ACE1 polymorphism and progression of SARS

Satoru Itoyama, Naoto Keicho, Tran Quy, Nguyen Chi Phi, Hoang Thuy Long, Le Dang Ha, Vo Van Ban, Jun Ohashi, Minako Hijikata, Ikumi Matsushita, Akihiko Kawana, Hideki Yanai, Teruo Kirikae, Tadatoshi Kuratsuji, Takehiko Sasazuki, Satoru Itoyama, Naoto Keicho, Tran Quy, Nguyen Chi Phi, Hoang Thuy Long, Le Dang Ha, Vo Van Ban, Jun Ohashi, Minako Hijikata, Ikumi Matsushita, Akihiko Kawana, Hideki Yanai, Teruo Kirikae, Tadatoshi Kuratsuji, Takehiko Sasazuki

Abstract

We have hypothesized that genetic predisposition influences the progression of SARS. Angiotensin converting enzyme (ACE1) insertion/deletion (I/D) polymorphism was previously reported to show association with the adult respiratory distress syndrome, which is also thought to play a key role in damaging the lung tissues in SARS cases. This time, the polymorphism was genotyped in 44 Vietnamese SARS cases, with 103 healthy controls who had had a contact with the SARS patients and 50 controls without any contact history. SARS cases were divided into either non-hypoxemic or hypoxemic groups. Despite the small sample size, the frequency of the D allele was significantly higher in the hypoxemic group than in the non-hypoxemic group (p=0.013), whereas there was no significant difference between the SARS cases and controls, irrespective of a contact history. ACE1 might be one of the candidate genes that influence the progression of pneumonia in SARS.

References

    1. World Health Organization, Consensus document on the epidemiology of severe acute respiratory syndrome (SARS), Available from: <> (accessed 27 May 2004)
    1. Peiris J.S., Yuen K.Y., Osterhaus A.D., Stohr K. The severe acute respiratory syndrome. N. Engl. J. Med. 2003;349:2431–2441.
    1. Vu T.H., Cabau J.F., Nguyen N.T., Lenoir M. SARS Northern Vietnam. N. Engl. J. Med. 2003;348:2035.
    1. Vu H.T., Leitmeyer K.C., Le D.H., Miller M.J., Nguyen Q.H., Uyeki T.M., Reynolds M.G., Aagesen J., Nicholson K.G., Vu Q.H., Bach H.A., Plan A.J. Clinical description of a completed outbreak of SARS in Vietnam, February–May 2003. Emerg. Infect. Dis. 2004;10:334–338.
    1. Peiris J.S., Chu C.M., Cheng V.C., Chan K.S., Hung I.F., Poon L.L., Law K.I., Tang B.S., Hon T.Y., Chan C.S., Chan K.H., Ng J.S., Zheng B.J., Ng W.L., Lai R.W., Guan Y., Yuen K.Y. HKU/UCH SARS study group, clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767–1772.
    1. Nicholls J.M., Poon L.L., Lee K.C., Ng W.F., Lai S.T., Leung C.Y., Chu C.M., Hui P.K., Mak K.L., Lim W., Yan K.W., Chan K.H., Tsang N.C., Guan Y., Yuen K.Y., Peiris J.S. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361:1773–1778.
    1. Franks T.J., Chong P.Y., Chui P., Galvin J.R., Lourens R.M., Reid A.H., Selbs E., McEvoy C.P., Hayden C.D., Fukuoka J., Taubenberger J.K., Travis W.D. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum. Pathol. 2003;34:743–748.
    1. Tse G.M., To K.F., Chan P.K., Lo A.W., Ng K.C., Wu A., Lee N., Wong H.C., Mak S.M., Chan K.F., Hui D.S., Sung J.J., Ng H.K. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS) J. Clin. Pathol. 2004;57:260–265.
    1. Booth C.M., Matukas L.M., Tomlinson G.A., Rachlis A.R., Rose D.B., Dwosh H.A., Walmsley S.L., Mazzulli T., Avendano M., Derkach P., Ephtimios I.E., Kitai I., Mederski B.D., Shadowitz S.B., Gold W.L., Hawryluck L.A., Rea E., Chenkin J.S., Cescon D.W., Poutanen S.M., Detsky A.S. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289:2801–2809.
    1. Chan J.W., Ng C.K., Chan Y.H., Mok T.Y., Lee S., Chu S.Y., Law W.L., Lee M.P., Li P.C. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS) Thorax. 2003;58:686–689.
    1. Lin M., Tseng H.K., Trejaut J.A., Lee H.L., Loo J.H., Chu C.C., Chen P.J., Su Y.W., Lim K.H., Tsai Z.U., Lin R.Y., Lin R.S., Huang C.H. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 2003;4:9.
    1. Ng M.H., Lau K.M., Li L., Cheng S.H., Chan W.Y., Hui P.K., Zee B., Leung C.B., Sung J.J. Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J. Infect. Dis. 2004;190:515–518.
    1. Marshall R.P., Webb S., Bellingan G.J., Montgomery H.E., Chaudhari B., McAnulty R.J., Humphries S.E., Hill M.R., Laurent G.J. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2002;166:646–650.
    1. Lin Z., Pearson C., Chinchilli V., Pietschmann S.M., Luo J., Pison U., Floros J. Polymorphisms of human SP-A, SP-B, and SP-D genes: association of SP-B Thr131Ile with ARDS. Clin. Genet. 2000;58:181–191.
    1. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., Choe H., Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454.
    1. Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 1990;86:1343–1346.
    1. Baudin B. New aspects on angiotensin-converting enzyme: from gene to disease. Clin. Chem. Lab. Med. 2002;40:256–265.
    1. World Health Organization, Global surveillance for severe acute respiratory syndrome (SARS), Wkly. Epidemiol. Rec. 78 (2003) 100–119
    1. Wang L., Hirayasu K., Ishizawa M., Kobayashi Y. Purification of genomic DNA from human whole blood by isopropanol-fractionation with concentrated Nal and SDS. Nucleic Acids Res. 1994;22:1774–1775.
    1. Evans A.E., Poirier O., Kee F., Lecerf L., McCrum E., Falconer T., Crane J., O’Rourke D.F., Cambien F. Polymorphisms of the angiotensin-converting-enzyme gene in subjects who die from coronary heart disease. Q. J. Med. 1994;87:211–214.
    1. Furuya K., Yamaguchi E., Itoh A., Hizawa N., Ohnuma N., Kojima J., Kodama N., Kawakami Y. Deletion polymorphism in the angiotensin I converting enzyme (ACE) gene as a genetic risk factor for sarcoidosis. Thorax. 1996;51:777–780.
    1. Huang W., Xie C., Zhou H., Yang T., Sun M. Association of the angiotensin-converting enzyme gene polymorphism with chronic heart failure in Chinese Han patients. Eur. J. Heart Fail. 2004;6:23–27.
    1. Hong S.J., Yang H.I., Yoo M.C., In C.S., Yim S.V., Jin S.Y., Choe B.K., Chung J.H. Angiotensin converting enzyme gene polymorphism in Korean patients with primary knee osteoarthritis. Exp. Mol. Med. 2003;35:189–195.
    1. Le D.H., Bloom S.A., Nguyen Q.H., Maloney S.A., Le Q.M., Leitmeyer K.C., Bach H.A., Reynolds M.G., Montgomery J.M., Comer J.A., Horby P.W., Plant A.J. Lack of SARS transmission among public hospital workers, Vietnam. Emerg. Infect. Dis. 2004;10:265–268.
    1. Ware L.B., Matthay M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 2000;342:1334–1349.
    1. Xu Z.H., Shimakura K., Yamamoto T., Wang L.M., Mineshita S. Pulmonary edema induced by angiotensin I in rats. Jpn. J. Pharmacol. 1998;76:51–56.
    1. Wang R., Ramos C., Joshi I., Zagariya A., Pardo A., Selman M., Uhal B.D. Human lung myofibroblast-derived inducers of alveolar epithelial apoptosis identified as angiotensin peptides. Am. J. Physiol. 1999;277:L1158–L1164.

Source: PubMed

3
Abonnere