A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016

NIH Human Microbiome Portfolio Analysis Team, Lita Proctor, Jonathan LoTempio, Aron Marquitz, Phil Daschner, Dan Xi, Roberto Flores, Liliana Brown, Ryan Ranallo, Padma Maruvada, Karen Regan, R Dwayne Lunsford, Michael Reddy, Lis Caler, NIH Human Microbiome Portfolio Analysis Team, Lita Proctor, Jonathan LoTempio, Aron Marquitz, Phil Daschner, Dan Xi, Roberto Flores, Liliana Brown, Ryan Ranallo, Padma Maruvada, Karen Regan, R Dwayne Lunsford, Michael Reddy, Lis Caler

Abstract

The National Institutes of Health (NIH) is the primary federal government agency for biomedical research in the USA. NIH provides extensive support for human microbiome research with 21 of 27 NIH Institutes and Centers (ICs) currently funding this area through their extramural research programs. This analysis of the NIH extramural portfolio in human microbiome research briefly reviews the early history of this field at NIH, summarizes the program objectives and the resources developed in the recently completed 10-year (fiscal years 2007-2016) $215 M Human Microbiome Project (HMP) program, evaluates the scope and range of the $728 M NIH investment in extramural human microbiome research activities outside of the HMP over fiscal years 2012-2016, and highlights some specific areas of research which emerged from this investment. This analysis closes with a few comments on the technical needs and knowledge gaps which remain for this field to be able to advance over the next decade and for the outcomes of this research to be able to progress to microbiome-based interventions for treating disease and supporting health.

Keywords: Animal models; Fast Track Action Committee on Mapping the Microbiome (FTAC-MM); Human Microbiome Project (HMP); Human disease; Metagenomics; Microbiome; Microbiota; NIH funding; National Microbiome Initiative (NMI).

Conflict of interest statement

Competing interests

The authors declare that they have no competing interests. The views expressed in this manuscript are those of the authors and not of the NIH or HHS.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Annual NIH investment in human microbiome research, FY2007–2016. NIH investment for extramural human microbiome research support depicted as annual sums of all microbiome projects included in NHMPAG portfolio analysis; data for FY2007–2012 period taken from earlier portfolio analyses. The annual sum of HMP program projects shown separately from the annual sum of all non-HMP supported projects. Over FY2007–2016, the HMP awards totaled $215M and all non-HMP awards totaled $880M
Fig. 2
Fig. 2
NIH human microbiome grant awards by award type, FY2012–2016. a Depicts the sum of all NIH microbiome grants over fiscal years 2012–2016, which totaled $728M. These awards were subdivided into the four award categories of individual investigator-initiated, center, training, and meeting grants. b Depicts annual trends in the number of individual investigator-initiated awards versus awards for all of the other award categories combined
Fig. 3
Fig. 3
Annual trends in projects on the basic biology of and host/microbe interactions within the human microbiome, FY2012–2016. Annual trends in non-disease focused microbiome projects depicted; the sum of these projects over fiscal years 2012–2016 was $262M. These projects have been subdivided into four broad topics which included studies of microbial colonization of the host, physiology, and metabolism of microbial members of the microbiome, host immune system interactions with microbes, and microbial signaling between members of the microbiome and between host and microbe. Projects that focused on three additional broad topics of microbial properties were combined and depicted under “Other properties”
Fig. 4
Fig. 4
NIH projects on the role of the microbiome in specific diseases, FY2012–2016. a Depicts the sum of all disease-focused microbiome projects over fiscal years 2012–2016, which totaled $466M. These projects have been subdivided into six major ICD-10 chapter-level disease categories which included A00-B99 infectious/parasitic diseases, K00-K95 digestive diseases, C00-D49 neoplasms, J00-J99 respiratory diseases, N00-N99 genitourinary diseases, and E00-E89 endocrine/metabolic diseases. Projects that focused on 17 additional ICD-10 chapter disease categories were summed as “Other.” b Depicts annual trends in these disease-focused microbiome projects
Fig. 5
Fig. 5
Body regions investigated in microbiome projects with human cohorts, FY2012–2016. This figure depicts human cohort studies of the microbiome, which totaled $376M over fiscal years 2012–2016. Six major body regions were investigated in these studies with human cohorts, and included gastrointestinal tract, urogenital tract, lung, oral, nares, and skin. Some cohort studies included the simultaneous study of multiple body regions and were noted as “Multiple body regions.” Those studies which focused on six additional body regions or tissues (blood, ear, eye, liver, cardiovascular system, central nervous system) were combined into ‘Other’
Fig. 6
Fig. 6
Microbial features investigated in the microbiome projects, FY2012–2016. a Depicts the general microbial properties investigated in the projects, which were subdivided into three broad categories of larger microbial community interactions, specific microbe-microbe interactions in the microbial community and other microbiome properties (i.e., microbe-microbe interactions, biofilms, microbial products). b Depicts the specific microbial member(s) of the microbiome and/or microbial products which were the primary focus of the projects. The four specific categories included bacteria, bacteriophage or eukaryotic virus, interactions between multiple members in the microbiome, and other microbes (i.e., archaea or fungi) and/or specific microbial products. Some projects did not specify a particular microbe in the study
Fig. 7
Fig. 7
Annual trends in the types of microbiome and related data collected in projects, FY2012–2016. This figure depicts trends in the primary microbiome and related data collected in these projects. These data have been categorized into one of six main types and include data from 16S rRNA gene sequence analysis, data from 16S analysis combined with data from immunological analyses, data from 16S analysis combined with data from microbiome multiomic (e.g., transcriptomic, proteomic, metabolomic) analyses, data from microbiome multiomic analyses alone, and data from microbiome multiomic analyses combined with data from immunological analyses. Computational data included modeling outputs, and data from computational or statistical analyses of pre-existing data. All other data types were combined into “All other measurements”
Fig. 8
Fig. 8
Technology development in the microbiome projects, FY2012–2016. This figure depicts the three main technology categories of computational/statistical tools, experimental tools and products/devices developed in the microbiome projects, which summed $188M over fiscal years 2012–2016. a Depicts computational/statistical tool development further subdivided into methods for microbial community composition analysis, microbial and microbial community metabolic pathway/network analysis and database development. Other computational analyses were combined under “Other.” b Depicts experimental tool development further subdivided into ex vivo, in vivo or in vitro tools. c Depicts product/device development further subdivided into therapeutic, diagnostic or other products/devices

References

    1. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos A VA, et al. Bacterial diversity in human subgingival plaque. J. Bacteriol. 2001;183(12):3770–83. 10.1128/JB.183.12.3770-3783.2001
    1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J. Clinical Microbiol. 2005;43(11):5721–32. 10.1128/JCM.43.11.5721-5732.2005
    1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W, et al. The human oral microbiome. J. Bacteriol. 2010;192(19):5002–17. 10.1128/JB.00542-10
    1. Hooper LV, Falk PG, Gordon JI. Analyzing the molecular foundations of commensalism in the mouse intestine. Curr Opin Microbiol. 2000;3(1):79–85. doi: 10.1016/S1369-5274(99)00055-7.
    1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.10.1038/4441022a
    1. Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. P.N.A.S. 2006;103(26):10011–6. 10.1073/pnas.0602187103
    1. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177. 10.1371/journal.pbio.0050177
    1. Newburg DS, Walker WA. Protection of the neonate by the innate immune system of developing gut and of human milk. Ped. Res. 2007;61(1):2–8. 10.1203/01.pdr.0000250274.68571.18
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. 10.1038/nature05414
    1. National Research Council, Division on Earth and Life Studies, Board on Life Sciences, and Committee on Metagenomics. Challenges and Functional Applications: The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. National Academies Press.; 2007. 10.17226/11902
    1. Eckburg P. B., E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, et al. 2005. Diversity of the human intestinal microbial flora. Science 308 (5728): 1635–1638. 10.1126/science.1110591
    1. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9. 10.1126/science.1124234
    1. NIH Common Fund Office Human Microbiome Project website. Accessed 1 May 2018.
    1. The NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317–23. 10.1101/gr.096651.109
    1. Aagaard K, Petrosino J, Keitel W, Watson M, Katancik J, Garcia N, et al. The human microbiome project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J. 2013;27(3):1012–22. 10.1096/fj.12-220806
    1. NIH National Center for Biotechnology Information HMP Phase One BioProject website. Accessed 1 May 2018.
    1. American Type Culture Collection HMP reference strain collection website. Accessed 1 May 2018.
    1. HMP Data Analysis and Coordination Center website. Accessed 1 May 2018.
    1. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. 10.1038/nature11234
    1. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s Disease. PloS One. 2012;7(11):e49138. 10.1371/journal.pone.0049138
    1. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550(7674):61–6. 10.1038/nature23889
    1. Virginia Commonwealth University iHMP Microbiome and Preterm Birth Study project website. Accessed 1 May 2018.
    1. Broad Institute iHMP Microbiome and Inflammatory Bowel Disease Study project website. Accessed 1 May 2018.
    1. Stanford University iHMP Microbiome and Type II Diabetes Study project website. Accessed 1 May 2018.
    1. The Integrative Human Microbiome Project. The integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16(3):276–89. 10.1016/j.chom.2014.08.014
    1. Stulberg E, Fravel D, Proctor LM, Murray DM, LoTempio J, Chrisey L, et al. An assessment of US microbiome research. Nat Microbiol. 2016;1(January):15015. 10.1038/nmicrobiol.2015.15
    1. Trans-NIH Microbiome Working Group website. Accessed 1 May 2018.
    1. The 2017 NIH-wide microbiome workshop writing team. 2017 NIH-wide workshop report on 'The Human Microbiome: Emerging Themes at the Horizon of the 21st Century'. Microbiome. 2019. 10.1186/s40168-019-0627-4
    1. NIH Office of the Director Budget Office. Accessed 1 May 2018.
    1. World Health Organization International Classification of Diseases, version 10 website. Accessed 1 May 2018.
    1. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, et al. The microbiome of uncontacted Amerindians. Sci Adv. 2015; 10.1126/sciadv.1500183
    1. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Frontiers Microbiol. 2017; 10.3389/fmicb.2017.01162
    1. Schloss PD, Iverson KD, Petrosino JF, Schloss SJ. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome. 2014;2(1):25. 10.1186/2049-2618-2-25
    1. Gibbons SM, Kearney SM, Smillie CS, Alm EJ. Two dynamic regimes in the human gut microbiome. PLoS Comp Biol. 2017;13(2):e1005364. 10.1371/journal.pcbi.1005364
    1. Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713–22. 10.1038/nm.4142
    1. O’Toole PW, Jeffery IB. Microbiome–health interactions in older people. Cell Molec Life Sci CMLS. 2017;75(1):119–28. 10.1007/s00018-017-2673-z
    1. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Meth. 2015;12(10):902–3. 10.1038/nmeth.3589
    1. Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong DT, et al. Accessible, curated metagenomic data through ExperimentHub. Nat Meth. 2017;14(11):1023–4. 10.1038/nmeth.4468
    1. Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio. 2015;6(5):e01578–15. 10.1128/mBio.01578-15
    1. Aggarwala V, Liang G, Bushman FD. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mobile DNA. 2017;8(October):12. 10.1186/s13100-017-0095-y
    1. Noecker C, McNally CP, Eng A, Borenstein E. High-resolution characterization of the human microbiome. Transl Res J Lab Clin Med. 2017;179(January):7–23. 10.1016/j.trsl.2016.07.012
    1. Donia MS, Cimermancic P, Schulze CJ, Wieland-Brown LC, Martin J, Mitreva M, et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell. 2014;158(6):1402–14. 10.1016/j.cell.2014.08.032
    1. Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM, Funabashi M, et al. Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell. 2017;168(3):517–26. e18 10.1016/j.cell.2016.12.021
    1. Manor O, Borenstein E. Revised computational metagenomic processing uncovers hidden and biologically meaningful functional variation in the human microbiome. Microbiome. 2017;5(1):19. 10.1186/s40168-017-0231-4
    1. Gao C, Ganesh BP, Shi Z, Shah RR, Fultz R, Major A, et al. Gut microbe-mediated suppression of inflammation-associated colon carcinogenesis by luminal histamine production. Amer J Pathol. 2017;187(10):2323–36. 10.1016/j.ajpath.2017.06.011
    1. Ganesh BP, Hall A, Ayyaswamy S, Nelson JW, Fultz R, Major A, Haag A, et al. Diacylglycerol kinase synthesized by commensal Lactobacillus Reuteri diminishes protein kinase C phosphorylation and histamine-mediated signaling in the mammalian intestinal epithelium. Mucosal Immunol. 2017; 10.1038/mi.2017.58
    1. Wang M, Donovan SM. Human microbiota-associated swine: current progress and future opportunities. ILAR J Natl Res Counc. 2015;56(1):63–73. 10.1093/ilar/ilv006
    1. Leulier F, MacNeil LT, Lee WJ, Rawls JF, Cani PD, Schwarzer M, et al. Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health. Cell Metab. 2017;25(3):522–34. 10.1016/j.cmet.2017.02.001
    1. Auchtung JM, Robinson CD, Farrell K, Britton RA. MiniBioReactor Arrays (MBRAs) as a tool for studying C. Difficile physiology in the presence of a complex community. Meth Molec Biol. 2016;1476:235–58. 10.1007/978-1-4939-6361-4_18
    1. Park GS, Park MH, Shin W, Zhao C, Sheikh S, Oh SJ, et al. Emulating host-microbiome ecosystem of human gastrointestinal tract in vitro. Stem Cell Rev Rep. 2017;13(3):321–34. 10.1007/s12015-017-9739-z
    1. Magnúsdóttir S, Thiele I. Modeling metabolism of the human gut microbiome. Curr. Opin. Biotech. 2018;51:90–6. 10.1016/j.copbio.2017.12.005
    1. He X, McLean JS, Edlund A, Yooseph S, Hall AP, Liu SY, et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. P.N.A.S. 2014;112(1):244–249. doi: 10.1073/pnas.1419038112.
    1. Cross KL, Chirania P, Xiong W, Beall CJ, Elkins JG, Giannone RJ, et al. Insights into the evolution of host association through the isolation and characterization of a novel human periodontal pathobiont. Desulfobulbus Oralis. mBio. 2018;9(2):e02061–17. 10.1128/mBio.02061-17
    1. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–5. 10.1038/nature16504
    1. Mark-Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. P. N. A. S. 2016;113(6):E791–800.10.1073/pnas.1522149113
    1. Mark-Welch JL, Hasegawa Y, McNulty NP, Gordon JI, Borisy GG. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. P.N.A.S. 2017;114(43):E9105–14. 10.1073/pnas.1711596114
    1. Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17(5):681–9. 10.1016/j.chom.2015.03.006
    1. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016;351(6275) 10.1126/science.aad3311
    1. Gomez A, Espinoza JL, Harkins DM, Leong P, Saffery R, Bockmann M, et al. Host genetic control of the oral microbiome in health and disease. Cell Host Microbe. 2017;22(3):269–78. e3 10.1016/j.chom.2017.08.013
    1. Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017;2(February):17004. 10.1038/nmicrobiol.2017.4
    1. Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s Disease. Cell Host Microbe. 2015;18(4):489–500. 10.1016/j.chom.2015.09.008
    1. Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroent Hepat. 2017; 10.1038/nrgastro.2017.88
    1. Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science. 2018;359(6380):1156–61. 10.1126/science.aar7201
    1. Uusitalo U, Liu X, Yang J, Aronsson CA, Hummel S, Butterworth M, et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatrics. 2016;170(1):20–8. 10.1001/jamapediatrics.2015.2757
    1. Durack J, Kimes NE, Lin DL, Rauch M, McKean M, McCauley K, et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat Comm. 2018;9(1):707. 10.1038/s41467-018-03157-4
    1. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99. 10.1016/j.cell.2014.09.053
    1. Shah MS, DeSantis TZ, Weinmaier T, McMurdie PJ, Cope JL, Altrichter A, et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut. 2018;67(5):882–91. 10.1136/gutjnl-2016-313189
    1. Callahan BJ, DiGiulio DB, Goltsman DSA, Sun CL, Costello EK, et al. Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. P.N.A.S. 2017;114(37):9966–71. 10.1073/pnas.1705899114
    1. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-Carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. 10.1038/nm.3145
    1. Bennett BJ, de Aguiar-Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60. 10.1016/j.cmet.2012.12.011
    1. Kang DW, Ilhan ZE, Isern NG, Hoyt DW, Howsmon DP, Shaffer M, et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018;49(February):121–31. 10.1016/j.anaerobe.2017.12.007
    1. Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15(8):465–78. 10.1038/nrmicro.2017.44
    1. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug Gemcitabine. Science. 2017;357(6356):1156–60. 10.1126/science.aah5043
    1. Routy B, Le Chatelier E, Derosa L, Duong CPM, Tidjani Alou M, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7. 10.1126/science.aan3706
    1. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to Anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. 10.1126/science.aan4236
    1. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7. 10.1038/nature18309
    1. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14(5):273–87. 10.1038/nrmicro.2016.17
    1. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson E, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–8. 10.1038/nature25979
    1. Fodor AA, DeSantis TZ, Wylie KM, Badger JH, Ye Y, Hepburn T, et al. The ‘most wanted’ taxa from the human microbiome for whole genome sequencing. PLoS One. 2012;7(7):e41294. 10.1371/journal.pone.0041294

Source: PubMed

3
Abonnere