Polyphenol-Rich Lentils and Their Health Promoting Effects

Kumar Ganesan, Baojun Xu, Kumar Ganesan, Baojun Xu

Abstract

Polyphenols are a group of plant metabolites with potent antioxidant properties, which protect against various chronic diseases induced by oxidative stress. Evidence showed that dietary polyphenols have emerged as one of the prominent scientific interests due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are measured based on the human consumption and their bioavailability. Lentil (Lens culinaris; Family: Fabaceae) is a great source of polyphenol compounds with various health-promoting properties. Polyphenol-rich lentils have a potential effect on human health, possessing properties such as antioxidant, antidiabetic, anti-obesity, anti-hyperlipidemic, anti-inflammatory and anticancer. Based on the explorative study, the current comprehensive review aims to give up-to-date information on nutritive compositions, bioactive compounds and the health-promoting effect of polyphenol-rich lentils, which explores their therapeutic values for future clinical studies. All data of in vitro, in vivo and clinical studies of lentils and their impact on human health were collected from a library database and electronic search (Science Direct, PubMed and Google Scholar). Health-promoting information was gathered and orchestrated in the suitable place in the review.

Keywords: antioxidants; degenerative diseases; health-promoting effects; lentils; polyphenols.

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Faris M.A.E., Takruri H.R., Issa A.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterr. J. Nutr. Metab. 2013;6:3–16. doi: 10.1007/s12349-012-0109-8.
    1. Food and Agriculture Organization (FAO) Traditional Food Plants. FAO; Rome, Italy: 1988. [(accessed on 16 July 2017)]. Available online: .
    1. Xu B., Chang S.K. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J. Agric. Food Chem. 2010;58:1509–1517. doi: 10.1021/jf903532y.
    1. FAOSTAT Food and Agricultural Organization of United Nations: Economic and Social Department: The Statistical Division. [(accessed on 19 July 2017)]; Available online: .
    1. Lombardi-Boccia G., Ruggeri S., Aguzzi A., Cappelloni M. Globulins enhance in vitro iron but not zinc dialysability: A study on six legume species. J. Trace Elem. Med. Biol. 2013;17:1–5. doi: 10.1016/S0946-672X(03)80037-8.
    1. Hoover R., Hughes T., Chung H., Liu Q. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 2010;43:399–413. doi: 10.1016/j.foodres.2009.09.001.
    1. United States Department of Agriculture (USDA) Agricultural Research Service, National Nutrient Database for Standard Reference Release 28. Nutrient Database Laboratory Home Page. [(accessed on 14 August 2016)]; Available online: .
    1. Bednar G.E., Patil A.R., Murray S.M., Grieshop C.M., Merchen N.R., Fahey G.C. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J. Nutr. 2001;131:276–286.
    1. Dwivedi S., Sahrawat K., Puppala N., Ortiz R. Plant prebiotics, and human health: Biotechnology to breed prebiotic-rich nutritious food crops. Electr. J. Biotechnol. 2014;17:238–245. doi: 10.1016/j.ejbt.2014.07.004.
    1. Fooks L.J., Fuller R., Gibson G.R. Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 1999;9:53–61. doi: 10.1016/S0958-6946(99)00044-8.
    1. Johnson C.R., Combs G.F., Thavarajah P. Lentil (Lens culinaris L.): A prebiotic-rich whole food legume. Food Res. Int. 2013;51:107–113. doi: 10.1016/j.foodres.2012.11.025.
    1. Padovani R.M., Lima D.M., Colugnati F.A., Rodriguez-Amaya D.B. Comparison of proximate, mineral and vitamin composition of common Brazilian and US foods. J. Food Compos. Anal. 2007;20:733–738. doi: 10.1016/j.jfca.2007.03.006.
    1. Soltan S.S.A. The protective effect of soybean, sesame, lentils, pumpkin seeds and molasses on iron deficiency anemia in rats. World Appl. Sci. J. 2013;23:795–807.
    1. Ryan E., Galvin K., O’Connor T.P., Maguire A.R., O’Brien N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007;62:85–91. doi: 10.1007/s11130-007-0046-8.
    1. Rodriguez C., Frias J., Vidal-Valverde C., Hernandez A. Correlations between some nitrogen fractions, lysine, histidine, tyrosine, and ornithine contents during the germination of peas, beans, and lentils. Food Chem. 2008;108:245–252. doi: 10.1016/j.foodchem.2007.10.073.
    1. Kalogeropoulos N., Chiou A., Ioannou M., Karathanos V.T., Hassapidou M., Andrikopoulos N.K. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010;121:682–690. doi: 10.1016/j.foodchem.2010.01.005.
    1. De Almeida Costa G.E., da Silva Queiroz-Monici K., Reis S.M.P.M., de Oliveira A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006;94:327–330. doi: 10.1016/j.foodchem.2004.11.020.
    1. Guillamon E., Pedrosa M.M., Burbano C., Cuadrado C., de Cortes Sanchez M., Muzquiz M. The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem. 2008;107:68–74. doi: 10.1016/j.foodchem.2007.07.029.
    1. Freier T.C., Rudiger H.E. Lectin-binding proteins from lentil seeds as mitogens for murine B lymphocytes. Phytochemistry. 1990;29:1459–1461. doi: 10.1016/0031-9422(90)80100-U.
    1. De Mejia E.G., Prisecaru V.I. Lectins as bioactive plant proteins: A potential in cancer treatment. Crit. Rev. Food Sci. Nutr. 2005;45:425–445. doi: 10.1080/10408390591034445.
    1. Finkina E.I., Shramova E.I., Tagaev A.A., Ovchinnikova T.V. A novel defensin from the lentil Lens culinaris seeds. Biochem. Biophys. Res. Commun. 2008;371:860–865. doi: 10.1016/j.bbrc.2008.04.161.
    1. Demirbas A. β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 2005;90:773–777. doi: 10.1016/j.foodchem.2004.06.003.
    1. Perera A., Meda V., Tyler R. Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res. Int. 2010;43:1959–1974. doi: 10.1016/j.foodres.2010.06.003.
    1. Xu B., Yuan S., Chang S. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci. 2007;72:S167–S177. doi: 10.1111/j.1750-3841.2006.00261.x.
    1. Scalbert A., Manach C., Morand C., Remesy C., Jimenez L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005;45:287–306. doi: 10.1080/1040869059096.
    1. Thompson L.U., Boucher B.A., Liu Z., Cotterchio M., Kreiger N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer. 2006;54:184–201. doi: 10.1207/s15327914nc5402_5.
    1. Barahuie F., Dorniani D., Saifullah B., Gothai S., Hussein M.Z., Pandurangan A.K., Arulselvan P., Norhaizan M.E. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int. J. Nanomed. 2017;12:2361–2372. doi: 10.2147/IJN.S126245.
    1. Rao C.V., Newmark H.L., Reddy B.S. Chemopreventive effect of squalene on colon cancer. Carcinogenesis. 1998;19:287–290. doi: 10.1093/carcin/19.2.287.
    1. Elekofehinti O.O. Saponins: Anti-diabetic principles from medicinal plants—A review. Pathophysiology. 2015;22:95–103. doi: 10.1016/j.pathophys.2015.02.001.
    1. Dueñas M., Sun B., Hernández T., Estrella I., Spranger M.I. Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.) J. Agric. Food Chem. 2003;51:7999–8004. doi: 10.1021/jf0303215.
    1. Taylor W.G., Fields P.G., Sutherland D.H. Fractionation of lentil seeds (Lens culinaris Medik.) for insecticidal and flavonol tetraglycoside components. J. Agric. Food Chem. 2007;55:5491–5498. doi: 10.1021/jf0705062.
    1. Aguilera Y., Dueñas M., Estrella I., Hernández T., Benitez V., Esteban R.M., Martín-Cabrejas M.A. Evaluation of phenolic profile and antioxidant properties of Pardina lentil as affected by industrial dehydration. J. Agric. Food Chem. 2010;58:10101–10108. doi: 10.1021/jf102222t.
    1. Zou Y., Chang S.K., Gu Y., Qian S.Y. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J. Agric. Food Chem. 2011;59:2268–2276. doi: 10.1021/jf104640k.
    1. Zhang B., Deng Z., Tang Y., Chen P.X., Liu R., Ramdath D.D., Liu Q., Hernandez M., Tsao R. Effect of domestic cooking on carotenoids, tocopherols, fatty acids, phenolics, and antioxidant activities of lentils (Lens culinaris) J. Agric. Food Chem. 2014;62:12585–12594. doi: 10.1021/jf504181r.
    1. Żuchowski J., Pecio Ł., Stochmal A. Novel flavonol glycosides from the aerial parts of lentil (Lens culinaris) Molecules. 2014;19:18152–18178. doi: 10.3390/molecules191118152.
    1. Mirali M., Ambrose S.J., Wood S.A., Vandenberg A., Purves R.W. Development of a fast extraction method and optimization of liquid chromatography-mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J. Chromatogr. B. 2014;969:149–161. doi: 10.1016/j.jchromb.2014.08.007.
    1. Zhang B., Deng Z., Ramdath D.D., Tang Y., Chen P.X., Liu R., Liu Q., Tsao R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on a-glucosidase and pancreatic lipase. Food Chem. 2015;172:862–872. doi: 10.1016/j.foodchem.2014.09.144.
    1. Świeca M., Baraniak B., Gawlik-Dziki U. In vitro digestibility and starch content, predicted glycemic index and potential In Vitro anti-diabetic effect of lentil sprouts obtained by different germination techniques. Food Chem. 2013;138:1414–1420. doi: 10.1016/j.foodchem.2012.09.122.
    1. Aslani Z., Mirmiran P., Alipur B., Bahadoran Z., Farhangi M.A. Lentil sprouts effect on serum lipids of overweight and obese patients with type 2 diabetes. Health Promot. Perspect. 2015;5:215–224. doi: 10.15171/hpp.2015.026.
    1. Wolever T.M., Katzman-Relle L., Jenkins A.L., Vuksan V., Josse R.G., Jenkins D.J. Glycaemic index of 102 complex carbohydrate foods in patients with diabetes. Nutr. Res. 1994;14:651–669. doi: 10.1016/S0271-5317(05)80201-5.
    1. Shams H., Tahbaz F., Entezari M., Abadi A. Effects of cooked lentils on glycemic control and blood lipids of patients with type 2 diabetes. ARYA Atheroscler. 2008;4:1–5.
    1. Al-Tibi A.T.B., Takruri H.R., Ahmad M.N. Effect of dehulling and cooking of lentils (Lens culinaris, L.) on serum glucose and lipoprotein levels in streptozotocin-induced diabetic rats. Malays. J. Nutr. 2010;16:409–418.
    1. Flight I., Clifton P. Cereal grains and legumes in the prevention of coronary heart disease and stroke: A review of the literature. Eur. J. Clin. Nutr. 2006;60:1145–1159. doi: 10.1038/sj.ejcn.1602435.
    1. Liu R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007;46:207–219. doi: 10.1016/j.jcs.2007.06.010.
    1. Hodge A.M., English D.R., O’Dea K., Giles G.G. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care. 2004;27:2701–2706. doi: 10.2337/diacare.27.11.2701.
    1. Chung H.-J., Liu Q., Pauls K.P., Fan M.Z., Yada R. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 2008;41:869–875. doi: 10.1016/j.foodres.2008.03.013.
    1. Peñas E., Limón R.I., Martínez-Villaluenga C., Restani P., Pihlanto A., Frias J. Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts. Plant Foods Hum. Nutr. 2015;70:401–407. doi: 10.1007/s11130-015-0508-3.
    1. Tawfeuk H.Z., Hassan N.M., Khalil H.I., Kerolles S.Y. Anti-diabetic effects of dietary formulas prepared from some grains and vegetables on type 2 diabetic rats. J. Agroaliment. Process. Technol. 2014;20:69–79.
    1. Bolsinger J., Landstrom M., Pronczuk A., Auerbach A., Hayes K.C. Low glycemic load diets protect against metabolic syndrome and type 2 diabetes mellitus in the male Nile rat. J. Nutr. Biochem. 2017;42:134–148. doi: 10.1016/j.jnutbio.2017.01.007.
    1. Jenkins D., Wolever T., Taylor R.H., Barker H., Fielden H., Baldwin J.M., Goff D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981;34:362–366.
    1. Duenas M., Hernandez T., Estrella I. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 2006;98:95–103. doi: 10.1016/j.foodchem.2005.05.052.
    1. Pellegrini N., Serafini M., Salvatore S., Del Rio D., Bianchi M., Brighenti F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol. Nutr. Food Res. 2006;50:1030–1038. doi: 10.1002/mnfr.200600067.
    1. Xu B., Chang S.K. Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem. 2008;110:1–13. doi: 10.1016/j.foodchem.2008.01.045.
    1. Fratianni F., Cardinale F., Cozzolino A., Granese T., Albanese D., Di Matteo M., Nazzaro F. Polyphenol composition and antioxidant activity of different grass pea (Lathyrussativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy) J. Funct. Foods. 2014;7:551–557. doi: 10.1016/j.jff.2013.12.030.
    1. Kris-Etherton P.M., Hecker K.D., Bonanome A., Coval S.M., Binkoski A.E., Hilpert K.F., Etherton T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002;113:71–88. doi: 10.1016/S0002-9343(01)00995-0.
    1. Mollard R., Zykus A., Luhovyy B., Nunez M., Wong C., Anderson G. The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. Br. J. Nutr. 2012;108:509–517. doi: 10.1017/S0007114511005836.
    1. McCrory M.A., Hamaker B.R., Lovejoy J.C., Eichelsdoerfer P.E. Pulse consumption, satiety, and weight management. Adv. Nutr. Int. Rev. J. 2010;1:17–30. doi: 10.3945/an.110.1006.
    1. Xu B.J., Han L.K., Zheng Y.N., Lee J.H., Sung C.K. In vitro inhibitory effect of triterpenoidal saponins from Platycodi Radix on pancreatic lipase. Arch. Pharmacol. Res. 2005;28:180–185. doi: 10.1007/BF02977712.
    1. Balasubramaniam V., Mustar S., Khalid N.M., Rashed A.A., Noh M.F.M., Wilcox M.D., Pearson J. Inhibitory activities of three Malaysian edible seaweeds on lipase and α-amylase. J. Appl. Phycol. 2013;25:1405–1412. doi: 10.1007/s10811-012-9964-4.
    1. Lopez A., El-Naggar T., Duenas T., Ortega T., Estrella I., Hernandez T., Gomez-Serranillos M.P., Palomino O.M., Carretero M.E. Influence of processing in the phenolic composition and health-promoting properties of Lentils (Lens culinaris L.) J. Food Process. Preserv. 2016 doi: 10.1111/jfpp.13113.
    1. Zhang B., Deng Z., Tang Y., Chen P.X., Liu R., Ramdath D.D., Liu Q., Hernandez M., Tsao R. Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris) J. Funct. Foods. 2017;32:248–255. doi: 10.1016/j.jff.2017.03.004.
    1. Świeca M., Gawlik-Dziki U. Effects of sprouting and postharvest storage under cool temperature conditions on starch content and antioxidant capacity of green pea, lentil and young mung bean sprouts. Food Chem. 2015;185:99–105. doi: 10.1016/j.foodchem.2015.03.108.
    1. Talukdar D. In Vitro antioxidant potential and type II diabetes-related enzyme inhibition properties of traditionally processed legume-based food and medicinal recipes in Indian Himalayas. J. Appl. Pharm. Sci. 2013;3:26–32.
    1. Fouad A.A., Rehab F.M. Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Sci. Pol. Technol. Aliment. 2015;14:233–246. doi: 10.17306/J.AFS.2015.3.25.
    1. Boudjou S., Oomah B.D., Zaidi F., Hosseinian F. Phenolics content and antioxidant and anti-inflammatory activities of legume fractions. Food Chem. 2013;138:1543–1550. doi: 10.1016/j.foodchem.2012.11.108.
    1. Elaloui M., Ghazghazi H., Ennajah A., Manaa S., Guezmir W., Karray N.B., Laamouri A. Phenolic profile, antioxidant capacity of five Ziziphus spina-christi (L.) Willd provenances and their allelopathic effects on Trigonella foenum-graecum L. and Lens culinaris L. seeds. Nat. Prod. Res. 2017;31:1209–1213. doi: 10.1080/14786419.2016.1226830.
    1. Talukdar D., Talukdar T. Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. Protoplasma. 2014;251:839–855. doi: 10.1007/s00709-013-0586-8.
    1. Gharachorloo M., Tarzi B.G., Baharinia M., Hemaci A.H. Antioxidant activity and phenolic content of germinated lentil (Lens culinaris) J. Med. Plants Res. 2012;6:4562–4566.
    1. Świeca M., Baraniak B. Influence of elicitation with H2O2 on phenolics content, antioxidant potential and nutritional quality of Lens culinaris sprouts. J. Sci. Food Agric. 2014;94:489–496. doi: 10.1002/jsfa.6274.
    1. Jameel M., Ali A., Ali M. Isolation of antioxidant phytoconstituents from the seeds of Lens culinaris Medik. Food Chem. 2015;175:358–365. doi: 10.1016/j.foodchem.2014.11.130.
    1. Bubelov Z., Sumczynski D., Salek R.N. Effect of cooking and germination on antioxidant activity, total polyphenols and flavonoids, fiber content, and digestibility of lentils (Lens culinaris L.) J. Food Process. Preserv. 2017:e13388. doi: 10.1111/jfpp.13388.
    1. Fernandez-Orozco R., Zieliński H., Piskuła M.K. Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Nahrung. 2003;47:291–299. doi: 10.1002/food.200390069.
    1. Landi N., Pacifico S., Piccolella S., Di Giuseppe A.M., Mezzacapo M.C., Ragucci S., Iannuzzi F., Zarrelli A., Di Maro A. Valle Agricola lentil, an unknown lentil (Lens culinaris Medik.) seed from Southern Italy as a novel antioxidant and prebiotic source. Food Funct. 2015;6:3155–3164. doi: 10.1039/C5FO00604J.
    1. Zia-Ul-Haq M., Landa P., Kutil Z., Qayum M., Ahmad S. Evaluation of anti-inflammatory activity of selected legumes from Pakistan: In vitro inhibition of cyclooxygenase-2. Pak. J. Pharm. Sci. 2013;26:185–187.
    1. Busambwa K., Sunkara R., Diby N., Offei-Okyne R., Boateng R., Verghese M. Cytotoxic and apoptotic effects of sprouted and non-sprouted lentil, green and yellow split-peas. Int. J. Cancer Res. 2016;12:51–60.
    1. Pinto X., Vilaseca M.A., Balcells S., Artuch R., Corbella E., Meco J.F., Grinberg D. A folate-rich diet is as effective as folic acid from supplements in decreasing plasma homocysteine concentrations. Int. J. Med. Sci. 2005;2:58–63. doi: 10.7150/ijms.2.58.
    1. Adikay S., Saisruthi K. Phytoremedial effect of Lens culinaris against doxorubicin-induced nephrotoxicity in male Wistar rats. Int. J. Green Pharm. 2016;10:172–177.
    1. Mahmoud N.E. The Semi-Modified Diets as Antioxidants, Hypolipidemic and Hypocholesterolemic Agents. Food and Agriculture Organization of the United Nations; Rome, Italy: 2011. [(accessed on 14 July 2017)]. Available online: .
    1. Ahmad M.N. The effect of lentil on cholesterol-induced changes of serum lipid cardiovascular indexes in rats. Prog. Nutr. 2017;19:48–56.
    1. Boualga A., Prost J., Taleb-Senouci D., Krouf D., Kharoubi O., Lamri-Senhadji M., Belleville J., Bouchenak M. Purified chickpea or lentil proteins impair VLDL metabolism and lipoprotein lipase activity in epididymal fat, but not in muscle, compared to casein, in growing rats. Eur. J. Nutr. 2009;48:162–169. doi: 10.1007/s00394-009-0777-4.
    1. Vohra K., Gupta V.K., Dureja H., Garg V. Antihyperlipidemic activity of Lens culinaris Medikus seeds in Triton WR-1339 induced hyperlipidemic rats. J. Pharmacogn. Nat. Prod. 2016;2:117. doi: 10.4172/2472-0992.1000117.
    1. Lukito W. Candidate foods in the Asia-Pacific region for cardiovascular protection: Nuts, soy, lentils, and tempe. Asia Pac. J. Clin. Nutr. 2001;10:128–133. doi: 10.1046/j.1440-6047.2001.00240.x.
    1. Duane W. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J. Lipid Res. 1997;38:1120–1128.
    1. Bazzano L.A., Thompson A.M., Tees M.T., Nguyen C.H., Winham D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011;21:94–103. doi: 10.1016/j.numecd.2009.08.012.
    1. Jenkins D., Wong G.S., Patten R., Bird J., Hall M., Buckley G.C., Little J.A. Leguminous seeds in the dietary management of hyperlipidemia. Am. J. Clin. Nutr. 1983;38:567–573.
    1. Boye J.I., Roufik S., Pesta N., Barbana C. Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT-Food Sci. Technol. 2010;43:987–991. doi: 10.1016/j.lwt.2010.01.014.
    1. Hanson M.G., Zahradka P., Taylor C.G. Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats. Br. J. Nutr. 2014;111:690–698. doi: 10.1017/S0007114513002997.
    1. Garcia-Mora P., Penas E., Frias J., Martinez-Villaluenga C. Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties. J. Agric. Food Chem. 2014;62:4166–4174. doi: 10.1021/jf500849u.
    1. Mitchell B.S., Brooks S.A., Leathem A.J., Schumacher U. Do HPA and PHA-L have the same binding pattern in metastasizing human breast and colon cancers? Cancer Lett. 1998;123:113–119. doi: 10.1016/S0304-3835(97)00414-X.
    1. Kulshrestha S., Chaturvedi S., Jangir R., Agrawal K. In vitro Evaluation of antibacterial activity of some plant leaf extracts against Xanthomonas axonopodis pv. phaseoli isolated from seeds of lentil (Lens culinaris Medik.) Int. Res. J. Biol. Sci. 2015;4:59–64.
    1. Finkina E.I., Balandin S.V., Serebryakova M.V., Potapenko N.A., Tagaev A.A., Ovchinnikova T.V. Purification and primary structure of novel lipid transfer proteins from germinated lentil (Lens culinaris) seeds. Biochemistry. 2007;72:430–438. doi: 10.1134/S0006297907040104.
    1. Nair S.S., Madembil N.C., Nair P., Raman S., Veerabadrappa S.B. Comparative analysis of the antibacterial activity of some phytolectins. Int. Curr. Pharm. J. 2013;2:18–22. doi: 10.3329/icpj.v2i2.13192.
    1. Khan D.A., Hassan F., Ullah H., Karim S., Baseer A., Abid M.A., Ubaidi M., Khan S.A., Murtaza G. Antibacterial activity of Phyllanthusemblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus. Acta Pol. Pharm. 2013;70:855–859.
    1. Wang H.X., Ng T.B. An antifungal peptide from red lentil seeds. Peptides. 2007;28:547–552. doi: 10.1016/j.peptides.2006.10.006.
    1. Rönnblom L., Funa K., Ersson B., Alm G.V. Lectins as inducers of interferon-γ production in human lymphocytes: Lentil lectin is highly efficient. Scand. J. Immunol. 1982;16:327–331. doi: 10.1111/j.1365-3083.1982.tb00731.x.
    1. Taylor J.L., Sedmak J.J., Jameson P., Lin Y.G., Grossberg S.E. Markedly enhanced production of γ interferon in murine T lymphocytes treated with lentil lectin and the diterpene ester, mezerein. J. Interferon Res. 1984;4:315–327. doi: 10.1089/jir.1984.4.315.
    1. Caccialupi P., Ceci L.R., Siciliano R.A., Pignone D., Clemente A., Sonnante G. Bowman-Birk inhibitors in lentil: Heterologous expression, functional characterization and antiproliferative properties in human colon cancer cells. Food Chem. 2010;120:1058–1066. doi: 10.1016/j.foodchem.2009.11.051.
    1. Adebamowo C.A., Cho E., Sampson L., Katan M.B., Spiegelman D., Willett W.C., Holmes M.D. Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int. J. Cancer. 2005;114:628–633. doi: 10.1002/ijc.20741.
    1. Perabo F.G., Von Löw E.C., Ellinger J., von Rücker A., Müller S.C. Soy isoflavone genistein in prevention and treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2008;11:6–12. doi: 10.1038/sj.pcan.4501000.
    1. Spanou C., Stagos D., Tousias L., Angelis A., Aligiannis N., Skaltsounis A.L., Kouretas D. Assessment of antioxidant activity of extracts from unique greek varieties of Leguminosae plants using In Vitro assays. Anticancer Res. 2007;27:3403–3410.
    1. Faris M.A., Takruri H.R., Shomaf M.S., Bustanji Y.K. Chemopreventive effect of raw and cooked lentils (Lens culinaris L) and soybeans (Glycine max) against azoxymethane-induced aberrant crypt foci. Nutr. Res. 2009;29:355–362. doi: 10.1016/j.nutres.2009.05.005.
    1. Scarafoni A., Magni C., Duranti M. Molecular nutraceutics as a mean to investigate the positive effects of legume seed proteins on human health. Trends Food Sci. Technol. 2007;18:454–463. doi: 10.1016/j.tifs.2007.04.002.
    1. Shomaf M., Takruri H., Faris M.A.I.E. Lentils (Lens culinaris, L.) attenuatecolonic lesions and neoplasms in Fischer 344 rats. Jordan Med. J. 2011;45:231–239.
    1. Busambwa K., Miller-Cebert R., Aboagye L., Dalrymple L., Boateng J., Shackelford L., Verghese M. Inhibitory effect of lentils, green split and yellow peas (sprouted and non-sprouted) on azoxymethane-induced aberrant crypt foci in Fisher 344 male rats. Int. J. Cancer Res. 2014;10:27–36. doi: 10.3923/ijcr.2014.27.36.
    1. Rodríguez-Juan C., Pérez-Blas M., Suárez-García E., López-Suárez J.C., Múzquiz M., Cuadrado C., Martín-Villa J.M. Lens culinaris, Phaseolus vulgaris and Vicia faba lectins specifically trigger IL-8 production by the human colon carcinoma cell line Caco-2. Cytokine. 2000;12:1284–1287. doi: 10.1006/cyto.1999.0731.
    1. Chan Y.S., Yu H., Xia L., Ng T.B. Lectin from green speckled lentil seeds (Lens culinaris) triggered apoptosis in nasopharyngeal carcinoma cell lines. Chin. Med. 2015;10:25. doi: 10.1186/s13020-015-0057-6.
    1. Bruce W.R., Giacca A., Medline A. Possible mechanisms relating diet and risk of colon cancer. Cancer Epidemiol. Biomark. Prev. 2000;9:1271–1279.
    1. Mills P.K., Beeson W.L., Phillips R.L., Fraser G.E. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer. 1989;64:598–604. doi: 10.1002/1097-0142(19890801)64:3<598::AID-CNCR2820640306>;2-6.
    1. Jain M.G., Hislop G.T., Howe G.R., Ghadirian P. Plant foods, antioxidants, and prostate cancer risk: Findings from case-control studies in Canada. Nutr. Cancer. 1999;34:173–184. doi: 10.1207/S15327914NC3402_8.
    1. Wang L., Lee I.M., Zhang S.M., Blumberg J.B., Buring J.E., Sesso H.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am. J. Clin. Nutr. 2009;89:905–912. doi: 10.3945/ajcn.2008.26913.
    1. Desilets D.J., Davis K.E., Nair P.P., Salata K.F., Maydonovitch C.L., Howard R.S., Kikendall J.W., Wong R.K. Lectin binding to human colonocytes is predictive of colonic neoplasia. Am. J. Gastroenterol. 1999;94:744–750. doi: 10.1111/j.1572-0241.1999.00946.x.
    1. Shimizu K., Nakamura K., Kobatake S., Satomura S., Maruyama M., Kameko F., Tajiri J., Kato R. The clinical utility of Lens culinaris agglutinin-reactive thyroglobulin ratio in serum for distinguishing benign from malignant conditions of the thyroid. Clin. Chim. Acta. 2007;379:101–104. doi: 10.1016/j.cca.2006.12.017.
    1. Kanai T., Amakawa M., Kato R., Shimizu K., Nakamura K., Ito K., Hama Y., Fujimori M., Amano J. Evaluation of a new method for the diagnosis of alterations of Lens culinaris agglutinin binding of thyroglobulin molecules in thyroid carcinoma. Clin. Chem. Lab. Med. 2009;47:1285–1290. doi: 10.1515/CCLM.2009.277.

Source: PubMed

3
Abonnere