Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV

Rosa Di Mussi, Savino Spadaro, Lucia Mirabella, Carlo Alberto Volta, Gabriella Serio, Francesco Staffieri, Michele Dambrosio, Gilda Cinnella, Francesco Bruno, Salvatore Grasso, Rosa Di Mussi, Savino Spadaro, Lucia Mirabella, Carlo Alberto Volta, Gabriella Serio, Francesco Staffieri, Michele Dambrosio, Gilda Cinnella, Francesco Bruno, Salvatore Grasso

Abstract

Background: Prolonged controlled mechanical ventilation depresses diaphragmatic efficiency. Assisted modes of ventilation should improve it. We assessed the impact of pressure support ventilation versus neurally adjusted ventilator assist on diaphragmatic efficiency.

Method: Patients previously ventilated with controlled mechanical ventilation for 72 hours or more were randomized to be ventilated for 48 hours with pressure support ventilation (n =12) or neurally adjusted ventilatory assist (n = 13). Neuro-ventilatory efficiency (tidal volume/diaphragmatic electrical activity) and neuro-mechanical efficiency (pressure generated against the occluded airways/diaphragmatic electrical activity) were measured during three spontaneous breathing trials (0, 24 and 48 hours). Breathing pattern, diaphragmatic electrical activity and pressure time product of the diaphragm were assessed every 4 hours.

Results: In patients randomized to neurally adjusted ventilator assist, neuro-ventilatory efficiency increased from 27 ± 19 ml/μV at baseline to 62 ± 30 ml/μV at 48 hours (p <0.0001) and neuro-mechanical efficiency increased from 1 ± 0.6 to 2.6 ± 1.1 cmH2O/μV (p = 0.033). In patients randomized to pressure support ventilation, these did not change. Electrical activity of the diaphragm, neural inspiratory time, pressure time product of the diaphragm and variability of the breathing pattern were significantly higher in patients ventilated with neurally adjusted ventilatory assist. The asynchrony index was 9.48 [6.38- 21.73] in patients ventilated with pressure support ventilation and 5.39 [3.78- 8.36] in patients ventilated with neurally adjusted ventilatory assist (p = 0.04).

Conclusion: After prolonged controlled mechanical ventilation, neurally adjusted ventilator assist improves diaphragm efficiency whereas pressure support ventilation does not.

Trial registration: ClinicalTrials.gov study registration: NCT02473172, 06/11/2015.

Figures

Fig. 1
Fig. 1
Flow diagram of patient enrollment. NG naso-gastric; SBT spontaneous breathing trial, CMV controlled mechanical ventilation, NAVA adjusted ventilatory assist, EAdi diaphragm electrical activity, PSV pressure support ventilation, RR respiratory rate
Fig. 2
Fig. 2
Neuro-ventilatory efficiency (NVE) and neuro-muscular efficiency (NME) recorded during the spontaneous breathing trial at 0, 24 and 48 hours in the two groups of patients, i.e., randomized to be ventilated in neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV). The NVE and NME trends were significantly different (analysis of variance model; F = 15.32; p <0,0001 for NVE and F = 5,15; p = 0.033 for NME). *Significant difference compared to 0 hours (within-group post-hoc comparison). #Significant difference compared to 24 hours (within-group post-hoc comparison). §Significant difference compared to the same time (between-groups post-hoc comparison)
Fig. 3
Fig. 3
Main breathing pattern and diaphragm electrical activity (EAdi) parameters recorded each 4 hours in the two groups of patients, ventilated in neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV). The neural inspiratory time (TiNEUR) was significantly lower in the PSV than in the NAVA group (F = 9.85; p = 0,007). The peak diaphragm electrical activity (EAdiPEAK) was significantly higher in the NAVA than in the PSV group (F = 4.83; p = 0,045). *Significant difference between PSV and NAVA (analysis of variance model). ΔPAO assistance level (peak airway pressure – positive end-expiratory airway pressure), VT tidal volume, PBW predicted body weight, RRMECH mechanical respiratory rate, TiMECH mechanical inspiratory time
Fig. 4
Fig. 4
Inspiratory pressure–time product of the diaphragm (PTPDI) per breath (PTPDI/b) and per minute (PTPDI/min) in the two groups of patients, ventilated in neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV). Black bars denote PTPDI/b and PTPDI/minute measured during the three spontaneous breathing trials (SBT) (0, 24 and 48 hours). White bars denote PTPDI/b and PTPDI/min measured each 4 hours during assisted ventilation. During the assisted ventilation period both the PMUSC/b and the PMUSC/min were constantly higher in the NAVA than in the PSV group (analysis of variance model: for PDI/b, F = 32.64; p <0,001; for PMUSC/min, F = 39.15; p <0.001)
Fig. 5
Fig. 5
Inspiratory pressure–time product of the diaphragm per minute (PTPDI/min) in the two groups of patients, ventilated in neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV). White bars denote the PTPDI/min recorded each 4 hours during NAVA; black bars denote the PTPDI/min recorded each 4 hours during PSV. Dotted red lines denote the physiological PTPDI/min range according to a previous publication [42]

References

    1. Tobin MJ. Advances in mechanical ventilation. N Engl J Med. 2001;344(26):1986–96. doi: 10.1056/NEJM200106283442606.
    1. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35. doi: 10.1056/NEJMoa070447.
    1. Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 2012;40(4):1254–60. doi: 10.1097/CCM.0b013e31823c8cc9.
    1. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183(3):364–71. doi: 10.1164/rccm.201004-0670OC.
    1. Putensen C, Hering R, Wrigge H. Controlled versus assisted mechanical ventilation. Curr Opin Crit Care. 2002;8(1):51–7. doi: 10.1097/00075198-200202000-00009.
    1. Putensen C, Muders T, Varelmann D, Wrigge H. The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care. 2006;12(1):13–8. doi: 10.1097/01.ccx.0000198994.37319.60.
    1. Tobin MJ, Jubran A, Laghi F. Patient-ventilator interaction. Am J Respir Crit Care Med. 2001;163(5):1059–63. doi: 10.1164/ajrccm.163.5.2005125.
    1. Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med. 2008;177(2):170–7. doi: 10.1164/rccm.200706-893OC.
    1. MacIntyre NR. Respiratory function during pressure support ventilation. Chest. 1986;89(5):677–83. doi: 10.1378/chest.89.5.677.
    1. Brochard L, Pluskwa F, Lemaire F. Improved efficacy of spontaneous breathing with inspiratory pressure support. Am Rev Respir Dis. 1987;136(2):411–5. doi: 10.1164/ajrccm/136.2.411.
    1. Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory Am Rev Respir Dis. 1992;145(1):114–20. doi: 10.1164/ajrccm/145.1.114.
    1. Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34(11):2010–8. doi: 10.1007/s00134-008-1208-3.
    1. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515–22. doi: 10.1007/s00134-006-0301-8.
    1. Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Lujan M, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633–41. doi: 10.1007/s00134-015-3692-6.
    1. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433–6. doi: 10.1038/71012.
    1. Terzi N, Piquilloud L, Roze H, Mercat A, Lofaso F, Delisle S, et al. Clinical review: Update on neurally adjusted ventilatory assist--report of a round-table conference. Crit Care. 2012;16(3):225. doi: 10.1186/cc11297.
    1. Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011;37(2):263–71. doi: 10.1007/s00134-010-2052-9.
    1. Yonis H, Crognier L, Conil JM, Serres I, Rouget A, Virtos M, et al. Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): a prospective observational study. BMC Anesthesiol. 2015;15:117. doi: 10.1186/s12871-015-0091-z.
    1. Schmidt M, Kindler F, Cecchini J, Poitou T, Morawiec E, Persichini R, et al. Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. Crit Care. 2015;19:56. doi: 10.1186/s13054-015-0763-6.
    1. Liu L, Liu H, Yang Y, Huang Y, Liu S, Beck J, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients. Crit Care. 2012;16(4):R143. doi: 10.1186/cc11451.
    1. Beck J, Sinderby C, Lindstrom L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol (1985). 1998;85(3):1123–34.
    1. Vassilakopoulos T, Petrof BJ. Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004;169(3):336–41. doi: 10.1164/rccm.200304-489CP.
    1. Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O'Neal PV, Keane KA, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166(10):1338–44. doi: 10.1164/rccm.2107138.
    1. Barwing J, Ambold M, Linden N, Quintel M, Moerer O. Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med. 2009;35(10):1809–14. doi: 10.1007/s00134-009-1587-0.
    1. Bellani G, Mauri T, Coppadoro A, Grasselli G, Patroniti N, Spadaro S, et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41(6):1483–91. doi: 10.1097/CCM.0b013e31827caba0.
    1. Hedenstierna G. Esophageal pressure: benefit and limitations. Minerva Anestesiol. 2012;78(8):959–66.
    1. Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126(5):788–91.
    1. Coisel Y, Chanques G, Jung B, Constantin JM, Capdevila X, Matecki S, et al. Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology. 2010;113(4):925–35. doi: 10.1097/ALN.0b013e3181ee2ef1.
    1. Brander L, Leong-Poi H, Beck J, Brunet F, Hutchison SJ, Slutsky AS, et al. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 2009;135(3):695–703. doi: 10.1378/chest.08-1747.
    1. Passath C, Takala J, Tuchscherer D, Jakob SM, Sinderby C, Brander L. Physiologic response to changing positive end-expiratory pressure during neurally adjusted ventilatory assist in sedated, critically ill adults. Chest. 2010;138(3):578–87. doi: 10.1378/chest.10-0286.
    1. Gama de Abreu M, Belda FJ. Neurally adjusted ventilatory assist: letting the respiratory center take over control of ventilation. Intensive Care Med. 2013;39(8):1481–3. doi: 10.1007/s00134-013-2953-5.
    1. Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187(1):20–7. doi: 10.1164/rccm.201206-1117CP.
    1. Doorduin J, Sinderby CA, Beck J, Stegeman DF, van Hees HW, van der Hoeven JG, et al. The calcium sensitizer levosimendan improves human diaphragm function. Am J Respir Crit Care Med. 2012;185(1):90–5. doi: 10.1164/rccm.201107-1268OC.
    1. Brochard L, Rauss A, Benito S, Conti G, Mancebo J, Rekik N, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med. 1994;150(4):896–903. doi: 10.1164/ajrccm.150.4.7921460.
    1. Berger KI, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. Mechanism of relief of tachypnea during pressure support ventilation. Chest. 1996;109(5):1320–7. doi: 10.1378/chest.109.5.1320.
    1. Roze H, Lafrikh A, Perrier V, Germain A, Dewitte A, Gomez F, et al. Daily titration of neurally adjusted ventilatory assist using the diaphragm electrical activity. Intensive Care Med. 2011;37(7):1087–94. doi: 10.1007/s00134-011-2209-1.
    1. Ververidis D, Van Gils M, Passath C, Takala J, Brander L. Identification of adequate neurally adjusted ventilatory assist (NAVA) during systematic increases in the NAVA level. IEEE Trans Biomed Eng. 2011;58(9):2598–606. doi: 10.1109/TBME.2011.2159790.
    1. Lecomte F, Brander L, Jalde F, Beck J, Qui H, Elie C, et al. Physiological response to increasing levels of neurally adjusted ventilatory assist (NAVA) Respir Physiol Neurobiol. 2009;166(2):117–24. doi: 10.1016/j.resp.2009.02.015.
    1. Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31. doi: 10.1164/rccm.201312-2193CI.
    1. Brochard L, Martin GS, Blanch L, Pelosi P, Belda FJ, Jubran A, et al. Clinical review: Respiratory monitoring in the ICU - a consensus of 16. Crit Care. 2012;16(2):219. doi: 10.1186/cc11146.
    1. Field S, Sanci S, Grassino A. Respiratory muscle oxygen consumption estimated by the diaphragm pressure–time index. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(1):44–51.
    1. Sassoon CS, Light RW, Lodia R, Sieck GC, Mahutte CK. Pressure–time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis. 1991;143(3):469–75. doi: 10.1164/ajrccm/143.3.469.
    1. Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34(8):1477–86. doi: 10.1007/s00134-008-1121-9.
    1. Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39(11):2452–7. doi: 10.1097/CCM.0b013e318225753c.
    1. Priban IP. An analysis of some short-term patterns of breathing in man at rest. J Physiol. 1963;166:425–34. doi: 10.1113/jphysiol.1963.sp007114.
    1. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA. Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol (1985). 1988;65(1):309–17.
    1. Schmidt M, Demoule A, Cracco C, Gharbi A, Fiamma MN, Straus C, et al. Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology. 2010;112(3):670–81. doi: 10.1097/ALN.0b013e3181cea375.
    1. Fiamma MN, Samara Z, Baconnier P, Similowski T, Straus C. Respiratory inductive plethysmography to assess respiratory variability and complexity in humans. Respir Physiol Neurobiol. 2007;156(2):234–9. doi: 10.1016/j.resp.2006.12.001.
    1. Fiamma MN, Straus C, Thibault S, Wysocki M, Baconnier P, Similowski T. Effects of hypercapnia and hypocapnia on ventilatory variability and the chaotic dynamics of ventilatory flow in humans. Am J Physiol Regul Integr Comp Physiol. 2007;292(5):R1985–93. doi: 10.1152/ajpregu.00792.2006.
    1. Vaschetto R, Cammarota G, Colombo D, Longhini F, Grossi F, Giovanniello A, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2014;42(1):74–82. doi: 10.1097/CCM.0b013e31829e53dc.
    1. Tobin MJ. Respiratory monitoring in the intensive care unit. Am Rev Respir Dis. 1988;138(6):1625–42. doi: 10.1164/ajrccm/138.6.1625.

Source: PubMed

3
Abonnere