Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages

K Pahan, F G Sheikh, A M Namboodiri, I Singh, K Pahan, F G Sheikh, A M Namboodiri, I Singh

Abstract

This study explores the role of mevalonate inhibitors in the activation of NF-kbeta and the induction of inducible nitric oxide synthase (iNOS) and cytokines (TNF-alpha, IL-1beta, and IL-6) in rat primary astrocytes, microglia, and macrophages. Lovastatin and sodium phenylacetate (NaPA) were found to inhibit LPS- and cytokine-mediated production of NO and expression of iNOS in rat primary astrocytes; this inhibition was not due to depletion of end products of mevalonate pathway (e.g., cholesterol and ubiquinone). Reversal of the inhibitory effect of lovastatin on LPS-induced iNOS expression by mevalonate and farnesyl pyrophosphate and reversal of the inhibitory effect of NaPA on LPS-induced iNOS expression by farnesyl pyrophosphate, however, suggests a role of farnesylation in the LPS-mediated induction of iNOS. The inhibition of LPS-mediated induction of iNOS by FPT inhibitor II, an inhibitor of Ras farnesyl protein transferase, suggests that farnesylation of p21(ras) or other proteins regulates the induction of iNOS. Inhibition of LPS-mediated activation of NF-kbeta by lovastatin, NaPA, and FPT inhibitor II in astrocytes indicates that the observed inhibition of iNOS expression is mediated via inhibition of NF-kbeta activation. In addition to iNOS, lovastatin and NaPA also inhibited LPS-induced expression of TNF-alpha, IL-1beta, and IL-6 in rat primary astrocytes, microglia, and macrophages. This study delineates a novel role of the mevalonate pathway in controlling the expression of iNOS and different cytokines in rat astrocytes, microglia, and macrophages that may be important in developing therapeutics against cytokine- and NO-mediated neurodegenerative diseases.

References

    1. Anal Biochem. 1976 May 7;72:248-54
    1. J Cell Biol. 1980 Jun;85(3):890-902
    1. Nucleic Acids Res. 1983 Mar 11;11(5):1475-89
    1. J Neurosci. 1986 Aug;6(8):2163-78
    1. J Immunol. 1988 Apr 15;140(8):2829-38
    1. J Biol Chem. 1989 Jun 15;264(17):9945-52
    1. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8323-7
    1. Nature. 1990 Feb 1;343(6257):425-30
    1. J Biol Chem. 1990 Nov 15;265(32):19937-41
    1. J Biol Chem. 1991 Mar 5;266(7):4244-50
    1. EMBO J. 1991 Mar;10(3):641-6
    1. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6368-71
    1. Mol Cell Biochem. 1991 Jun 26;105(1):21-5
    1. Science. 1991 Nov 15;254(5034):1001-3
    1. Mol Cell Biol. 1992 Jan;12(1):103-11
    1. Cancer Res. 1992 Apr 1;52(7):1988-92
    1. FASEB J. 1992 Sep;6(12):3051-64
    1. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10945-9
    1. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3024-7
    1. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491-5
    1. Neurol Res. 1993 Apr;15(2):109-12
    1. J Immunol. 1993 Aug 15;151(4):2132-41
    1. J Biol Chem. 1993 Oct 5;268(28):20725-8
    1. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9247-51
    1. J Neurochem. 1994 Jan;62(1):315-21
    1. J Neurochem. 1994 Feb;62(2):811-4
    1. Cancer Res. 1994 Feb 15;54(4):891-5
    1. Mol Cell Biol. 1994 May;14(5):2914-25
    1. J Biol Chem. 1994 Aug 5;269(31):20054-9
    1. Neuroscience. 1994 Aug;61(3):575-85
    1. Ann Neurol. 1994 Nov;36(5):778-86
    1. J Immunol. 1994 Dec 15;153(12):5740-9
    1. Biochem Pharmacol. 1995 Mar 1;49(5):611-9
    1. Cancer. 1995 Jun 15;75(12):2932-8
    1. FEBS Lett. 1995 Sep 11;371(3):333-6
    1. J Biol Chem. 1994 Feb 18;269(7):4705-8
    1. Endocrinology. 1995 Nov;136(11):4790-5
    1. Mol Cell Biol. 1996 Mar;16(3):1027-34
    1. Glia. 1995 Dec;15(4):491-4
    1. J Biol Chem. 1997 Mar 21;272(12):7786-91
    1. Free Radic Biol Med. 1998 Jan 1;24(1):39-48
    1. Annu Rev Cell Dev Biol. 1995;11:417-40

Source: PubMed

3
Abonnere