cis and trans elements differ among mouse strains with high and low extrahepatic complement factor B gene expression

G Garnier, B Ault, M Kramer, H R Colten, G Garnier, B Ault, M Kramer, H R Colten

Abstract

Factor B (Bf), an enzyme of the alternative pathway of complement activation, is one of four major histocompatibility complex (MHC) class III genes. To ascertain the genetic mechanism for tissue-specific constitutive and regulated expression of Bf, we sequenced the regulatory regions 5' of the gene from mice of different H-2 MHC haplotypes and assessed trans-acting factors, specific DNA binding nucleoproteins, in liver and kidney. Striking tissue-specific differences in constitutive expression of Bf were demonstrated in mice of H-2f or H-2z haplotypes when compared with H-2d or H-2u (kidney and intestinal Bf in H-2d or H-2u much greater than H-2f or H-2z). These differences correlated with a point nucleotide substitution 3 bp downstream of the upstream Bf initiation site that affects interaction with a DNA binding protein. This and additional cis differences localize the sequence substitutions responsible for previously identified restriction fragment length polymorphisms among inbred mouse strains and also reveal two previously unrecognized polymorphisms generated by SmaI and HinfI digestion. Evidence for differences in trans was found in a comparison of DNA binding nucleoproteins from kidney, but not liver, of B10.PL when compared with B10.M. These data, together with the high degree of sequence homology between human and mouse Bf 5' flanking regions, should prompt a search for polymorphic restriction sites and cis binding elements in the Bf promoter that could serve as markers of human MHC-associated renal pathology and variants in local MHC class III gene expression.

References

    1. J Clin Invest. 1988 May;81(5):1419-26
    1. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6741-4
    1. J Exp Med. 1979 Feb 1;149(2):372-86
    1. Cell. 1990 Oct 5;63(1):155-65
    1. Immunology. 1990 Oct;71(2):290-4
    1. Cell. 1990 Feb 9;60(3):375-86
    1. J Biol Chem. 1990 Feb 15;265(5):2435-40
    1. Science. 1988 Jan 29;239(4839):487-91
    1. J Immunol. 1989 Feb 15;142(4):1377-82
    1. Mol Cell Biochem. 1989 Aug 15;89(1):1-14
    1. J Biol Chem. 1985 Dec 5;260(28):15280-5
    1. Science. 1986 May 16;232(4752):850-2
    1. J Exp Med. 1988 Jan 1;167(1):1-14
    1. J Exp Med. 1988 Oct 1;168(4):1225-35
    1. J Exp Med. 1986 May 1;163(5):1349-54
    1. J Exp Med. 1987 May 1;165(5):1237-51
    1. Cell. 1986 Dec 5;47(5):767-76
    1. Cell Immunol. 1985 May;92(2):235-46
    1. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7
    1. Int Immunol. 1990;2(11):1091-5
    1. Mol Cell Biol. 1990 Dec;10(12):6283-9
    1. J Biol Chem. 1990 Nov 5;265(31):19040-6
    1. J Exp Med. 1985 Sep 1;162(3):930-42
    1. J Biol Chem. 1989 May 5;264(13):7669-74
    1. J Immunol. 1989 Jun 1;142(11):3862-7
    1. Immunogenetics. 1987;25(5):290-8
    1. J Exp Med. 1988 Nov 1;168(5):1917-22
    1. EMBO J. 1987 Feb;6(2):369-73
    1. J Clin Invest. 1988 Nov;82(5):1676-84
    1. J Immunol. 1987 Feb 1;138(3):856-60
    1. Cell. 1987 Jan 30;48(2):331-42
    1. Biochemistry. 1985 Jun 4;24(12):2931-6
    1. J Clin Invest. 1985 Sep;76(3):985-90
    1. J Immunol. 1985 Dec;135(6):3645-7
    1. DNA. 1985 Apr;4(2):165-70
    1. J Immunol. 1984 Sep;133(3):1618-26
    1. J Clin Invest. 1982 Oct;70(4):906-13
    1. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6947-51
    1. Nature. 1984 Jan 19-25;307(5948):237-41
    1. Nucleic Acids Res. 1983 Mar 11;11(5):1475-89
    1. J Exp Med. 1983 Jul 1;158(1):228-33
    1. J Immunol. 1982 Jul;129(1):332-7
    1. J Exp Med. 1982 Sep 1;156(3):834-43
    1. Anal Biochem. 1983 Jul 1;132(1):6-13
    1. Immunogenetics. 1984;20(3):321-30
    1. J Biol Chem. 1951 Nov;193(1):265-75
    1. J Exp Med. 1980 Mar 1;151(3):501-16
    1. Clin Immunol Immunopathol. 1980 May;16(1):84-9
    1. Immunology. 1982 Jun;46(2):429-41
    1. Annu Rev Biochem. 1981;50:433-64
    1. Biochemistry. 1979 Nov 27;18(24):5294-9

Source: PubMed

3
Abonnere