta‐analysis of randomized controlled trials. Clin Nutr. 2021;40(4):1800‐1810. doi:10.1016/j.clnu.2020.10.032
    1. Weickert MO, Pfeiffer AFH. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. J Nutr. 2018;148(1):7‐12. doi:10.1093/jn/nxx008
    1. The InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC‐InterAct Study and a meta‐analysis of prospective studies. Diabetologia. 2015;58(7):1394‐1408. doi:10.1007/s00125-015-3585-9
    1. Cassidy YM, McSorley EM, Allsopp PJ. Effect of soluble dietary fibre on postprandial blood glucose response and its potential as a functional food ingredient. J Funct Foods. 2018;46:423‐439. doi:10.1016/j.jff.2018.05.019
    1. Ojo O, Feng QQ, Ojo OO, Wang XH. The role of dietary fibre in modulating gut microbiota dysbiosis in patients with type 2 diabetes: a systematic review and meta‐analysis of randomised controlled trials. Nutrients. 2020;12(11):3239. doi:10.3390/nu12113239
    1. Ojo O, Ojo OO, Zand N, Wang X. The effect of dietary fibre on gut microbiota, lipid profile, and inflammatory markers in patients with type 2 diabetes: a systematic review and meta‐analysis of randomised controlled trials. Nutrients. 2021;13(6):1805. doi:10.3390/nu13061805
    1. Russell WR, Baka A, Bjorck I, et al. Impact of diet composition on blood glucose regulation. Crit Rev Food Sci Nutr. 2016;56(4):541‐590. doi:10.1080/10408398.2013.792772
    1. Wang L, Yang H, Huang H, et al. Inulin‐type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE‐assessed systematic review and dose‐response meta‐analysis of 33 randomized controlled trials. J Transl Med. 2019;17(1):410. doi:10.1186/s12967-019-02159-0
    1. Vandeputte D, Falony G, Vieira‐Silva S, et al. Prebiotic inulin‐type fructans induce specific changes in the human gut microbiota. Gut. 2017;66(11):1968‐1974. doi:10.1136/gutjnl-2016-313271
    1. Lightowler H, Thondre S, Holz A, Theis S. Replacement of glycaemic carbohydrates by inulin‐type fructans from chicory (oligofructose, inulin) reduces the postprandial blood glucose and insulin response to foods: report of two double‐blind, randomized, controlled trials. Eur J Nutr. 2018;57(3):1259‐1268. doi:10.1007/s00394-017-1409-z
    1. Gonlachanvit S, Hsu CW, Boden GH, et al. Effect of altering gastric emptying on postprandial plasma glucose concentrations following a physiologic meal in type‐II diabetic patients. Dig Dis Sci. 2003;48(3):488‐497. doi:10.1023/A:1022528414264
    1. Jones KL, Rigda RS, Buttfield MDM, et al. Effects of lixisenatide on postprandial blood pressure, gastric emptying and glycaemia in healthy people and people with type 2 diabetes. Diabetes Obes Metab. 2019;21(5):1158‐1167. doi:10.1111/dom.13633
    1. Watson LE, Phillips LK, Wu T, et al. A whey/guar “preload” improves postprandial glycaemia and glycated haemoglobin levels in type 2 diabetes: a 12‐week, single‐blind, randomized, placebo‐controlled trial. Diabetes Obes Metab. 2019;21(4):930‐938. doi:10.1111/dom.13604
    1. Horowitz M, Edelbroek MAL, Wishart JM, Straathof JW. Relationship between oral glucose tolerance and gastric emptying in normal healthy subjects. Diabetologia. 1993;36(9):857‐862. doi:10.1007/BF00400362
    1. Muller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients. 2018;10(3):275. doi:10.3390/nu10030275
    1. Steinert RE, Feinle‐Bisset C, Asarian L, Horowitz M, Beglinger C, Ghrelin GN. GLP‐1, and PYY(3‐36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev. 2017;97(1):411‐463. doi:10.1152/physrev.00031.2014
    1. Mihai BM, Mihai C, Cijevschi‐Prelipcean C, et al. Bidirectional relationship between gastric emptying and plasma glucose control in normoglycemic individuals and diabetic patients. J Diabetes Res. 2018;2018:1736959. doi:10.1155/2018/1736959
    1. Wang YT, Mohammed SD, Farmer AD, et al. Regional gastrointestinal transit and pH studied in 215 healthy volunteers using the wireless motility capsule: influence of age, gender, study country and testing protocol. Aliment Pharmacol Ther. 2015;42(6):761‐772. doi:10.1111/apt.13329
    1. Phillips LK, Deane AM, Jones KL, Rayner CK, Horowitz M. Gastric emptying and glycaemia in health and diabetes mellitus. Nat Rev Endocrinol. 2015;11(2):112‐128. doi:10.1038/nrendo.2014.202
    1. Goyal RK, Cristofaro V, Sullivan MP. Rapid gastric emptying in diabetes mellitus: Pathophysiology and clinical importance. J Diabetes Complications. 2019;33(11):107414. doi:10.1016/j.jdiacomp.2019.107414
    1. Achour L, Méance S, Briend A. Comparison of gastric emptying of a solid and a liquid nutritional rehabilitation food. Eur J Clin Nutr. 2001;55(9):769‐772. doi:10.1038/sj.ejcn.1601221
    1. Ranawana V, Henry CJK. Liquid and solid carbohydrate foods: comparative effects on glycemic and insulin responses, and satiety. Int J Food Sci Nutr. 2011;62(1):71‐81. doi:10.3109/09637486.2010.520011
    1. Peters HPF, Ravestein P, van der Hijden HTWM, Boers HM, Mela DJ. Effect of carbohydrate digestibility on appetite and its relationship to postprandial blood glucose and insulin levels. Eur J Clin Nutr. 2011;65(1):47‐54. doi:10.1038/ejcn.2010.189
    1. Collier G, O'Dea K. The effect of coingestion of fat on the glucose, insulin, and gastric inhibitory polypeptide responses to carbohydrate and protein. Am J Clin Nutr. 1983;37(6):941‐944. doi:10.1093/ajcn/37.6.941
    1. Collier G, McLean A, O'Dea K. Effect of co‐ingestion of fat on the metabolic responses to slowly and rapidly absorbed carbohydrates. Diabetologia. 1984;26(1):50‐54. doi:10.1007/BF00252263
    1. Estrich D, Ravnik A, Schlierf G, Fukayama G, Kinsell L. Effects of co‐ingestion of fat and protein upon carbohydrate‐induced hyperglycemia. Diabetes. 1967;16(4):232‐237. doi:10.2337/diab.16.4.232
    1. Gentilcore D, Chaikomin R, Jones KL, et al. Effects of fat on gastric emptying of and the glycemic, insulin, and incretin responses to a carbohydrate meal in type 2 diabetes. J Clin Endocrinol Metab. 2006;91(6):2062‐2067. doi:10.1210/jc.2005-2644
    1. Ma J, Stevens JE, Cukier K, et al. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet‐controlled type 2 diabetes. Diabetes Care. 2009;32(9):1600‐1602. doi:10.2337/dc09-0723
    1. Yu K, Ke MY, Li WH, Zhang SQ, Fang XC. The impact of soluble dietary fibre on gastric emptying, postprandial blood glucose and insulin in patients with type 2 diabetes. Asia Pac J Clin Nutr. 2014;23(2):210‐218.
    1. Boers HM, van Dijk TH, Hiemstra H, et al. Effect of fibre additions to flatbread flour mixes on glucose kinetics: a randomised controlled trial. Br J Nutr. 2017;118(10):777‐787. doi:10.1017/S0007114517002781
    1. Wolever TMS, Tosh SM, Spruill SE, et al. Increasing oat β‐glucan viscosity in a breakfast meal slows gastric emptying and reduces glycemic and insulinemic responses but has no effect on appetite, food intake, or plasma ghrelin and PYY responses in healthy humans: a randomized, placebo‐controlled, crossover trial. Am J Clin Nutr. 2020;111(2):319‐328. doi:10.1093/ajcn/nqz285
    1. Zurbau A, Noronha JC, Khan TA, Sievenpiper JL, Wolever TMS. The effect of oat β‐glucan on postprandial blood glucose and insulin responses: a systematic review and meta‐analysis. Eur J Clin Nutr. 2021;5(Supplement_2):533. doi:10.1093/cdn/nzab041_048
    1. Bergmann JF, Chassany O, Petit A, Triki R, Caulin C, Segrestaa JM. Correlation between echographic gastric emptying and appetite: influence of psyllium. Gut. 1992;33(8):1042‐1043.
    1. Karhunen LJ, Juvonen KR, Flander SM, et al. A psyllium fiber‐enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults. J Nutr. 2010;140(4):737‐744. doi:10.3945/jn.109.115436
    1. Xiao Z, Chen H, Zhang Y, et al. The effect of psyllium consumption on weight, body mass index, lipid profile, and glucose metabolism in diabetic patients: a systematic review and dose‐response meta‐analysis of randomized controlled trials. Phytother Res. 2020;34(6):1237‐1247. doi:10.1002/ptr.6609
    1. Jovanovski E, Khayyat R, Zurbau A, et al. Should viscous fiber supplements be considered in diabetes control? Results from a systematic review and meta‐analysis of randomized controlled trials. Diabetes Care. 2019;42(5):755‐766. doi:10.2337/dc18-1126
    1. Alskar O, Bagger JI, Roge RM, et al. Semimechanistic model describing gastric emptying and glucose absorption in healthy subjects and patients with type 2 diabetes. J Clin Pharmacol. 2016;56(3):340‐348. doi:10.1002/jcph.602
    1. Fadda HM, McConnell EL, Short MD, Basit AW. Meal‐induced acceleration of tablet transit through the human small intestine. Pharm Res. 2009;26(2):356‐360. doi:10.1007/s11095-008-9749-2
    1. Nguyen NQ, Debreceni TL, Burgess JE, et al. Impact of gastric emptying and small intestinal transit on blood glucose, intestinal hormones, glucose absorption in the morbidly obese. Int J Obes (Lond). 2018;42(9):1556‐1564. doi:10.1038/s41366-018-0012-6
    1. Dashty M. A quick look at biochemistry: carbohydrate metabolism. Clin Biochem. 2013;46(15):1339‐1352. doi:10.1016/j.clinbiochem.2013.04.027
    1. Derosa G, Maffioli P. α‐Glucosidase inhibitors and their use in clinical practice. Arch Med Sci. 2012;8(5):899‐906. doi:10.5114/aoms.2012.31621
    1. van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C. α‐Glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta‐analysis. Diabetes Care. 2005;28(1):154‐163. doi:10.2337/diacare.28.1.154
    1. Rosak C, Mertes G. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes Metab Syndr Obes. 2012;5:357‐367. doi:10.2147/DMSO.S28340
    1. Kato A, Zhang ZL, Wang HY, et al. Design and synthesis of labystegines, hybrid iminosugars from LAB and calystegine, as inhibitors of intestinal alpha‐glucosidases: binding conformation and interaction for ntSI. J Org Chem. 2015;80(9):4501‐4515.
    1. Kumar S, Narwal S, Kumar V, Prakash O. α‐Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev. 2011;5(9):19‐29. doi:10.4103/0973-7847.79096
    1. Yin Z, Zhang W, Feng F, Zhang Y, Kang W. α‐Glucosidase inhibitors isolated from medicinal plants. Food Sci Human Wellness. 2014;3(3):136‐174. doi:10.1016/j.fshw.2014.11.003
    1. Bell L, Lamport DJ, Butler LT, Williams CM. A study of glycaemic effects following acute anthocyanin‐rich blueberry supplementation in healthy young adults. Food Funct. 2017;8(9):3104‐3110. doi:10.1039/C7FO00724H
    1. Ercan P, El SN. Inhibitory effects of bioaccessible anthocyanins and procyanidins from apple, red grape, cinnamon on α‐amylase, α‐glucosidase and lipase. Int J Vitam Nutr Res. 2020;(1–2):1‐9. doi:10.1024/0300-9831/a000652
    1. Castro‐Acosta ML, Smith L, Miller RJ, McCarthy DI, Farrimond JA, Hall WL. Drinks containing anthocyanin‐rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J Nutr Biochem. 2016;38:154‐161. doi:10.1016/j.jnutbio.2016.09.002
    1. Kong F, Qin Y, Su Z, Ning Z, Yu S. Optimization of extraction of hypoglycemic ingredients from grape seeds and evaluation of α‐glucosidase and α‐amylase inhibitory effects in vitro. J Food Sci. 2018;83(5):1422‐1429. doi:10.1111/1750-3841.14150
    1. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. L‐arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metab Clin Exp. 1996;45(11):1368‐1374. doi:10.1016/S0026-0495(96)90117-1
    1. Shibanuma K, Degawa Y, Houda K. Determination of the transient period of the EIS complex and investigation of the suppression of blood glucose levels by L‐arabinose in healthy adults. Eur J Nutr. 2011;50(6):447‐453. doi:10.1007/s00394-010-0154-3
    1. Krog‐Mikkelsen I, Hels O, Tetens I, Holst JJ, Andersen JR, Bukhave K. The effects of L‐arabinose on intestinal sucrase activity: dose‐response studies in vitro and in humans. Am J Clin Nutr. 2011;94(2):472‐478. doi:10.3945/ajcn.111.014225
    1. Inoue S, Sanai K, Seri K. Effect of L‐arabinose on blood glucose level after ingestion of sucrose‐containing food in human. Nippon Eiyo Shokuryo Gakkaishi. 2000;53(6):243‐247. doi:10.4327/jsnfs.53.243
    1. Cohen SA. The clinical consequences of sucrase‐isomaltase deficiency. Mol Cellul Pediatr. 2016;3(1):5. doi:10.1186/s40348-015-0028-0
    1. Oku T, Murata‐Takenoshita Y, Yamazaki Y, Shimura F, Nakamura S. D‐sorbose inhibits disaccharidase activity and demonstrates suppressive action on postprandial blood levels of glucose and insulin in the rat. Nutr Res (New York, NY). 2014;34(11):961‐967. doi:10.1016/j.nutres.2014.09.009
    1. Oku T, Tanabe K, Ogawa S, Sadamori N, Nakamura S. Similarity of hydrolyzing activity of human and rat small intestinal disaccharidases. Clin Exp Gastroenterol. 2011;4:155‐161. doi:10.2147/CEG.S19961
    1. Sartorius T, Weidner A, Dharsono T, Boulier A, Wilhelm M, Schon C. Postprandial effects of a proprietary milk protein hydrolysate containing bioactive peptides in prediabetic subjects. Nutrients. 2019;11(7):1700. doi:10.3390/nu11071700
    1. Neyrinck AM, Pachikian B, Taminiau B, et al. Intestinal sucrase as a novel target contributing to the regulation of glycemia by prebiotics. PLoS ONE. 2016;11(8):e0160488. doi:10.1371/journal.pone.0160488
    1. Ait‐Omar A, Monteiro‐Sepulveda M, Poitou C, et al. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat‐fed mice. Diabetes. 2011;60(10):2598‐2607. doi:10.2337/db10-1740
    1. Johnston K, Sharp P, Clifford M, Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco‐2 cells. FEBS Lett. 2005;579(7):1653‐1657. doi:10.1016/j.febslet.2004.12.099
    1. Kwon O, Eck P, Chen S, et al. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB j. 2007;21(2):366‐377. doi:10.1096/fj.06-6620com
    1. Wang H, Fowler MI, Messenger DJ, et al. Homoisoflavonoids are potent glucose transporter 2 (GLUT2) inhibitors: a potential mechanism for the glucose‐lowering properties of Polygonatum odoratum . J Agric Food Chem. 2018;66(12):3137‐3145. doi:10.1021/acs.jafc.8b00107
    1. Kerimi A, Gauer JS, Crabbe S, et al. Effect of the flavonoid hesperidin on glucose and fructose transport, sucrase activity and glycaemic response to orange juice in a crossover trial on healthy volunteers. Br J Nutr. 2019;121(7):782‐792. doi:10.1017/S0007114519000084
    1. Castro‐Acosta ML, Stone SG, Mok JE, et al. Apple and blackcurrant polyphenol‐rich drinks decrease postprandial glucose, insulin and incretin response to a high‐carbohydrate meal in healthy men and women. J Nutr Biochem. 2017;49:53‐62. doi:10.1016/j.jnutbio.2017.07.013
    1. Manzano S, Williamson G. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco‐2 cells. Mol Nutr Food Res. 2010;54(12):1773‐1780. doi:10.1002/mnfr.201000019
    1. Alzaid F, Cheung HM, Preedy VR, Sharp PA. Regulation of glucose transporter expression in human intestinal Caco‐2 cells following exposure to an anthocyanin‐rich berry extract. PLoS ONE. 2013;8(11):e78932. doi:10.1371/journal.pone.0078932
    1. Pico J, Martínez MM. Unraveling the inhibition of intestinal glucose transport by dietary phenolics: a review. Curr Pharm des. 2019;25(32):3418‐3433. doi:10.2174/1381612825666191015154326
    1. Coe S, Ryan L. Impact of polyphenol‐rich sources on acute postprandial glycaemia: a systematic review. J Nutr Sci. 2016;5:e24. doi:10.1017/jns.2016.11
    1. Most J, Penders J, Lucchesi M, Goossens GH, Blaak EE. Gut microbiota composition in relation to the metabolic response to 12‐week combined polyphenol supplementation in overweight men and women. Eur J Clin Nutr. 2017;71(9):1040‐1045.
    1. Most J, Timmers S, Warnke I, et al. Combined epigallocatechin‐3‐gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial. Am J Clin Nutr. 2016;104(1):215‐227. doi:10.3945/ajcn.115.122937
    1. Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079‐1094. doi:10.1016/j.cell.2015.11.001
    1. Mendes‐Soares H, Raveh‐Sadka T, Azulay S, et al. Model of personalized postprandial glycemic response to food developed for an Israeli cohort predicts responses in Midwestern American individuals. Am J Clin Nutr. 2019;110:63‐75. doi:10.1093/ajcn/nqz028
    1. Mendes‐Soares H, Raveh‐Sadka T, Azulay S, et al. Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes. JAMA Netw Open. 2019;2(2):e188102. doi:10.1001/jamanetworkopen.2018.8102
    1. Hall H, Perelman D, Breschi A, et al. Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol. 2018;16(7):e2005143. doi:10.1371/journal.pbio.2005143
    1. Berry SE, Valdes AM, Drew DA, et al. Human postprandial responses to food and potential for precision nutrition. Nat Med. 2020;26(6):964‐973. doi:10.1038/s41591-020-0934-0
    1. Haldar S, Egli L, De Castro CA, et al. High or low glycemic index (GI) meals at dinner results in greater postprandial glycemia compared with breakfast: a randomized controlled trial. BMJ Open Diabetes Res Care. 2020;8(1):e001099. doi:10.1136/bmjdrc-2019-001099
    1. Morgan LM, Shi JW, Hampton SM, Frost G. Effect of meal timing and glycaemic index on glucose control and insulin secretion in healthy volunteers. Br J Nutr. 2012;108(7):1286‐1291. doi:10.1017/S0007114511006507
    1. Qian J, Scheer F. Circadian system and glucose metabolism: implications for physiology and disease. Trend Endocrinol Metab. 2016;27(5):282‐293. doi:10.1016/j.tem.2016.03.005

Source: PubMed

3
Abonnere