Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency

Alexander Pemov, Caroline Park, Karlyne M Reilly, Douglas R Stewart, Alexander Pemov, Caroline Park, Karlyne M Reilly, Douglas R Stewart

Abstract

Background: Neurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells, however the intracellular mechanisms for this tumor-promoting effect are less clear. Most primary human NF1+/- cells are a challenge to obtain, however lymphoblastoid cell lines (LCLs) have been collected from large NF1 kindreds. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells (LCLs) from NF1-affected and -unaffected individuals. As a cross-species filter for heterogeneity, we compared the results from two human kindreds to whole-genome transcriptional profiling in spleen-derived B lymphocytes from age- and gender-matched Nf1+/- and wild-type mice, and used gene set enrichment analysis (GSEA), Onto-Express, Pathway-Express and MetaCore tools to identify genes perturbed in NF1-haploinsufficiency.

Results: We observed moderate expression of NF1 in human LCLs and of Nf1 in CD19+ mouse B lymphocytes. Using the t test to evaluate individual transcripts, we observed modest expression differences in the transcriptome in NF1-haploinsufficient LCLs and Nf1-haploinsuffiicient mouse B lymphocytes. However, GSEA, Onto-Express, Pathway-Express and MetaCore analyses identified genes that control cell cycle, DNA replication and repair, transcription and translation, and immune response as the most perturbed in NF1-haploinsufficient conditions in both human and mouse.

Conclusions: Haploinsufficiency arises when loss of one allele of a gene is sufficient to give rise to disease. Haploinsufficiency has traditionally been viewed as a passive state. Our observations of perturbed, up-regulated cell cycle and DNA repair pathways may functionally contribute to NF1-haploinsufficiency as an "active state" that ultimately promotes the loss of the wild-type allele.

Figures

Figure 1
Figure 1
Quantitative PCR and western blot of the relative abundance of neurofibromin in lymphoblastoid cell lines. A) Relative abundance of NF1 mRNA in Coriell-18 and ECACC-6 sets as detected by quantitative PCR. P values of respective t tests are shown above the bar plots. B) Western blot of neurofibromin in select lymphoblastoid cell lines (LCLs). TUBB - β-tubulin. C) Relative abundance of neurofibromin in select LCLs. NF1 abundance in sample E2-U was arbitrary set at 100%; NF1 abundance in the remaining LCLs is expressed as percentage of that in E2-U.
Figure 2
Figure 2
Quantitative PCR analysis of relative abundance of Nf1 mRNA in Nf1+/- mice. A) Plot of real-time amplification of Nf1 and Gapdh mRNAs in six wild-type and six Nf1+/- mice. Samples containing no input RNA are shown as "Negative control". B) Relative abundance of Nf1 mRNA from wild-type and Nf1+/- mice. P value of the t test is shown above the bar plot.
Figure 3
Figure 3
Intersection analysis between top-ranking transcripts in human and mouse sets. Top ~5% of all transcripts from analysis of three sample sets on the Illumina platform were chosen for the intersection analysis. A) Coriell-18 and Nf1-Mouse-12 comparison; B) ECACC-6 and Nf1-Mouse-12 comparison; C) Coriell-18 and ECACC-6 comparison; D) Three-way comparison. "Mm" designates Nf1-Mouse-12 set.
Figure 4
Figure 4
Comparison of expression profiles generated by Illumina_Human_WG_v2 and spotted oligonucleotide microarrays. A) Coriell-18 samples were analyzed in parallel on two different types of microarrays: Illumina_Human_WG_v2 ("Illumina") and spotted oligonucleotide microarrays manufactured in the NHGRI core facility ("NHGRI"). Genes were ranked according to nominal P values of the t tests, and top ~5% of genes in each list were chosen for the intersection analysis; B) Bar plot represents fold difference of expression values (NF1-affecteds vs. NF1-unaffecteds) for the overlapping genes. Each overlapping transcript is represented by a pair of bars. Blue bars denote transcripts on Illumina platform; orange bars denote transcripts on the NHGRI platform. Numbers on X-axis represent transcripts in the overlap (114 total).
Figure 5
Figure 5
GSEA analysis of human and mouse expression datasets and ontological categories of LEA gene lists. Up- and down-regulated statistically significant GSEA gene sets were subjected to LEA analysis and resulting genes were grouped in related ontological categories. The pie chart diagrams of up- and down-regulated LEA genes are shown on the left and on the right, respectively. The same ontological categories are represented by the same color on the pie charts. Only the first six most abundant ontological categories are shown for each set. To save space, the following ontological categories were shortened as follows: Translation -Translation/Protein biosynthesis/Ribosome biogenesis; Transcription - Transcription/RNA processing; DNA repair - DNA repair/replication/recombination; Cell cycle - Cell cycle/Mitosis/Cytokinesis; Immune response - Immune/Defense/Antiviral/Inflammatory response.

References

    1. Knudson AG Jr. Hereditary cancer, oncogenes, and antioncogenes. Cancer Res. 1985;45(4):1437–1443.
    1. Smilenov LB. Tumor development: haploinsufficiency and local network assembly. Cancer Lett. 2006;240(1):17–28. doi: 10.1016/j.canlet.2005.08.015.
    1. Santarosa M, Ashworth A. Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim Biophys Acta. 2004;1654(2):105–122.
    1. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002;296(5569):920–922. doi: 10.1126/science.1068452.
    1. Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, Yang X, Knowles S, Horn W, Li Y. et al.Nf1-dependent tumors require a microenvironment containing Nf1 +/- - and c-kit-dependent bone marrow. Cell. 2008;135(3):437–448. doi: 10.1016/j.cell.2008.08.041.
    1. Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF, Garbow JR, Gutmann DH. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res. 2003;63(24):8573–8577.
    1. Wu M, Wallace MR, Muir D. Nf1 haploinsufficiency augments angiogenesis. Oncogene. 2006;25(16):2297–2303. doi: 10.1038/sj.onc.1209264.
    1. Kim TJ, Cariappa A, Iacomini J, Tang M, Shih S, Bernards A, Jacks T, Pillai S. Defective proliferative responses in B lymphocytes and thymocytes that lack neurofibromin. Mol Immunol. 2002;38(9):701–708. doi: 10.1016/S0161-5890(01)00101-8.
    1. Twine NC, Stover JA, Marshall B, Dukart G, Hidalgo M, Stadler W, Logan T, Dutcher J, Hudes G, Dorner AJ. et al.Disease-associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. Cancer Res. 2003;63(18):6069–6075.
    1. Sharp FR, Xu H, Lit L, Walker W, Apperson M, Gilbert DL, Glauser TA, Wong B, Hershey A, Liu DZ. et al.The future of genomic profiling of neurological diseases using blood. Arch Neurol. 2006;63(11):1529–1536. doi: 10.1001/archneur.63.11.1529.
    1. Tang Y, Gilbert DL, Glauser TA, Hershey AD, Sharp FR. Blood gene expression profiling of neurologic diseases: a pilot microarray study. Arch Neurol. 2005;62(2):210–215. doi: 10.1001/archneur.62.2.210.
    1. Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV. et al.Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. Proc Natl Acad Sci USA. 2005;102(31):11023–11028. doi: 10.1073/pnas.0504921102.
    1. Cheung VG, Ewens WJ. Heterozygous carriers of Nijmegen Breakage Syndrome have a distinct gene expression phenotype. Genome Res. 2006;16(8):973–979. doi: 10.1101/gr.5320706.
    1. Tang Y, Lu A, Ran R, Aronow BJ, Schorry EK, Hopkin RJ, Gilbert DL, Glauser TA, Hershey AD, Richtand NW. et al.Human blood genomics: distinct profiles for gender, age and neurofibromatosis type 1. Brain Res Mol Brain Res. 2004;132(2):155–167. doi: 10.1016/j.molbrainres.2003.10.014.
    1. Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet. 1994;7(3):353–361. doi: 10.1038/ng0794-353.
    1. Khatri P, Draghici S, Ostermeier GC, Krawetz SA. Profiling gene expression using onto-express. Genomics. 2002;79(2):266–270. doi: 10.1006/geno.2002.6698.
    1. Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA. Global functional profiling of gene expression. Genomics. 2003;81(2):98–104. doi: 10.1016/S0888-7543(02)00021-6.
    1. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R. A systems biology approach for pathway level analysis. Genome Res. 2007;17(10):1537–1545. doi: 10.1101/gr.6202607.
    1. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R. A novel signaling pathway impact analysis. Bioinformatics. 2009;25(1):75–82. doi: 10.1093/bioinformatics/btn577.
    1. Peltonen J, Peltonen S. In: Neurofibromatoses. Kaufman D, editor. Vol. 16. Basel:Karger; 2008. Composition of Neurofibromas, NF1 expression, and Comparison of Normal and NF1 Haploinsufficienct cells; pp. 129–142. full_text.
    1. Kemkemer R, Schrank S, Vogel W, Gruler H, Kaufmann D. Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro. Proc Natl Acad Sci USA. 2002;99(21):13783–13788. doi: 10.1073/pnas.212386999.
    1. Bajenaru ML, Donahoe J, Corral T, Reilly KM, Brophy S, Pellicer A, Gutmann DH. Neurofibromatosis 1 (NF1) heterozygosity results in a cell-autonomous growth advantage for astrocytes. Glia. 2001;33(4):314–323. doi: 10.1002/1098-1136(20010315)33:4<314::AID-GLIA1030>;2-Q.
    1. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF. et al.Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009;4(7):e6146. doi: 10.1371/journal.pone.0006146.
    1. Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, Jiao J, Rose J, Xie W, Loda M. et al.Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell. 2007;11(6):555–569. doi: 10.1016/j.ccr.2007.04.021.
    1. Cariappa A, Tang M, Parng C, Nebelitskiy E, Carroll M, Georgopoulos K, Pillai S. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity. 2001;14(5):603–615. doi: 10.1016/S1074-7613(01)00135-2.
    1. Ingram DA, Zhang L, McCarthy J, Wenning MJ, Fisher L, Yang FC, Clapp DW, Kapur R. Lymphoproliferative defects in mice lacking the expression of neurofibromin: functional and biochemical consequences of Nf1 deficiency in T-cell development and function. Blood. 2002;100(10):3656–3662. doi: 10.1182/blood-2002-03-0734.
    1. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG. Genetic analysis of genome-wide variation in human gene expression. Nature. 2004;430(7001):743–747. doi: 10.1038/nature02797.
    1. Hawes JJ, Tuskan RG, Reilly KM. Nf1 expression is dependent on strain background: implications for tumor suppressor haploinsufficiency studies. Neurogenetics. 2007;8(2):121–130. doi: 10.1007/s10048-006-0078-5.
    1. Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C, Mesirov J, Golub TR, Jacks T. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet. 2005;37(1):48–55.
    1. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J. et al.Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359(19):1995–2004. doi: 10.1056/NEJMoa0804525.
    1. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319(5868):1352–1355. doi: 10.1126/science.1140735.
    1. Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev. 2008;129(7-8):391–407. doi: 10.1016/j.mad.2008.02.012.
    1. Garza R, Hudson RA, McMahan CA, Walter CA, Vogel KS. A mild mutator phenotype arises in a mouse model for malignancies associated with neurofibromatosis type 1. Mutat Res. 2007;615(1-2):98–110.
    1. Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, Paepe AD. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat. 2000;15(6):541–555. doi: 10.1002/1098-1004(200006)15:6<541::AID-HUMU6>;2-N.
    1. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993;15(3):532–534.
    1. Topol LZ, Marx M, Laugier D, Bogdanova NN, Boubnov NV, Clausen PA, Calothy G, Blair DG. Identification of drm, a novel gene whose expression is suppressed in transformed cells and which can inhibit growth of normal but not transformed cells in culture. Mol Cell Biol. 1997;17(8):4801–4810.
    1. Topol LZ, Bardot B, Zhang Q, Resau J, Huillard E, Marx M, Calothy G, Blair DG. Biosynthesis, post-translation modification, and functional characterization of Drm/Gremlin. J Biol Chem. 2000;275(12):8785–8793. doi: 10.1074/jbc.275.12.8785.
    1. Brouwers FM, Elkahloun AG, Munson PJ, Eisenhofer G, Barb J, Linehan WM, Lenders JW, De Krijger R, Mannelli M, Udelsman R. et al.Gene expression profiling of benign and malignant pheochromocytoma. Ann N Y Acad Sci. 2006;1073:541–556. doi: 10.1196/annals.1353.058.
    1. Thouennon E, Elkahloun AG, Guillemot J, Gimenez-Roqueplo AP, Bertherat J, Pierre A, Ghzili H, Grumolato L, Muresan M, Klein M. et al.Identification of potential gene markers and insights into the pathophysiology of pheochromocytoma malignancy. J Clin Endocrinol Metab. 2007;92(12):4865–4872. doi: 10.1210/jc.2007-1253.
    1. BeadExplorer.
    1. BRB-Array Tools.
    1. Cunliffe HE, Ringner M, Bilke S, Walker RL, Cheung JM, Chen Y, Meltzer PS. The gene expression response of breast cancer to growth regulators: patterns and correlation with tumor expression profiles. Cancer Res. 2003;63(21):7158–7166.
    1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES. et al.Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102.

Source: PubMed

3
Abonnere