Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits

Kumar Ganesan, Baojun Xu, Kumar Ganesan, Baojun Xu

Abstract

Polyphenols are plant metabolites with potent anti-oxidant properties, which help to reduce the effects of oxidative stress-induced dreaded diseases. The evidence demonstrated that dietary polyphenols are of emerging increasing scientific interest due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are based on the human consumption and their bioavailability. Common beans (Phaseolus vulgaris L.) are a greater source of polyphenolic compounds with numerous health promoting properties. Polyphenol-rich dry common beans have potential effects on human health, and possess anti-oxidant, anti-diabetic, anti-obesity, anti-inflammatory and anti-mutagenic and anti-carcinogenic properties. Based on the studies, the current comprehensive review aims to provide up-to-date information on the nutritional compositions and health-promoting effect of polyphenol-rich common beans, which help to explore their therapeutic values for future clinical studies. Investigation of common beans and their impacts on human health were obtained from various library databases and electronic searches (Science Direct PubMed, and Google Scholar).

Keywords: Phaseolus vulgaris; anti-oxidants; degenerative diseases; health-promoting effects; polyphenols.

Conflict of interest statement

The authors declared that no conflicts of interest.

Figures

Figure 1
Figure 1
Health promoting effects of polyphenol-rich dry common beans.

References

    1. Sharma A., Kaur M., Katnoria J.K., Nagpal A.K. Polyphenols in food: Cancer prevention and apoptosis induction. Curr. Med. Chem. 2017 doi: 10.2174/0929867324666171006144208.
    1. Ganesan K., Xu B. A critical review on polyphenols and health benefits of black soybeans. Nutrients. 2017;9 doi: 10.3390/nu9050455.
    1. McDougall G.J. Phenolic-enriched foods: Sources and processing for enhanced health benefits. Proc. Nutr. Soc. 2017;76:163–171. doi: 10.1017/S0029665116000835.
    1. Aparicio-Fernández X., García-Gasca T., Yousef G.G., Lila M.A., González de Mejía E., Loarca-Piña G. Chemopreventive activity of polyphenolics from black Jamapa Bean (Phaseolus vulgaris L.) on HeLa and HaCaT cells. J. Agric. Food Chem. 2006;54:2116–2122. doi: 10.1021/jf052974m.
    1. Aparicio-Fernández X., Yousef G.G., Loarca-Piña G., González de Mejía E., Lila M.A. Characterization of polyphenolics in the seed coat of Black Jamapa bean (Phaseolus vulgaris L.) J. Agric. Food Chem. 2005;53:4615–4622. doi: 10.1021/jf047802o.
    1. Aparicio-Fernández X., Manzo-Bonilla L., Loarca-Piña G. Comparison of antimutagenic activity of phenolic compounds in newly harvested and stored common beans Phaseolus Vulgaris against aflatoxin B1. J. Food Sci. 2005;70:S73–S78. doi: 10.1111/j.1365-2621.2005.tb09068.x.
    1. Beninger C.W., Hosfield G.L. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J. Agric. Food Chem. 2003;51:7879–7883. doi: 10.1021/jf0304324.
    1. Cardador-Martínez A., Loarca-Piña G., Oomah B.D. Antioxidant activity in common beans (Phaseolus vulgaris L.) J. Agric. Food Chem. 2002;50:6975–6980. doi: 10.1021/jf020296n.
    1. Guzmán-Maldonado S.H., Paredes-López O. Functional products of plants indigenous of Latin America: Amaranth, quinoa, common beans and botanicals. In: Mazza G., editor. Functional Foods. Bichemical and Processing Aspects. Thechnomic; Lancaster, PA, USA: 1998. pp. 39–328.
    1. Hangen L., Bennink M.R. Consumption of Black Beans and Navy Beans (Phaseolus vulgaris) Reduced azoxymethane-induced colon cancer in rats. Nutr. Cancer. 2002;44:60–65.
    1. Queiroz-Monici K.S., Costa G.E.A., da Silva N., Reis S.M.P.M., de Oliveira A.C. Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats. Nutrition. 2005;21:602–609. doi: 10.1016/j.nut.2004.09.019.
    1. FAO Estadísticas de Fríjol Seco. [(accessed on 26 May 2014)]; Available online: .
    1. Adams M.W. Energy inputs in dry bean production. In: Pimentel D., editor. Handbook of Energy Utilization in Agriculture. CRC Press; Boca Raton, FL, USA: 1980. pp. 123–126.
    1. Mitchell D.C., Lawrence F.R., Hartman T.J., Curran J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Am. Diet. Assoc. 2009;109:909–913. doi: 10.1016/j.jada.2009.02.029.
    1. Zhang C., Monk J.M., Lu J.T., Zarepoor L., Wu W., Liu R., Pauls K.P., Wood G.A., Robinson L., Tsao R., et al. Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis. Br. J. Nutr. 2014;111:1549–1563. doi: 10.1017/S0007114513004352.
    1. Borresen E.C., Brown D.G., Harbison G., Taylor L., Fairbanks A., O’Malia J., Bazan M., Rao S., Bailey S.M., Wdowik M., et al. A randomized controlled trial to increase navy bean or rice bran consumption in colorectal cancer survivors. Nutr. Cancer. 2016;68:1269–1280. doi: 10.1080/01635581.2016.1224370.
    1. Borresen E.C., Jenkins-Puccetti N., Schmitz K., Brown D.G., Pollack A., Fairbanks A., Wdowik M., Rao S., Nelson T.L., Luckasen G., et al. A pilot randomized controlled clinical trial to assess tolerance and efficacy of navy bean and rice bran supplementation for lowering cholesterol in children. Glob. Pediatr. Health. 2017;4 doi: 10.1177/2333794X17694231.
    1. Lestari L.A., Huriyati E., Marsono Y. The development of low glycemic index cookie bars from foxtail millet (Setaria italica), arrowroot (Maranta arundinacea) flour, and kidney beans (Phaseolus vulgaris) J. Food Sci. Technol. 2017;54:1406–1413. doi: 10.1007/s13197-017-2552-5.
    1. Monk J.M., Zhang C.P., Wu W., Zarepoor L., Lu J.T., Liu R., Pauls K.P., Wood G.A., Tsao R., Robinson L.E., et al. White, and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate. J. Nutr. Biochem. 2015;26:752–760. doi: 10.1016/j.jnutbio.2015.02.003.
    1. Chao W.W., Chung Y.C., Shih I.P., Wang H.Y., Chou S.T., Hsu C.K. Red bean extract inhibits lipopolysaccharide-induced inflammation and H2O2-induced oxidative stress in RAW 264.7 macrophages. J. Med. Food. 2015;18:724–730. doi: 10.1089/jmf.2014.3353.
    1. Chan Y.S., Ng T.B. Northeast red beans produce a thermostable and pH-stable defensin-like peptide with potent antifungal activity. Cell Biochem. Biophys. 2013;66:637–648. doi: 10.1007/s12013-012-9508-1.
    1. Chan Y.S., Wong J.H., Fang E.F., Pan W., Ng T.B. A hemagglutinin from northeast red beans with immunomodulatory activity and anti-proliferative and apoptosis-inducing activities toward tumor cells. Protein Pept. Lett. 2013;20:1159–1169. doi: 10.2174/0929866511320100011.
    1. Mojica L., Berhow M., Gonzalez de Mejia E. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chem. 2017;229:628–639. doi: 10.1016/j.foodchem.2017.02.124.
    1. Yin C., Wong J.H., Ng T.B. Isolation of a hemagglutinin with potent antiproliferative activity and a large antifungal defensin from Phaseolus vulgaris cv. Hokkaido Large Pinto Beans. J. Agric. Food Chem. 2015;63:5439–5448. doi: 10.1021/acs.jafc.5b00475.
    1. Ojeda A.G., Wrobel K., Escobosa A.R., Elguera J.C., Garay-Sevilla M.E., Wrobel K. Molybdenum and copper in four varieties of common bean (Phaseolus vulgaris): New data of potential utility in designing healthy diet for diabetic patients. Biol. Trace Elem. Res. 2015;163:244–254. doi: 10.1007/s12011-014-0191-5.
    1. Monk J.M., Lepp D., Zhang C.P., Wu W., Zarepoor L., Lu J.T., Pauls K.P., Tsao R., Wood G.A., Robinson L.E., et al. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J. Nutr. Biochem. 2016;28:129–139. doi: 10.1016/j.jnutbio.2015.10.014.
    1. Haddad E.H., Tanzman J.S. What do vegetarians in the United States eat? Am. J. Clin. Nutr. 2003;78:626–632.
    1. Messina V. Nutritional and health benefits of dried beans. Am. J. Clin. Nutr. 2014;100:437–442. doi: 10.3945/ajcn.113.071472.
    1. McCrory M.A., Hamaker B.R., Lovejoy J.C., Eichelsdoerfer P.E. Pulse consumption, satiety, and weight management. Adv. Nutr. 2010;1:17–30. doi: 10.3945/an.110.1006.
    1. Darmadi-Blackberry I., Wahlqvist M.L., Kouris-Blazos A., Steen B., Lukito W., Horie Y., Horie K. Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pac. J. Clin. Nutr. 2004;13:217–220.
    1. Chávez-Mendoza C., Sánchez E. Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules. 2017;22:1360. doi: 10.3390/molecules22081360.
    1. Suárez-Martínez S.E., Ferriz-Martínez R.A., Campos-Vega R., Elton-Puente J.E., de la Torre Carbot K., García-Gasca T. Bean seeds: Leading nutraceutical source for human health. CyTA J. Food. 2016;14:131–137. doi: 10.1080/19476337.2015.1063548.
    1. Ulloa J.A., Rosas U.P., Ramírez R.J.C., Rangel U.B.E. El frijol (Phaseolus vulgaris): Su importancia nutricionaly como fuente de fitoquímicos. [Beans (Phaseolus vulgaris): Their nutritional importance and source of phytochemicals] Rev. Fuente. 2011;3:5–9.
    1. Mederos Y. Indicadores de la calidad en el grano de frijol (Phaseolus vulgaris L.). [Quality indicators in bean (Phaseolus vulgaris L.)] Cultiv. Trop. 2006;27:55–63.
    1. Díaz-Batalla L., Widholm J.M., Fahey G.C., Castaño-Tostado E., Paredes-López O. Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.) J. Agric. Food Chem. 2006;54:2045–2052. doi: 10.1021/jf051706l.
    1. Machado C.M., Ferruzzi M.G., Nielsen S.S. Impact of the hard-to-cook phenomenon on phenolic antioxidants in dry beans (Phaseolus vulgaris) J. Agric. Food Chem. 2008;56:3102–3110. doi: 10.1021/jf072861y.
    1. Aguilera Y., Estrella I., Benitez V., Esteban R.M., Martin-Cabrejas M.A. Bioactive phenolic compounds and functional properties of dehydrated beans flours. Food Res. Int. 2010;44:774–780. doi: 10.1016/j.foodres.2011.01.004.
    1. López-Amorós M.L., Hernández T., Estrella I. Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Compos. Anal. 2006;19:277–283. doi: 10.1016/j.jfca.2004.06.012.
    1. Butt M.S., Batool R. Nutritional and functional properties of some promising legume protein isolates. Pak. J. Nutr. 2010;9:373–379. doi: 10.3923/pjn.2010.373.379.
    1. Genovese M.I., Lajolo F.M. Atividade inibito ria de tripsina do feijao (Phaseolus vulgaris L.): Avaliacao. crıtica dos metodos de determinacao. Arch. Latinoam. Nutr. 2001;51:386–394.
    1. Costa G.E.A., Queiroz-Monici K.S., Reis S.M.P.M., Oliveira A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006;94:327–330. doi: 10.1016/j.foodchem.2004.11.020.
    1. Tang C.H., Sun X. Structure-physicochemical function relationships of 7S globulins (vicilins) from red bean (Phaseolus anglaris) with different polypeptide constituents. Food Hydrocoll. 2011;25:536–544. doi: 10.1016/j.foodhyd.2010.08.009.
    1. Tang C.H., Sun X. A comparative study of physicochemical and conformational properties in three vicilins from Phaseolus legumes: Implications for the structure-function relationship. Food Hydrocoll. 2011;25:315–324. doi: 10.1016/j.foodhyd.2010.06.009.
    1. Tang C.H., Sun X., Yin S.W. Physicochemical, functional and structural properties of vicilin-rich protein isolate from three Phaseolus legumes: Effect of heat treatment. Food Hydrocoll. 2009;23:1771–1778. doi: 10.1016/j.foodhyd.2009.03.008.
    1. Adebowale Y.A., Adeyemi I.A., Oshodi A.A., Niranjan K. Isolation, fractionation and characterization of proteins from Mucuna bean. Food Chem. 2007;104:287–299. doi: 10.1016/j.foodchem.2006.11.050.
    1. Seena S., Sridhar K.R., Bajia B. Biochemical and biological evaluation of ANF unconventional legume, Canavalia maritima of coastal sand dunes of India. Trop. Subtrop. Agroecosyst. 2005;5:1–14.
    1. Slupski J. Effect of cooking and sterilization on the composition of amino acids on immature seeds of flageolet beans (Phaseolus vulgaris L.) cultivars. Food Chem. 2010;121:1171–1176. doi: 10.1016/j.foodchem.2010.01.066.
    1. Welch R.M., House W.A., Beebe S., Cheng Z. Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J. Agric. Food Chem. 2000;48:3576–3580. doi: 10.1021/jf0000981.
    1. Shimelis E.A., Rakshit S.K. Proximate composition and physico-chemical properties of improved dry bean (Phaseolus vulgaris L.) varieties grown in Ethiopia. LWT. 2005;38:331–338. doi: 10.1016/j.lwt.2004.07.002.
    1. Champ M.M. Non-nutrient bioactive substances of pulses. Br. J. Nutr. 2002;88:307–319. doi: 10.1079/BJN2002721.
    1. Muzquiz M., Burbano C., Ayet G., Pedrosa M.M., Cuadrado C. The investigation of antinutritional factors in Phaseolus vulgaris. Environmental and varietal differences. Biotechnol. Agron. Soc. Environ. 1999;3:210–216.
    1. Ricroft C.E., Jones M.R., Gibson G.R., Rastall R.A. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 2001;91:878–887. doi: 10.1046/j.1365-2672.2001.01446.x.
    1. Midorikawa K., Murata M., Oikawa S., Hiraku Y., Kawanishi S. Protective effect of phytic acid on oxidative DNA damage with reference to cancer chemoprevention. Biochem. Biophys. Res. Commun. 2001;288:552–557. doi: 10.1006/bbrc.2001.5808.
    1. Mathers J.C. Pulses and carcinogenesis: Potential for prevention of colon, breast and other cancers. Br. J. Nutr. 2002;88:272–279. doi: 10.1079/BJN2002717.
    1. Lajolo F.M., Genovese M.I. Nutritional significance of lectin and enzyme inhibitors from legumes. J. Agric. Food Chem. 2002;50:6592–6598. doi: 10.1021/jf020191k.
    1. Phillippy B.Q. Inositol phosphates in food. Adv. Food Nutr. Res. 2003;45:1–60.
    1. Iqbal A., Khalil I.A., Ateeq N., Khan M.S. Nutritional quality of important food legumes. Food Chem. 2006;97:331–335. doi: 10.1016/j.foodchem.2005.05.011.
    1. United States Department of Agriculture (USDA) Agricultural Research Service, National Nutrient Database for Standard Reference Release 28. Nutrient Database Laboratory Homepage. [(accessed on 14 July 2016)]; Available online: .
    1. Golam Masum Akond A.S.M., Khandaker L., Berthold J., Gates J., Peters K., Delong H., Hossain K. Anthocyanin, total polyphenols and antioxidant activity of common bean. Am. J. Food Technol. 2011;6:385–394.
    1. Ren S.C., Liu Z.L., Wang P. Proximate composition and flavonoids content and in vitro antioxidant activity of 10 varieties of legume seeds grown in China. J. Med. Plants Res. 2012;6:301–308.
    1. López A., El-Naggar T., Dueñas M., Ortega T., Estrella I., Hernández T., Gómez-Serranillos M.P., Palomino O.M., Carretero M.E. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.) Food Chem. 2013;138:547–555. doi: 10.1016/j.foodchem.2012.10.107.
    1. Cardador-Martinez A., Castano-Tostado E., Loarca-Pina G. Antimutagenic activity of natural phenolic compounds present in the common bean (Phaseolus vulgaris) against aflatoxin B1. Food Addit. Contam. 2002;19:62–69. doi: 10.1080/02652030110062110.
    1. Beninger C.W., Gu L., Prior R.L., Junk D.C., Vandenberg A., Bett K.E. Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.) J. Agric. Food Chem. 2005;53:7777–7782. doi: 10.1021/jf050051l.
    1. Xu B.J., Chang S.K. Total phenolic content and antioxidant properties of Eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. J. Food Sci. 2008;73:19–27. doi: 10.1111/j.1750-3841.2007.00625.x.
    1. Akillioglu H.G., Karakaya S. Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Sci. Biotechnol. 2010;19:633–639. doi: 10.1007/s10068-010-0089-8.
    1. de Lima P.F., Colombo C.A., Chiorato A.F., Yamaguchi L.F., Kato M.J., Carbonell S.A. Occurrence of isoflavonoids in Brazilian common bean germplasm (Phaseolus vulgaris L.) J. Agric. Food Chem. 2014;62:9699–9704. doi: 10.1021/jf5033312.
    1. Ranilla L.G., Genovese M.I., Lajolo F.M. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.) J. Agric. Food Chem. 2007;55:90–98. doi: 10.1021/jf062785j.
    1. Ávalos G.A., Pérez-Urria C.E. Metabolismo secundario de plantas. [Secondary plant metabolism]. Reduca (Biología) Ser. Fisiol. Veg. 2009;2:119–145.
    1. Reynoso Camacho R., del Carmen Ríos Ugalde M., Torres Pacheco I., Acosta Gallegos J.A., Palomino Salinas A.C., Ramos Gómez M., González Jasso E., Horacio Guzmán Y.S.H. Common bean (Phaseolus vulgaris L.) consumption and its effects on colon cancer in Sprague–Dawley rats. Agric. Téc. Méx. 2007;33:43–52.
    1. Juárez-López B.A., Aparicio-Fernández X. Polyphenolics concentration and antiradical capacity of common bean varieties (Phaseolus vulgaris L.) after thermal treatment. In: Nevárez-Moorillón G.V., Ortega-Rivas E., editors. Food Science and Food Biotechnology Essentials: A Contemporary Perspective. 1st ed. Asociación Mexicana de Ciencia de los Alimentos, A.C [Mexican Association of Food Science]; Durango, Mexico: 2012. pp. 25–33.
    1. Lin L.Z., Harnly J.M., Pastor-Corrales M.S., Luthria D.L. The polyphenolic profiles of common beans (Phaseolus vulgaris L.) Food Chem. 2008;107:399–410. doi: 10.1016/j.foodchem.2007.08.038.
    1. Hayat I., Ahmad A., Masud T., Ahmed A., Bashir S. Nutritional and health perspectives of beans (Phaseolus vulgaris L.): An overview. Crit. Rev. Food Sci. Nutr. 2014;54:580–592. doi: 10.1080/10408398.2011.596639.
    1. Ariga T., Hamano M. Radical scavenging action and its mode in procyanidins B-1 and B-3 from adzuki beans to peroxyl radicals. Agric. Biol. Chem. 1990;54:2499–2504.
    1. Tsuda T., Ohshima K., Kawakishi S., Osawa T. Antioxidative pigments isolated from the seeds of Phaseolus vulgaris L. J. Agric. Food Chem. 1994;42:248–251. doi: 10.1021/jf00038a004.
    1. Guzman-Maldonado G.H., Castellanos J., De Mejıa E.G. Relationship between theoretical and experimentally detected tannin content of common bean Phaseolus vulgaris L. Food Chem. 1996;55:333–335. doi: 10.1016/0308-8146(95)00106-9.
    1. De Mejıa E.G., Castano-Tostado E., Loarca-Pina G. Antimutagenic effects of natural phenolic compounds in beans. Mutat. Res. 1999;441:1–9. doi: 10.1016/S1383-5718(99)00040-6.
    1. Takeoka G.R., Dao L.T., Full G.H., Wong R.Y., Harden L.A., Edwards R.H., Berrios S. Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J. Agric. Food Chem. 1997;45:3395–3400. doi: 10.1021/jf970264d.
    1. Espinosa-Alonso L.G., Lygin A., Widholm J.M., Valverde M.E., Paredes-Lopez O. Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.) J. Agric. Food Chem. 2006;54:4436–4444. doi: 10.1021/jf060185e.
    1. Jun S., Shin S., Joung H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr. 2016;115:480–489. doi: 10.1017/S0007114515004006.
    1. Guajardo-Flores D., García-Patiño M., Serna-Guerrero D., Gutiérrez-Uribe J.A., Serna-Saldívar S.O. Characterization and quantification of saponins and flavonoids in sprouts, seed coats, and cotyledons of germinated black beans. Food Chem. 2012;134:1312–1319. doi: 10.1016/j.foodchem.2012.03.020.
    1. Choung M.G., Choi B.R., An Y.N., Chu Y.H., Cho Y.S. Anthocyanin profile of Korean cultivated kidney bean (Phaseolus vulgaris L.) J. Agric. Food Chem. 2003;51:7040–7043. doi: 10.1021/jf0304021.
    1. Lima J.E., Sampaio A.L.F., Henriques M.M.O., Barja–Fidalgo C. Lymphocyte activation and cytokine production by Pisum sativum agglutinin (PSA) in vivo and in vitro. Immunopharmacology. 1999;41:147–155. doi: 10.1016/S0162-3109(98)00062-9.
    1. Huber K., Brigide P., Bretas E.B., Canniatti-Brazaca S.G. Phenolic acid, flavonoids and antioxidant activity of common brown beans (Phaseolus vulgaris L.) before and after cooking. J. Nutr. Food Sci. 2016;6:1–7. doi: 10.4172/2155-9600.1000551.
    1. Díaz A.M., Caldas G.V., Blair M.W. Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res. Int. 2010;43:595–601. doi: 10.1016/j.foodres.2009.07.014.
    1. Xu B., Chang S.K. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J. Agric. Food Chem. 2009;57:4754–4764. doi: 10.1021/jf900695s.
    1. Chung H.J., Liu Q., Pauls K.P., Fan M.Z., Yada R. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 2008;41:869–875. doi: 10.1016/j.foodres.2008.03.013.
    1. Romani A., Vignolini P., Galardi C., Mulinacci N., Benedettelli S., Heimler D. Germplasm characterization of Zolfino landraces (Phaseolus vulgaris L.) by flavonoid content. J. Agric. Food Chem. 2004;52:3838–3842. doi: 10.1021/jf0307402.
    1. Jenkins A.L. The glycemic index: Looking back 25 years. Cereal Foods World. 2007;52:50–53. doi: 10.1094/CFW-52-1-0050.
    1. Oomah B.D., Cardador-Martinez A., Loarca-Piña G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L) J. Sci. Food Agric. 2005;85:935–942. doi: 10.1002/jsfa.2019.
    1. Cardador-Martínez A., Albores A., Bah M., Calderón-Salinas V., Castaño-Tostado E., Guevara-González R., Shimada-Miyasaka A., Loarca-Piña G. Relationship among antimutagenic, antioxidant and enzymatic activities of methanolic extract from common beans (Phaseolus vulgaris L) Plant Foods Hum. Nutr. 2006;61:161–168. doi: 10.1007/s11130-006-0026-4.
    1. Xu B., Chang S.K. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. J. Agric. Food Chem. 2008;56:7165–7175. doi: 10.1021/jf8012234.
    1. Karaś M., Jakubczyk A., Szymanowska U., Materska M., Zielińska E. Antioxidant activity of protein hydrolysates from raw and heat-treated yellow string beans (Phaseolus vulgaris L.) Acta Sci. Pol. Technol. Aliment. 2014;13:385–391. doi: 10.17306/J.AFS.2014.4.5.
    1. Frassinetti S., Gabriele M., Caltavuturo L., Longo V., Pucci L. Antimutagenic and antioxidant activity of a selected lectin-free common bean (Phaseolus vulgaris L.) in two cell-based models. Plant Foods Hum. Nutr. 2015;70:35–41. doi: 10.1007/s11130-014-0453-6.
    1. Venkateswaran S., Pari L. Antioxidant effect of Phaseolus vulgaris in streptozotocin-induced diabetic rats. Asia Pac. J. Clin. Nutr. 2002;11:206–209. doi: 10.1046/j.1440-6047.2002.00292.x.
    1. Amarowicz R., Dykes G.A., Pegg R.B. Antibacterial activity of tannin constituents from Phaseolus vulgaris, Fagoypyrum esculentum, Corylus avellana and Juglans nigra. Fitoterapia. 2008;79:217–219. doi: 10.1016/j.fitote.2007.11.019.
    1. Lara-Díaz V.J., Gaytán-Ramos A.A., Dávalos-Balderas A.J., Santos-Guzmán J., Mata-Cárdenas B.D., Vargas-Villarreal J., Barbosa-Quintana A., Sanson M., López-Reyes A.G., Moreno-Cuevas J.E. Microbiological and toxicological effects of Perla black bean (Phaseolus vulgaris L.) extracts: In vitro and in vivo studies. Basic Clin. Pharmacol. Toxicol. 2009;104:81–86. doi: 10.1111/j.1742-7843.2008.00330.x.
    1. Ranilla L.G., Kwon Y.I., Genovese M.I., Lajolo F.M., Shetty K. Effect of thermal treatment on phenolic compounds and functionality linked to type 2 diabetes and hypertension management of Peruvian and Brazilian bean cultivars (Phaseolus vulgaris L.) using in vitro methods. J. Food Biochem. 2010;34:329–355. doi: 10.1111/j.1745-4514.2009.00281.x.
    1. Nilsson A., Johansson E., Ekström L., Björck I. Effects of a brown beans evening meal on metabolic risk markers and appetite-regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLoS ONE. 2013;8:e59985. doi: 10.1371/journal.pone.0059985.
    1. Rondanelli M., Giacosa A., Orsini F., Opizzi A., Villani S. Appetite control and glycemia reduction in overweight subjects treated with a combination of two highly standardized extracts from Phaseolus vulgaris and Cynara scolymus. Phytother. Res. 2011;25:1275–1282.
    1. Okada Y., Okada M., Sagesaka Y. Screening of dried plant seed extracts for adiponectin production activity and tumor necrosis factor-alpha inhibitory activity on 3T3-L1 adipocytes. Plant Foods Hum. Nutr. 2010;65:225–232. doi: 10.1007/s11130-010-0184-2.
    1. Mojica L., Meyer A., Berhow M.A., González de Mejía E. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Res. Int. 2015;69:38–48. doi: 10.1016/j.foodres.2014.12.007.
    1. Oseguera-Toledo M.E., de Mejia E.G., Dia V.P., Amaya-Llano S.L. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chem. 2011;127:1175–1185. doi: 10.1016/j.foodchem.2011.01.121.
    1. Gupta A., Agarwal N.K., Byadgi P.S. Clinical assessment of dietary interventions and lifestyle modifications in Madhumeha (type-2 diabetes mellitus) Ayu. 2014;35:391–397.
    1. Kyznietsova M.Y., Halenova T.I., Savchuk O.M., Vereschaka V.V., Ostapchenko L.I. Carbohydrate metabolism in type 1 diabetic rats under the conditions of the kidney bean pods aqueous extract application. Fiziolohichnyĭ Zhurnal. 2015;61:96–103. doi: 10.15407/fz61.06.096.
    1. Pari L., Venkateswaran S. Effect of an aqueous extract of Phaseolus vulgaris on plasma insulin and hepatic key enzymes of glucose metabolism in experimental diabetes. Pharmazie. 2003;58:916–919.
    1. Spadafranca A., Rinelli S., Riva A., Morazzoni P., Magni P., Bertoli S., Battezzati A. Phaseolus vulgaris extract affects glycometabolic and appetite control in healthy human subjects. Br. J. Nutr. 2013;109:1789–1795. doi: 10.1017/S0007114512003741.
    1. Thompson M.D., Mensack M.M., Jiang W., Zhu Z., Lewis M.R., McGinley J.N., Brick M.A., Thompson H.J. Cell signaling pathways associated with a reduction in mammary cancer burden by dietary common bean (Phaseolus vulgaris L.) Carcinogenesis. 2012;33:226–232. doi: 10.1093/carcin/bgr247.
    1. Helmstädter A. Beans and diabetes: Phaseolus vulgaris preparations as antihyperglycemic agents. J. Med. Food. 2010;13:251–254. doi: 10.1089/jmf.2009.0002.
    1. Tormo M.A., Gil-Exojo I., Romero de Tejada A., Campillo J.E. Hypoglycaemic and anorexigenic activities of an alpha-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats. Br. J. Nutr. 2004;92:785–790. doi: 10.1079/BJN20041260.
    1. Tormo M.A., Gil-Exojo I., Romero de Tejada A., Campillo J.E. White bean amylase inhibitor administered orally reduces glycaemia in type 2 diabetic rats. Br. J. Nutr. 2006;96:539–544.
    1. Balestri F., Rotondo R., Moschini R., Pellegrino M., Cappiello M., Barracco V., Misuri L., Sorce C., Andreucci A., Del-Corso A., et al. Zolfino landrace (Phaseolus vulgaris L.) from Pratomagno: General and specific features of a functional food. Food Nutr. Res. 2016;60:31792–31803. doi: 10.3402/fnr.v60.31792.
    1. Pérez-Ramírez I.F., Becerril-Ocampo L.J., Reynoso-Camacho R., Herrera M.D., Guzmán-Maldonado S.H., Cruz-Bravo R.K. Cookies elaborated with oat and common bean flours improved serum markers in diabetic rats. J. Sci. Food Agric. 2017 doi: 10.1002/jsfa.8548.
    1. Ye X.Y., Ng T.B., Tsang P.W., Wang J. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J. Protein Chem. 2001;20:367–375. doi: 10.1023/A:1012276619686.
    1. Daniell E.L., Ryan E.P., Brick M.A., Thompson H.J. Dietary dry bean effects on hepatic expression of stress and toxicity-related genes in rats. Br. J. Nutr. 2012;108:37–45. doi: 10.1017/S0007114512000815.
    1. García-Lafuente A., Moro C., Manchón N., Gonzalo-Ruiz A., Villares A., Guillamón E., Rostagno M., Mateo-Vivaracho L. In vitro anti-inflammatory activity of phenolic-rich extracts from white and red common beans. Food Chem. 2014;161:216–223. doi: 10.1016/j.foodchem.2014.04.004.
    1. Zhu Z., Jiang W., Thompson H.J. Edible dry bean consumption (Phaseolus vulgaris L.) modulates cardiovascular risk factors and diet-induced obesity in rats and mice. Br. J. Nutr. 2012;108:66–73. doi: 10.1017/S0007114512000839.
    1. Oomah B.D., Corbé A., Balasubramanian P. Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. J. Agric. Food Chem. 2010;58:8225–8230. doi: 10.1021/jf1011193.
    1. Gabriele M., Pucci L., La Marca M., Lucchesi D., Della Croce C.M., Longo V., Lubrano V. A fermented bean flour extract down-regulates LOX-1, CHOP, and ICAM-1 in HMEC-1 stimulated by ox-LDL. Cell Mol. Biol. Lett. 2016;21:10–21. doi: 10.1186/s11658-016-0015-z.
    1. Reverri E.J., Randolph J.M., Steinberg F.M., Kappagoda C.T., Edirisinghe I., Burton-Freeman B.M. Black beans, fiber, and antioxidant capacity pilot study: Examination of whole foods vs. functional components on postprandial metabolic, oxidative stress, and inflammation in adults with metabolic syndrome. Nutrients. 2015;7:6139–6154. doi: 10.3390/nu7085273.
    1. Monk J.M., Lepp D., Wu W., Pauls K.P., Robinson L.E., Power K.A. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health. J. Nutr. Biochem. 2017;49:89–100. doi: 10.1016/j.jnutbio.2017.08.002.
    1. Ombra M.N., d’Acierno A., Nazzaro F., Riccardi R., Spigno P., Zaccardelli M., Pane C., Maione M., Fratianni F. Phenolic composition and antioxidant and antiproliferative activities of the extracts of twelve common bean (Phaseolus vulgaris L.) endemic ecotypes of southern Italy before and after cooking. Oxid. Med. Cell. Longev. 2016;2016:1398298. doi: 10.1155/2016/1398298.
    1. Guajardo-Flores D., Serna-Saldívar S.O., Gutiérrez-Uribe J.A. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.) Food Chem. 2013;141:1497–1503. doi: 10.1016/j.foodchem.2013.04.010.
    1. Venkateswaran S., Pari L., Saravanan G. Effect of Phaseolus vulgaris on circulatory antioxidants and lipids in rats with streptozotocin-induced diabetes. J. Med. Food. 2002;5:97–103. doi: 10.1089/109662002760178186.
    1. Mendoza-Sánchez M., Guevara-González R.G., Castaño-Tostado E., Mercado-Silva E.M., Acosta-Gallegos J.A., Rocha-Guzmán N.E., Reynoso-Camacho R. Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts. Food Chem. 2016;212:128–137. doi: 10.1016/j.foodchem.2016.05.110.
    1. Ranilla L.G., Genovese M.I., Lajolo F.M. Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaseolus vulgaris L.) cultivars. J. Agric. Food Chem. 2009;57:5734–5742. doi: 10.1021/jf900527v.
    1. Pereira M.P., Tavano O.L. Use of different spices as potential natural antioxidant additives on cooked beans (Phaseolus vulgaris). Increase of DPPH radical scavenging activity and total phenolic content. Plant Foods Hum. Nutr. 2014;69:337–343. doi: 10.1007/s11130-014-0439-4.
    1. Hernández-Salazar M., Osorio-Diaz P., Loarca-Piña G., Reynoso-Camacho R., Tovar J., Bello-Pérez L.A. In vitro fermentability and antioxidant capacity of the indigestible fraction of cooked black beans (Phaseolus vulgaris L.), lentils (Lens culinaris L.) and chickpeas (Cicer arietinum L.) J. Sci. Food Agric. 2010;90:1417–1422. doi: 10.1002/jsfa.3954.
    1. Aguilera Y., Liébana R., Herrera T., Rebollo-Hernanz M., Sanchez-Puelles C., Benítez V., Martín-Cabrejas M.A. Effect of illumination on the content of melatonin, phenolic compounds, and antioxidant activity during germination of lentils (Lens culinaris L.) and kidney beans (Phaseolus vulgaris L.) J. Agric. Food Chem. 2014;62:10736–10743. doi: 10.1021/jf503613w.
    1. Luzardo-Ocampo I., Campos-Vega R., Gaytán-Martínez M., Preciado-Ortiz R., Mendoza S., Loarca-Piña G. Bioaccessibility and antioxidant activity of free phenolic compounds and oligosaccharides from corn (Zea mays L.) and common bean (Phaseolus vulgaris L.) chips during in vitro gastrointestinal digestion and simulated colonic fermentation. Food Res. Int. 2017;100:304–311. doi: 10.1016/j.foodres.2017.07.018.
    1. Thompson M.D., Thompson H.J., Brick M.A., McGinley J.N., Jiang W., Zhu Z., Wolfe P. Mechanisms associated with dose-dependent inhibition of rat mammary carcinogenesis by dry bean (Phaseolus vulgaris, L.) J. Nutr. 2008;138:2091–2097. doi: 10.3945/jn.108.094557.
    1. Thompson S.V., Winham D.M., Hutchins A.M. Bean and rice meals reduce postprandial glycemic response in adults with type 2 diabetes: A cross-over study. Nutr. J. 2012;11:23–30. doi: 10.1186/1475-2891-11-23.
    1. Mensack M.M., McGinley J.N., Thompson H.J. Metabolomic analysis of the effects of edible dry beans (Phaseolus vulgaris L.) on tissue lipid metabolism and carcinogenesis in rats. Br. J. Nutr. 2012;108:155–165. doi: 10.1017/S0007114512000827.
    1. Haydé V.C., Ramón G.G., Lorenzo G.O., Dave O.B., Rosalía R.C., Paul W., Guadalupe L.P. Non-digestible fraction of beans (Phaseolus vulgaris L.) modulates signaling pathway genes at an early stage of colon cancer in Sprague-Dawley rats. Br. J. Nutr. 2012;108:145–154. doi: 10.1017/S0007114512000785.
    1. Vergara-Castañeda H.A., Guevara-González R.G., Ramos-Gómez M., Reynoso-Camacho R., Guzmán-Maldonado H., Feregrino-Pérez A.A., Oomah B.D., Loarca-Piña G. Non-digestible fraction of cooked bean (Phaseolus vulgaris L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats. Food Funct. 2010;1:294–300. doi: 10.1039/c0fo00130a.
    1. Feregrino-Pérez A.A., Berumen L.C., García-Alcocer G., Guevara-Gonzalez R.G., Ramos-Gomez M., Reynoso-Camacho R., Acosta-Gallegos J.A., Loarca-Piña G. Composition and chemopreventive effect of polysaccharides from common beans (Phaseolus vulgaris L.) on azoxymethane-induced colon cancer. J. Agric. Food Chem. 2008;56:8737–8744. doi: 10.1021/jf8007162.
    1. Feregrino-Perez A.A., Piñol-Felis C., Gomez-Arbones X., Guevara-González R.G., Campos-Vega R., Acosta-Gallegos J., Loarca-Piña G. A non-digestible fraction of the common bean (Phaseolus vulgaris L.) induces cell cycle arrest and apoptosis during early carcinogenesis. Plant Foods Hum. Nutr. 2014;69:248–254. doi: 10.1007/s11130-014-0428-7.
    1. Campos-Vega R., García-Gasca T., Guevara-Gonzalez R., Ramos-Gomez M., Oomah B.D., Loarca-Piña G. Human gut flora-fermented non-digestible fraction from cooked bean (Phaseolus vulgaris L.) modifies protein expression associated with apoptosis, cell cycle arrest, and proliferation in human adenocarcinoma colon cancer cells. J. Agric. Food Chem. 2012;60:12443–12450. doi: 10.1021/jf303940r.
    1. Nakanishi S., Kataoka K., Kuwahara T., Ohnishi Y. Effects of high amylose maize starch and Clostridium butyricum on metabolism in colonic microbiota and formation of azoxymethane-induced aberrant crypt foci in the rat colon. Microbiol. Immunol. 2003;47:951–958. doi: 10.1111/j.1348-0421.2003.tb03469.x.
    1. Cruz-Bravo R.K., Guevara-Gonzalez R., Ramos-Gomez M., Garcia-Gasca T., Campos-Vega R., Oomah B.D., Loarca-Piña G. Fermented nondigestible fraction from common bean (Phaseolus vulgaris L.) cultivar Negro 8025 modulates HT-29 cell behavior. J. Food Sci. 2011;76:41–47.
    1. Chávez-Santoscoy R.A., Gutiérrez-Uribe J.A., Serna-Saldívar S.O. Effect of flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors. Plant Foods Hum. Nutr. 2013;68:416–423. doi: 10.1007/s11130-013-0384-7.
    1. Sidorova Y., Shipelin V., Mazo V., Zorin S., Petrov N., Kochetkova A. Hypoglycemic and hypolipidemic effect of Vaccinium myrtillus L. leaf and Phaseolus vulgaris L. seed coat extracts in diabetic rats. Nutrition. 2017;41:107–112. doi: 10.1016/j.nut.2017.04.010.
    1. Pari L., Venkateswaran S. Protective role of Phaseolus vulgaris on changes in the fatty acid composition in experimental diabetes. J. Med. Food. 2004;7:204–209. doi: 10.1089/1096620041224120.
    1. Loi B., Fantini N., Colombo G., Gessa G.L., Riva A., Bombardelli E., Morazzoni P., Carai M.A. Reducing effect of an extract of Phaseolus vulgaris on food intake in micefocus on highly palatable foods. Fitoterapia. 2013;85:14–19. doi: 10.1016/j.fitote.2012.12.015.
    1. Zaru A., Maccioni P., Riva A., Morazzoni P., Bombardelli E., Gessa G.L., Carai M.A., Colombo G. Reducing effect of a combination of Phaseolus vulgaris and Cynara scolymus extracts on operant self-administration of a chocolate-flavored beverage in rats. Phytother. Res. 2013;27:944–947. doi: 10.1002/ptr.4814.
    1. Maccioni P., Colombo G., Riva A., Morazzoni P., Bombardelli E., Gessa G.L., Carai M.A. Reducing effect of a Phaseolus vulgaris dry extract on operant self-administration of a chocolate-flavored beverage in rats. Br. J. Nutr. 2010;104:624–628. doi: 10.1017/S0007114510001017.
    1. Fantini N., Cabras C., Lobina C., Colombo G., Gessa G.L., Riva A., Donzelli F., Morazzoni P., Bombardelli E., Carai M.A. Reducing effect of a Phaseolus vulgaris dry extract on food intake, body weight, and glycemia in rats. J. Agric. Food Chem. 2009;57:9316–9323. doi: 10.1021/jf900711z.
    1. Carai M.A., Fantini N., Loi B., Colombo G., Gessa G.L., Riva A., Bombardelli E., Morazzoni P. Multiple cycles of repeated treatments with a Phaseolus vulgaris dry extract reduce food intake and body weight in obese rats. Br. J. Nutr. 2011;106:762–768. doi: 10.1017/S0007114511000778.
    1. Loi B., Fantini N., Colombo G., Gessa G.L., Riva A., Bombardelli E., Morazzoni P., Carai M.A. Reducing effect of a combination of Phaseolus vulgaris and Cynara scolymus extracts on food intake and glycemia in rats. Phytother. Res. 2013;27:258–263. doi: 10.1002/ptr.4704.
    1. Hernández-Saavedra D., Mendoza-Sánchez M., Hernández-Montiel H.L., Guzmán-Maldonado H.S., Loarca-Piña G.F., Salgado L.M., Reynoso-Camacho R. Cooked common beans (Phaseolus vulgaris) protect against β-cell damage in streptozotocin-induced diabetic rats. Plant Foods Hum. Nutr. 2013;68:207–212. doi: 10.1007/s11130-013-0353-1.
    1. Venn B.J., Mann J.I. Cereal grains, legumes and diabetes. Eur. J. Clin. Nutr. 2004;58:1443–1461. doi: 10.1038/sj.ejcn.1601995.
    1. Campos-Vega. R., Loarca-Pina G., Oomah B.D. Minor components of pulses and their potential impact on human health. Food Res. Int. 2010;43:461–582. doi: 10.1016/j.foodres.2009.09.004.
    1. Oseguera-Toledo M.E., Gonzalez de Mejia E., Amaya-Llano S.L. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int. 2015;76:839–851. doi: 10.1016/j.foodres.2015.07.046.
    1. Mojica L., de Mejía E.G. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct. 2016;7:713–727. doi: 10.1039/C5FO01204J.
    1. Roman-Ramos R., Flores-Saenz F.J., Alarcon A. Anti-hyperglycemic effect of some edible plants. J. Ethnopharmacol. 1995;48:25–32. doi: 10.1016/0378-8741(95)01279-M.
    1. Villegas R., Gao Y.T., Yang G., Li H.L., Elasy T.A., Zheng W. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2008;87:162–167.
    1. Tang G.Y., Li X.J., Zhang H.Y. Antidiabetic components contained in vegetables and legumes. Molecules. 2008;13:1189–1194. doi: 10.3390/molecules13051189.
    1. Pi-Sunyer F.X. Pathophysiology and long-term management of the metabolic syndrome. Obes. Res. 2004;12:174–180. doi: 10.1038/oby.2004.285.
    1. Finley J.W., Burrell J.B., Reeves P.G. Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans. J. Nutr. 2007;137:2391–2398.
    1. Anderson J.W., Major A.W. Pulses, and lipaemia, short- and long-term effects: Potential in the prevention of cardiovascular disease. Br. J. Nutr. 2002;88:263–271. doi: 10.1079/BJN2002716.
    1. Winham D.M., Hutchins M.H. Baked beans consumption reduces serum cholesterol in hypercholesterolemic adults. Nutr. Res. 2007;27:380–386. doi: 10.1016/j.nutres.2007.04.017.
    1. Shutler S.M., Bircher G.M., Tredger J.A., Morgan L.M., Walker A.F., Low A.G. The effect of daily baked bean (Phaseolus vulgaris) consumption on the plasma lipid levels of young, normocholesterolemic men. Br. J. Nutr. 1989;61:257–265. doi: 10.1079/BJN19890114.
    1. Anderson J.W., Story L., Sieling B., Chen W.L., Petro M.S., Story J. Hypocholesterolemic effects of bean intake for hypercholesterolemic men. Am. J. Clin. Nutr. 1990;40:1146–1155.
    1. Maruyama C., Araki R., Kawamura M., Kondo N., Kigawa M., Kawai Y. Azuki bean juice lowers serum triglyceride concentrations in healthy young women. J. Clin. Biochem. Nutr. 2008;43:19–25. doi: 10.3164/jcbn.2008039.
    1. Bazzano L.H.J., Ogden L.G., Loria C., Vupputuri S., Myers L., Whelton P.K. Legume consumption and risk of coronary heart disease in US men and women: NHANES I Epidemiologic Follow-up Study. Arch. Int. Med. 2001;161:2573–2578. doi: 10.1001/archinte.161.21.2573.
    1. Chavez-Santoscoy R.A., Gutierrez-Uribe J.A., Granados O., Torre-Villalvazo I., Serna-Saldivar S.O., Torres N., Palacios-González B., Tovar A.R. Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice. Br. J. Nutr. 2014;112:886–899. doi: 10.1017/S0007114514001536.
    1. Wu P., Liu S., Su J., Chen J., Li L., Zhang R., Chen T. Apoptosis triggered by isoquercitrin in bladder cancer cells by activating the AMPK-activated protein kinase pathway. Food Funct. 2017 doi: 10.1039/C7FO00778G.
    1. Chatterjee A., Ronghe A., Padhye S.B., Spade D.A., Bhat N.K., Bhat H.K. Antioxidant activities of novel resveratrol analogs in breast cancer. J. Biochem. Mol. Toxicol. 2017 doi: 10.1002/jbt.21925.
    1. Correa P. Epidemiological correlations between diet and cancer frequency. Cancer Res. 1981;41:3685–3689.
    1. Kolonel L.N., Hankin J.H., Whittemore A.S., Wu A.H., Gallagher R.P., Wilkens L.R., John E.M., Howe G.R., Dreon D.M., West D.W., et al. Vegetables, fruits, legumes and prostate cancer: A multiethnic case-control study. Cancer Epidemiol. Biomark. Prev. 2000;9:795–804.
    1. Thompson M.D., Brick M.A., McGinley J.N., Thompson H.J. Chemical composition and mammary cancer inhibitory activity of dry beans. Crop Sci. 2009;49:179–186. doi: 10.2135/cropsci2008.04.0218.
    1. Hangen L.A., Bennink M.R. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr. Cancer. 2003;44:60–65.
    1. Williams G.M., Iatropoulos M.J., Jeffrey A.M. Anticarcinogenicity of monocyclic phenolic compounds. Eur. J. Cancer Prev. 2002;11:101–107.
    1. Sabater V.M., Kuilman-Wahls M.E.M., Fink-Gremmels J. Inhibition of aflatoxin B1 mutagenicity by cyclopiazonic acid in the presence of human liver preparations. Toxicol. Lett. 2003;143:291–299. doi: 10.1016/S0378-4274(03)00196-6.
    1. De Flora S. Mechanisms of inhibitors of mutagenesis and carcinogenesis. Mutat. Res. 1998;402:151–158. doi: 10.1016/S0027-5107(97)00292-3.

Source: PubMed

3
Abonnere