Somatotropic Axis Dysfunction in Non-Alcoholic Fatty Liver Disease: Beneficial Hepatic and Systemic Effects of Hormone Supplementation

Daniel Cabrera, Claudio Cabello-Verrugio, Nancy Solís, Diego San Martín, Catalina Cofré, Margarita Pizarro, Juan Pablo Arab, Johanna Abrigo, Fabián Campos, Betzabé Irigoyen, Gonzalo Carrasco-Avino, Katiuska Bezares, Valentina Riquelme, Arnoldo Riquelme, Marco Arrese, Francisco Barrera, Daniel Cabrera, Claudio Cabello-Verrugio, Nancy Solís, Diego San Martín, Catalina Cofré, Margarita Pizarro, Juan Pablo Arab, Johanna Abrigo, Fabián Campos, Betzabé Irigoyen, Gonzalo Carrasco-Avino, Katiuska Bezares, Valentina Riquelme, Arnoldo Riquelme, Marco Arrese, Francisco Barrera

Abstract

Background: Somatotropic axis dysfunction associated with non-alcoholic fatty liver disease (NAFLD) has potential multisystemic detrimental effects. Here, we analysed the effects of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) supplementation on liver histology, adipokine profile and muscle function in an NAFLD model.

Methods: C57BL/6 mice were fed with a high fat diet (HFD) for 12 weeks and were separated into three groups treated for 4 weeks with: (1) High fat diet (HFD) (n = 10); (2) HFD + GH 9 μg/g/d (n = 10); (3) HFD + IGF-1 0.02 µg/g/d (n = 9). A control group fed a chow diet was included (n = 6). Liver histology, liver triglycerides content, serum alanine aminotransferase (ALT) activity, adiponectin and leptin serum levels, in vivo muscle strength, tetanic force and muscle fibre cross-sectional area (CSA) were measured.

Results: HFD + GH and HFD + IGF-1 groups showed significantly lower ALT activity compared to HFD (p < 0.01). Liver triglyceride content in HFD + GH was decreased compared to HFD (p < 0.01). Histologic steatosis score was increased in HFD and HFD + GH group (p < 0.01), whereas HFD + IGF-1 presented no difference compared to the chow group (p = 0.3). HFD + GH group presented lower serum leptin and adiponectin levels compared to HFD. GH and IGF-1 supplementation therapy reverted HFD-induced reduction in muscle strength and CSA (sarcopenia).

Conclusions: GH and IGF-1 supplementation induced significant improvement in liver steatosis, aminotransferases and sarcopenia in a diet-induced NAFLD model.

Keywords: IGF-1; fatty liver; growth hormone; insulin growth factor 1; somatotropic axis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Metabolic effects of intervention according to study groups: (A) Body weight; (B) Liver weight; (C) Serum Glucose; (D) Serum Insulin and (E) Homeostasis Model Assessment of Insulin resistance (HOMA-IR). High fat diet (HFD) induced a significant increase in body weight and HOMA-IR. HFD induced hepatomegaly and a significant increase in serum insulin. * p < 0.05; ** p < 0.01.
Figure 2
Figure 2
Effects of somatotropic hormone supplementation in liver. (A) Representative histological images of livers from experimental groups after 22 weeks of feeding with either chow, high fat diet (HFD) and HFD supplemented with growth hormone GH or insulin-like growth factor-1 (IGF-1). (B) Quantification of liver steatosis by histology in percentage of steatotic hepatocytes in experimental groups. No significant increase in steatosis can be observed in HFD + IGF-1 group compared to Chow. (C) Histology Score. No significant changes were observed in liver inflammation, ballooning and fibrosis in histology. (D) Hepatic triglycerides content according to experimental groups. A significant reduction of triglycerides content was observed in HFD + GH group. (E) Effects of hormone supplementation in lipogenic gene expression. A significant reduction was observed in HFD + GH group compared to HFD. (F) Serum ALT levels according to experimental groups. A significant reduction was observed in HFD + GH and HFD + IGF-1 groups compared to HFD. * p < 0.05; ** p < 0.01.
Figure 3
Figure 3
High fat diet induced sarcopenia that was fully reverted by somatotropic hormone supplementation. (A) Muscle histological sections with wheat germ agglutinin (WGA) fluorescence staining, (B) muscle fibre diameter distribution as determined by measure of the minimal feret’s diameter, (C) analysis of three muscle fibre size ranges. Thick (>56 Lm), medium size (30–55 Lm), and thin (<30 Lm) muscle fibres are shown. (D,E) electrophysiological analysis of TA muscle strength from both groups including twitch and tetanus contractions. (F) Body strength in vivo. * p < 0.05; ** p < 0.01; N.D., not detectable.
Figure 4
Figure 4
Serum adipokines levels: (A) Leptin and (B) adiponectin. Growth hormone supplementation attenuated high fat diet (HFD) associated increase of leptin serum levels, and reduced serum adiponectin levels compared to HFD and HFD + IGF-1. * p < 0.05; ** p < 0.01.
Figure 5
Figure 5
(A) Schematic representation of experimental approach on each of the study groups. (B) Implantation of osmotic pumps. Osmotic pumps were implanted subcutaneously in C56BL6 mice after 12 weeks of high fat diet for continuous subcutaneous infusion of placebo, growth hormone (GH) or insulin growth factor type 1 (IGF-1) respectively. HFD: High fat diet.

References

    1. European Association for the Study of the Liver Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016;64:1388–1402.
    1. Arrese M. Nonalcoholic fatty liver disease: Liver disease: An overlooked complication of diabetes mellitus. Nat. Rev. Endocrinol. 2010;6:660–661. doi: 10.1038/nrendo.2010.173.
    1. Argo C.K., Caldwell S.H. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin. Liver Dis. 2009;13:511–531. doi: 10.1016/j.cld.2009.07.005.
    1. Adams L.A. Nonalcoholic fatty liver disease and diabetes mellitus. Endocr. Res. 2007;32:59–69. doi: 10.1080/07435800701743885.
    1. Barrera F., George J. Non-alcoholic fatty liver disease: More than just ectopic fat accumulation. Drug Discov. Today Dis. Mech. 2013;10:e47–e54. doi: 10.1016/j.ddmec.2013.06.002.
    1. Bellentani S., Scaglioni F., Marino M., Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig. Dis. 2010;28:155–161. doi: 10.1159/000282080.
    1. Riquelme A., Arrese M., Soza A., Morales A., Baudrand R., Perez-Ayuso R.M., Gonzalez R., Alvarez M., Hernandez V., Garcia-Zattera M.J., et al. Non-alcoholic fatty liver disease and its association with obesity, insulin resistance and increased serum levels of C-reactive protein in Hispanics. Liver Int. 2009;29:82–88. doi: 10.1111/j.1478-3231.2008.01823.x.
    1. Birkenfeld A.L., Shulman G.I. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59:713–723. doi: 10.1002/hep.26672.
    1. Gariani K., Philippe J., Jornayvaz F.R. Non-alcoholic fatty liver disease and insulin resistance: From bench to bedside. Diabetes Metab. 2013;39:16–26. doi: 10.1016/j.diabet.2012.11.002.
    1. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: Pathophysiology and clinical implications. Gastroenterology. 2012;142:711–725.e6. doi: 10.1053/j.gastro.2012.02.003.
    1. Kamada Y., Takehara T., Hayashi N. Adipocytokines and liver disease. J. Gastroenterol. 2008;43:811–822. doi: 10.1007/s00535-008-2213-6.
    1. Marra F., Bertolani C. Adipokines in liver diseases. Hepatology. 2009;50:957–969. doi: 10.1002/hep.23046.
    1. Abenavoli L., Peta V. Role of adipokines and cytokines in non-alcoholic fatty liver disease. Rev. Recent Clin. Trials. 2014;9:134–140. doi: 10.2174/1574887109666141216102458.
    1. Sesti G., Sciacqua A., Cardellini M., Marini M.A., Maio R., Vatrano M., Succurro E., Lauro R., Federici M., Perticone F. Plasma concentration of IGF-I is independently associated with insulin sensitivity in subjects with different degrees of glucose tolerance. Diabetes Care. 2005;28:120–125. doi: 10.2337/diacare.28.1.120.
    1. Liang S., Yu Z., Song X., Wang Y., Li M., Xue J. Reduced Growth Hormone Secretion is Associated with Nonalcoholic Fatty Liver Disease in Obese Children. Horm. Metab. Res. 2018;50:250–256. doi: 10.1055/s-0043-124970.
    1. Hribal M.L., Procopio T., Petta S., Sciacqua A., Grimaudo S., Pipitone R.M., Perticone F., Sesti G. Insulin-like growth factor-I, inflammatory proteins, and fibrosis in subjects with nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2013;98:E304–E308. doi: 10.1210/jc.2012-3290.
    1. Koehler E., Swain J., Sanderson S., Krishnan A., Watt K., Charlton M. Growth hormone, dehydroepiandrosterone and adiponectin levels in non-alcoholic steatohepatitis: An endocrine signature for advanced fibrosis in obese patients. Liver Int. 2012;32:279–286. doi: 10.1111/j.1478-3231.2011.02637.x.
    1. Chishima S., Kogiso T., Matsushita N., Hashimoto E., Tokushige K. The Relationship between the Growth Hormone/Insulin-like Growth Factor System and the Histological Features of Nonalcoholic Fatty Liver Disease. Intern. Med. 2017;56:473–480. doi: 10.2169/internalmedicine.56.7626.
    1. Dichtel L.E., Corey K.E., Misdraji J., Bredella M.A., Schorr M., Osganian S.A., Young B.J., Sung J.C., Miller K.K. The Association between IGF-1 Levels and the Histologic Severity of Nonalcoholic Fatty Liver Disease. Clin. Transl. Gastroenterol. 2017;8:e217. doi: 10.1038/ctg.2016.72.
    1. Adams L.A., Feldstein A., Lindor K.D., Angulo P. Nonalcoholic fatty liver disease among patients with hypothalamic and pituitary dysfunction. Hepatology. 2004;39:909–914. doi: 10.1002/hep.20140.
    1. Clemmons D.R. Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol. Metab. Clin. N. Am. 2012;41:425–443. doi: 10.1016/j.ecl.2012.04.017.
    1. Palmeiro C.R., Anand R., Dardi I.K., Balasubramaniyam N., Schwarcz M.D., Weiss I.A. Growth hormone and the cardiovascular system. Cardiol. Rev. 2012;20:197–207. doi: 10.1097/CRD.0b013e318248a3e1.
    1. Ohlsson C., Mohan S., Sjogren K., Tivesten A., Isgaard J., Isaksson O., Jansson J.O., Svensson J. The role of liver-derived insulin-like growth factor-I. Endocr. Rev. 2009;30:494–535. doi: 10.1210/er.2009-0010.
    1. Takahashi Y., Iida K., Takahashi K., Yoshioka S., Fukuoka H., Takeno R., Imanaka M., Nishizawa H., Takahashi M., Seo Y., et al. Growth hormone reverses nonalcoholic steatohepatitis in a patient with adult growth hormone deficiency. Gastroenterology. 2007;132:938–943. doi: 10.1053/j.gastro.2006.12.024.
    1. List E.O., Palmer A.J., Berryman D.E., Bower B., Kelder B., Kopchick J.J. Growth hormone improves body composition, fasting blood glucose, glucose tolerance and liver triacylglycerol in a mouse model of diet-induced obesity and type 2 diabetes. Diabetologia. 2009;52:1647–1655. doi: 10.1007/s00125-009-1402-z.
    1. Takahashi Y. The Role of Growth Hormone and Insulin-Like Growth Factor-I in the Liver. Int. J. Mol. Sci. 2017;18:1447. doi: 10.3390/ijms18071447.
    1. Olarescu N.C., Bollerslev J. The Impact of Adipose Tissue on Insulin Resistance in Acromegaly. Trends Endocrinol. Metab. 2016;27:226–237. doi: 10.1016/j.tem.2016.02.005.
    1. Sobrevals L., Rodriguez C., Romero-Trevejo J.L., Gondi G., Monreal I., Paneda A., Juanarena N., Arcelus S., Razquin N., Guembe L., et al. Insulin-like growth factor I gene transfer to cirrhotic liver induces fibrolysis and reduces fibrogenesis leading to cirrhosis reversion in rats. Hepatology. 2010;51:912–921.
    1. Nishizawa H., Iguchi G., Fukuoka H., Takahashi M., Suda K., Bando H., Matsumoto R., Yoshida K., Odake Y., Ogawa W., et al. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci. Rep. 2016;6:34605. doi: 10.1038/srep34605.
    1. De la Garza R.G., Morales-Garza L.A., Martin-Estal I., Castilla-Cortazar I. Insulin-Like Growth Factor-1 Deficiency and Cirrhosis Establishment. J. Clin. Med. Res. 2017;9:233–247. doi: 10.14740/jocmr2761w.
    1. Cleasby M.E., Jamieson P.M., Atherton P.J. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities. J. Endocrinol. 2016;229:R67–R81. doi: 10.1530/JOE-15-0533.
    1. Bhanji R.A., Narayanan P., Allen A.M., Malhi H., Watt K.D. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology. 2017;66:2055–2065. doi: 10.1002/hep.29420.
    1. Poggiogalle E., Donini L.M., Lenzi A., Chiesa C., Pacifico L. Non-alcoholic fatty liver disease connections with fat-free tissues: A focus on bone and skeletal muscle. World J. Gastroenterol. 2017;23:1747–1757. doi: 10.3748/wjg.v23.i10.1747.
    1. Hong H.C., Hwang S.Y., Choi H.Y., Yoo H.J., Seo J.A., Kim S.G., Kim N.H., Baik S.H., Choi D.S., Choi K.M. Relationship between sarcopenia and nonalcoholic fatty liver disease: The Korean Sarcopenic Obesity Study. Hepatology. 2014;59:1772–1778. doi: 10.1002/hep.26716.
    1. Guichelaar M.M., Charlton M.R. Decreased muscle mass in nonalcoholic fatty liver disease: New evidence of a link between growth hormone and fatty liver disease? Hepatology. 2014;59:1668–1670. doi: 10.1002/hep.27058.
    1. Kim S.H., Park M.J. The role of growth hormone receptor in beta cell function. Growth Horm. IGF Res. 2017;36:30–35.
    1. Kim S.H., Park M.J. Effects of growth hormone on glucose metabolism and insulin resistance in human. Ann. Pediatr. Endocrinol. Metab. 2017;22:145–152. doi: 10.6065/apem.2017.22.3.145.
    1. Martinez C.S., Piazza V.G., Gonzalez L., Fang Y., Bartke A., Turynl D., Miquet J.G., Sotelo A.I. Mitogenic signaling pathways in the liver of growth hormone (GH)-overexpressing mice during the growth period. Cell Cycle. 2016;15:748–759. doi: 10.1080/15384101.2016.1148844.
    1. Cordoba-Chacon J., Majumdar N., List E.O., Diaz-Ruiz A., Frank S.J., Manzano A., Bartrons R., Puchowicz M., Kopchick J.J., Kineman R.D. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice. Diabetes. 2015;64:3093–3103. doi: 10.2337/db15-0370.
    1. Abrigo J., Rivera J.C., Aravena J., Cabrera D., Simon F., Ezquer F., Ezquer M., Cabello-Verrugio C. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis. Oxid. Med. Cell. Longev. 2016;2016:9047821. doi: 10.1155/2016/9047821.
    1. Borst S.E. Interventions for sarcopenia and muscle weakness in older people. Age Ageing. 2004;33:548–555. doi: 10.1093/ageing/afh201.
    1. Burton L.A., Sumukadas D. Optimal management of sarcopenia. Clin. Interv. Aging. 2010;5:217–228.
    1. Perrini S., Laviola L., Carreira M.C., Cignarelli A., Natalicchio A., Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: Mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J. Endocrinol. 2010;205:201–210. doi: 10.1677/JOE-09-0431.
    1. Trobec K., von Haehling S., Anker S.D., Lainscak M. Growth hormone, insulin-like growth factor 1, and insulin signaling-a pharmacological target in body wasting and cachexia. J. Cachexia Sarcopenia Muscle. 2011;2:191–200. doi: 10.1007/s13539-011-0043-5.
    1. Consitt L.A., Saneda A., Saxena G., List E.O., Kopchick J.J. Mice overexpressing growth hormone exhibit increased skeletal muscle myostatin and MuRF1 with attenuation of muscle mass. Skelet. Muscle. 2017;7:17. doi: 10.1186/s13395-017-0133-y.
    1. Isozaki O., Tsushima T., Miyakawa M., Nozoe Y., Demura H., Seki H. Growth hormone directly inhibits leptin gene expression in visceral fat tissue in fatty Zucker rats. J. Endocrinol. 1999;161:511–516. doi: 10.1677/joe.0.1610511.
    1. White U.A., Maier J., Zhao P., Richard A.J., Stephens J.M. The modulation of adiponectin by STAT5-activating hormones. Am. J. Physiol. Endocrinol. Metab. 2016;310:E129–E136. doi: 10.1152/ajpendo.00068.2015.
    1. Deacon R.M. Measuring the strength of mice. J. Vis. Exp. 2013;76:2610. doi: 10.3791/2610.
    1. Cabrera D., Ruiz A., Cabello-Verrugio C., Brandan E., Estrada L., Pizarro M., Solis N., Torres J., Barrera F., Arrese M. Diet-Induced Nonalcoholic Fatty Liver Disease Is Associated with Sarcopenia and Decreased Serum Insulin-Like Growth Factor-1. Dig. Dis. Sci. 2016;61:3190–3198. doi: 10.1007/s10620-016-4285-0.
    1. Briguet A., Courdier-Fruh I., Foster M., Meier T., Magyar J.P. Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul. Disord. 2004;14:675–682. doi: 10.1016/j.nmd.2004.06.008.

Source: PubMed

3
Abonnere