EVITA Dengue: a cluster-randomized controlled trial to EValuate the efficacy of Wolbachia-InfecTed Aedes aegypti mosquitoes in reducing the incidence of Arboviral infection in Brazil

Matthew H Collins, Gail E Potter, Matt D T Hitchings, Ellie Butler, Michelle Wiles, Jessie K Kennedy, Sofia B Pinto, Adla B M Teixeira, Arnau Casanovas-Massana, Nadine G Rouphael, Gregory A Deye, Cameron P Simmons, Luciano A Moreira, Mauricio L Nogueira, Derek A T Cummings, Albert I Ko, Mauro M Teixeira, Srilatha Edupuganti, Matthew H Collins, Gail E Potter, Matt D T Hitchings, Ellie Butler, Michelle Wiles, Jessie K Kennedy, Sofia B Pinto, Adla B M Teixeira, Arnau Casanovas-Massana, Nadine G Rouphael, Gregory A Deye, Cameron P Simmons, Luciano A Moreira, Mauricio L Nogueira, Derek A T Cummings, Albert I Ko, Mauro M Teixeira, Srilatha Edupuganti

Abstract

Background: Arboviruses transmitted by Aedes aegypti including dengue, Zika, and chikungunya are a major global health problem, with over 2.5 billion at risk for dengue alone. There are no licensed antivirals for these infections, and safe and effective vaccines are not yet widely available. Thus, prevention of arbovirus transmission by vector modification is a novel approach being pursued by multiple researchers. However, the field needs high-quality evidence derived from randomized, controlled trials upon which to base the implementation and maintenance of vector control programs. Here, we report the EVITA Dengue trial design (DMID 17-0111), which assesses the efficacy in decreasing arbovirus transmission of an innovative approach developed by the World Mosquito Program for vector modification of Aedes mosquitoes by Wolbachia pipientis.

Methods: DMID 17-0111 is a cluster-randomized trial in Belo Horizonte, Brazil, with clusters defined by primary school catchment areas. Clusters (n = 58) will be randomized 1:1 to intervention (release of Wolbachia-infected Aedes aegypti mosquitoes) vs. control (no release). Standard vector control activities (i.e., insecticides and education campaigns for reduction of mosquito breeding sites) will continue as per current practice in the municipality. Participants (n = 3480, 60 per cluster) are children aged 6-11 years enrolled in the cluster-defining school and living within the cluster boundaries who will undergo annual serologic surveillance for arboviral infection. The primary objective is to compare sero-incidence of arboviral infection between arms.

Discussion: DMID 17-0111 aims to determine the efficacy of Wolbachia-infected mosquito releases in reducing human infections by arboviruses transmitted by Aedes aegypti and will complement the mounting evidence for this method from large-scale field releases and ongoing trials. The trial also represents a critical step towards robustness and rigor for how vector control methods are assessed, including the simultaneous measurement and correlation of entomologic and epidemiologic outcomes. Data from this trial will inform further the development of novel vector control methods.

Trial registration: ClinicalTrials.gov NCT04514107 . Registered on 17 August 2020 Primary sponsor: National Institute of Health, National Institute of Allergy and Infectious Diseases.

Keywords: Arbovirus; Chikungunya; Clinical trial; Cluster-randomized controlled trial; Dengue; Prevention; Vector control; Vector-borne disease; Wolbachia; Zika.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Spatial blocks used for randomization. a The political map of Belo Horizonte is shown with all enrolled clusters shown (n = 58). b The boundaries of the nine Distritos Sanitários (Health Districts) are shown in gray with color-coding indicating the spatial blocks used for randomization. Spatial blocks correspond to health districts except that the two districts with the largest number of clusters (Barreiro and Nordeste) were each divided into two spatial blocks. Overall allocation will be exactly 1:1 (intervention vs. control) and will be exactly 1:1 in blocks with even numbers of clusters and approximately 1:1 in blocks with odd numbers of clusters
Fig. 2
Fig. 2
Confirmed cases of dengue in Belo Horizonte in 2017. Dark lines demarcate the nine health districts
Fig. 3
Fig. 3
Dengue epidemiologic curves in Belo Horizonte, Brazil (2009–2020). 1Cases are recorded and displayed by the first day of symptom onset. Data depicted are obtained from publicly available data curated by the Health Department of the City of Belo Horizonte and available here: https://portalsinan.saude.gov.br
Fig. 4
Fig. 4
EVITA Dengue study timeline. The top line displays the 4 years of the trial, indicating when serosurveillance samples were obtained from participants, which occurred in the low transmission season each year. The lower portion is an expanded view of year 1 and year 2 to better show the timing of intervention deployment in relationship to other study activities. Randomization 1 occurred on December 9, 2020. Randomization 2 occurred on February 22, 2021

References

    1. Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, Lindsay SW. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020;14(1):e0007831. doi: 10.1371/journal.pntd.0007831.
    1. Carvalho FD, Moreira LA. Why is Aedes aegypti Linnaeus so successful as a species? Neotrop Entomol. 2017;46(3):243–255. doi: 10.1007/s13744-017-0520-4.
    1. Roiz D, Wilson AL, Scott TW, Fonseca DM, Jourdain F, Müller P, Velayudhan R, Corbel V. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis. 2018;12(12):e0006845. doi: 10.1371/journal.pntd.0006845.
    1. Morens DM, Folkers GK, Fauci AS. Emerging infections: a perpetual challenge. Lancet Infect Dis. 2008;8(11):710–719. doi: 10.1016/S1473-3099(08)70256-1.
    1. Wilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis. 2017;17(3):e101–e106. doi: 10.1016/S1473-3099(16)30518-7.
    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013;496(7446):504–507. doi: 10.1038/nature12060.
    1. Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat. Rev. Dis. Prim. 2016;2(1):16055. doi: 10.1038/nrdp.2016.55.
    1. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6(8):e1760. doi: 10.1371/journal.pntd.0001760.
    1. Yactayo S, Staples JE, Millot V, Cibrelus L, Ramon-Pardo P. Epidemiology of Chikungunya in the Americas. J Infect Dis. 2016;214(suppl 5):S441–S445. doi: 10.1093/infdis/jiw390.
    1. Musso D, Gubler DJ. Zika virus. Clin Microbiol Rev. 2016;29(3):487–524. doi: 10.1128/CMR.00072-15.
    1. Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X. Emerging arboviruses: why today? One Heal. 2017;4:1–13. doi: 10.1016/j.onehlt.2017.06.001.
    1. Sampathkumar P, Sanchez JL. Zika virus in the Americas: a review for clinicians. Mayo Clin. Proc. 2016;91(4):514–521. doi: 10.1016/j.mayocp.2016.02.017.
    1. Guzman MG, Harris E. Dengue. Lancet. 2014;385(9966):453–465. doi: 10.1016/S0140-6736(14)60572-9.
    1. Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N. Engl. J. Med. 2015;372(13):1231–1239. doi: 10.1056/NEJMra1406035.
    1. de Barros Miranda-Filho D, et al. Initial description of the presumed congenital Zika syndrome. Am J Public Health. 2016;106:598–600. doi: 10.2105/AJPH.2016.303115.
    1. dos Santos T, Rodriguez A, Almiron M, Sanhueza A, Ramon P, de Oliveira WK, Coelho GE, Badaró R, Cortez J, Ospina M, Pimentel R, Masis R, Hernandez F, Lara B, Montoya R, Jubithana B, Melchor A, Alvarez A, Aldighieri S, Dye C, Espinal MA. Zika virus and the Guillain–Barré syndrome — case series from seven countries. N Engl J Med. 2016;375(16):1598–1601. doi: 10.1056/NEJMc1609015.
    1. D’Ortenzio E, Matheron S, de Lamballerie X, Hubert B, Piorkowski G, Maquart M, Descamps D, Damond F, Yazdanpanah Y, Leparc-Goffart I. Evidence of sexual transmission of Zika virus. N. Engl. J. Med. 2016;374(22):2195–2198. doi: 10.1056/NEJMc1604449.
    1. Lazear HM, Diamond MS. Zika virus: new clinical syndromes and its emergence in the Western hemisphere. J Virol. 2016;90(10):4864–4875. doi: 10.1128/JVI.00252-16.
    1. Kapogiannis BG, Chakhtoura N, Hazra R, Spong CY. Bridging knowledge gaps to understand how Zika virus exposure and infection affect child development. JAMA Pediatr. 2017. 10.1001/JAMAPEDIATRICS.2017.0002.
    1. Subissi L, Dub T, Besnard M, Mariteragi-Helle T, Nhan T, Lutringer-Magnin D, Barboza P, Gurry C, Brindel P, Nilles EJ, Baud D, Merianos A, Musso D, Glynn JR, Dupuis G, Cao-Lormeau VM, Giard M, Mallet HP. Zika virus infection during pregnancy and effects on early childhood development, French Polynesia, 2013–2016. Emerg Infect Dis. 2018;24(10):1850–1858. doi: 10.3201/eid2410.172079.
    1. Alves LV, Paredes CE, Silva GC, Mello JG, Alves JG. Neurodevelopment of 24 children born in Brazil with congenital Zika syndrome in 2015: a case series study. BMJ Open. 2018;8(7):e021304. doi: 10.1136/bmjopen-2017-021304.
    1. Erasmus JH, Rossi SL, Weaver SC. Development of vaccines for Chikungunya fever. J Infect Dis. 2016;214(suppl 5):S488–S496. doi: 10.1093/infdis/jiw271.
    1. Collins MH, Metz SW. Progress and works in progress: update on flavivirus vaccine development. Clin Ther. 2017;39(8):1519–1536. doi: 10.1016/j.clinthera.2017.07.001.
    1. Bowman LR, Donegan S, McCall PJ. Is dengue vector control deficient in effectiveness or evidence?: systematic review and meta-analysis. PLoS Negl Trop Dis. 2016;10(3):e0004551. doi: 10.1371/journal.pntd.0004551.
    1. Wilson AL, Boelaert M, Kleinschmidt I, Pinder M, Scott TW, Tusting LS, Lindsay SW. Evidence-based vector control? Improving the quality of vector control trials. Trends Parasitol. 2015;31(8):380–390. doi: 10.1016/j.pt.2015.04.015.
    1. Andersson N, Nava-Aguilera E, Arosteguí J, Morales-Perez A, Suazo-Laguna H, Legorreta-Soberanis J, Hernandez-Alvarez C, Fernandez-Salas I, Paredes-Solís S, Balmaseda A, Cortés-Guzmán AJ, Serrano de los Santos R, Coloma J, Ledogar RJ, Harris E. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ. 2015;351:h3267. doi: 10.1136/bmj.h3267.
    1. McGraw EA, O’Neill SL. Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol. 2013;11(3):181–193. doi: 10.1038/nrmicro2968.
    1. Ekwudu O, Devine GJ, Aaskov JG, Frentiu FD. Wolbachia strain wAlbB blocks replication of flaviviruses and alphaviruses in mosquito cell culture. Parasites Vectors. 2020;131(13):1–9.
    1. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139(7):1268–1278. doi: 10.1016/j.cell.2009.11.042.
    1. Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O'Neill SL. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis. 2014;8(2):e2688. doi: 10.1371/journal.pntd.0002688.
    1. Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe. 2016;19(6):771–774. doi: 10.1016/j.chom.2016.04.021.
    1. Aliota MT, Walker EC, Uribe Yepes A, Dario Velez I, Christensen BM, Osorio JE. The wMel strain of Wolbachia reduces transmission of Chikungunya virus in Aedes aegypti. PLoS Negl Trop Dis. 2016;10(4):e0004677. doi: 10.1371/journal.pntd.0004677.
    1. van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O'Neill SL. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 2012;6(11):e1892. doi: 10.1371/journal.pntd.0001892.
    1. Pereira TN, Rocha MN, Sucupira PHF, Carvalho FD, Moreira LA. Wolbachia significantly impacts the vector competence of Aedes aegypti for Mayaro virus. Sci. Rep. 2018;8(1):6889. doi: 10.1038/s41598-018-25236-8.
    1. Ferguson NM, et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Transl Med. 2015;7:279ra37. doi: 10.1126/scitranslmed.3010370.
    1. Allman MJ, et al. Wolbachia’s deleterious impact on Aedes aegypti egg development: the potential role of nutritional parasitism. Insects. 2020;11:1–14. doi: 10.3390/insects11110735.
    1. O’Neill SL, et al. Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses. Gates Open Res. 2018;2(36).
    1. Anders KL, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Andari B, Jewell NP, Rances E, O’Neill SL, Simmons CP, Utarini A. The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial. Trials. 2018;19(1):302. doi: 10.1186/s13063-018-2670-z.
    1. Utarini A, et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med. 2021;384:2177–2186. doi: 10.1056/NEJMoa2030243.
    1. Corrêa PRL, França E, Bogutchi TF. Infestação pelo Aedes aegypti e ocorrência da dengue em Belo Horizonte, Minas Gerais. Rev Saude Publica. 2005;39(1):33–40. doi: 10.1590/S0034-89102005000100005.
    1. Organization, W. H Dengue vaccine: WHO position paper, July 2016 – recommendations. Vaccine. 2017;35(9):1200–1201. doi: 10.1016/j.vaccine.2016.10.070.
    1. Diretrizes Nacionais para a Prevenção e Controle de Epidemias de Dengue. Série A. Normas e Manuais Técnicos. Minisétrio da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiologica - Brasilia: Ministério da Saúde. 2009. .
    1. Cummings DAT, Iamsirithaworn S, Lessler JT, McDermott A, Prasanthong R, Nisalak A, Jarman RG, Burke DS, Gibbons RV. The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling. PLoS Med. 2009;6(9):e1000139. doi: 10.1371/journal.pmed.1000139.
    1. Ferguson NM, Donnelly CA, Anderson RM. Transmission dynamics and epidemiology of dengue: insights from age-stratified sero-prevalence surveys. Philos Trans R Soc B Biol Sci. 1999;354(1384):757–768. doi: 10.1098/rstb.1999.0428.
    1. Corbett KS, Katzelnick L, Tissera H, Amerasinghe A, de Silva AD, de Silva AM. Preexisting neutralizing antibody responses distinguish clinically inapparent and apparent dengue virus infections in a Sri Lankan pediatric cohort. J Infect Dis. 2015;211(4):590–599. doi: 10.1093/infdis/jiu481.
    1. Waggoner JJ, Balmaseda A, Gresh L, Sahoo MK, Montoya M, Wang C, Abeynayake J, Kuan G, Pinsky BA, Harris E. Homotypic dengue virus reinfections in Nicaraguan children. J Infect Dis. 2016;214(7):986–993. doi: 10.1093/infdis/jiw099.
    1. Wahala WMPB, de Silva AM. The human antibody response to dengue virus infection. Viruses. 2011;3(12):2374–2395. doi: 10.3390/v3122374.
    1. Andersson N, Arostegui J, Nava-Aguilera E, Harris E, Ledogar RJ. Camino Verde (The Green Way): evidence-based community mobilisation for dengue control in Nicaragua and Mexico: feasibility study and study protocol for a randomised controlled trial. BMC Public Health. 2017;17(S1):407. doi: 10.1186/s12889-017-4289-5.
    1. Kleinman, K., Moyer, J., Reich, N. & Obeng, D. Package ‘clusterPower’. Packages (2017). Accessed 04 Sept 2020.
    1. Flores HA, O’Neill SL. Controlling vector-borne diseases by releasing modified mosquitoes. Nat Rev Microbiol. 2018;16(8):508–518. doi: 10.1038/s41579-018-0025-0.
    1. de Azambuja Garcia G, et al. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Negl Trop Dis. 2019;13:e0007023. doi: 10.1371/journal.pntd.0007023.
    1. R Core Team. A language and environment for statistical computing. In: R Foundation for Statistical Computing vol. 2 ; 2021. Accessed 25 Aug 2021.
    1. Collins MH. Serologic tools and strategies to support intervention trials to combat Zika virus infection and disease. Trop Med Infect Dis. 2019;4(2). 10.3390/tropicalmed4020068.
    1. Wolbers M, Kleinschmidt I, Simmons CP, Donnelly CA. Considerations in the design of clinical trials to test novel entomological approaches to dengue control. PLoS Negl Trop Dis. 2012;6(11):e1937. doi: 10.1371/journal.pntd.0001937.
    1. Campos NBD, Morais MHF, Ceolin APR, Cunha MDCM, Nicolino RR, Schultes OL, Friche AAL, Caiaffa WT. Twenty-two years of dengue fever (1996-2017): an epidemiological study in a Brazilian city. Int J Environ Health Res. 2019;31(3):315–324. doi: 10.1080/09603123.2019.1656801.
    1. Adaptive Designs for Clinical Trials of Drugs and Biologics Guidance for Industry DRAFT GUIDANCE. (2018). Accessed 14 Apr 2020.
    1. Resnik DB. Ethical issues in field trials of genetically modified disease-resistant mosquitoes. Dev World Bioeth. 2014;14(1):37–46. doi: 10.1111/dewb.12011.
    1. Lavery JV. Building an evidence base for stakeholder engagement. Science. 2018;361:554–556. doi: 10.1126/science.aat8429.
    1. Kolopack PA, Parsons JA, Lavery JV. What makes community engagement effective?: lessons from the Eliminate Dengue Program in Queensland Australia. PLoS Negl Trop Dis. 2015;9(4):e0003713. doi: 10.1371/journal.pntd.0003713.
    1. Schairer CE, Taitingfong R, Akbari OS, Bloss CS. A typology of community and stakeholder engagement based on documented examples in the field of novel vector control. PLoS Negl Trop Dis. 2019;13(11):e0007863. doi: 10.1371/journal.pntd.0007863.
    1. Popovici J, Moreira LA, Poinsignon A, Iturbe-Ormaetxe I, McNaughton D, O'Neill SL. Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Mem Inst Oswaldo Cruz. 2010;105(8):957–964. doi: 10.1590/S0074-02762010000800002.
    1. McNaughton D, Clough A, Johnson P, Ritchie S, O’Neill S. Beyond the ‘back yard’: lay knowledge about Aedes aegypti in northern Australia and its implications for policy and practice. Acta Trop. 2010;116(1):74–80. doi: 10.1016/j.actatropica.2010.05.012.
    1. Costa GB, Smithyman R, O’neill SL, Moreira LA. How to engage communities on a large scale? Lessons from World Mosquito Program in Rio de Janeiro, Brazil [version 1; peer review: 2 approved with reservations] report report. Gates Open Res. 2020;4. 10.12688/gatesopenres.13153.1.
    1. Reiner RC, Achee N, Barrera R, Burkot TR, Chadee DD, Devine GJ, Endy T, Gubler D, Hombach J, Kleinschmidt I, Lenhart A, Lindsay SW, Longini I, Mondy M, Morrison AC, Perkins TA, Vazquez-Prokopec G, Reiter P, Ritchie SA, Smith DL, Strickman D, Scott TW. Quantifying the epidemiological impact of vector control on dengue. PLoS Negl Trop Dis. 2016;10(5):e0004588. doi: 10.1371/journal.pntd.0004588.
    1. Delrieu I, Leboulleux D, Ivinson K, Gessner BD. Design of a phase III cluster randomized trial to assess the efficacy and safety of a malaria transmission blocking vaccine. Vaccine. 2015;33(13):1518–1526. doi: 10.1016/j.vaccine.2015.01.050.
    1. Hayes RJ, Moulton LH. Cluster Randomised Trials. 2017.
    1. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28(2):182–191. doi: 10.1016/j.cct.2006.05.007.
    1. Anders KL, Cutcher Z, Kleinschmidt I, Donnelly CA, Ferguson NM, Indriani C, Ryan PA, O’Neill SL, Jewell NP, Simmons CP. Cluster-randomized test-negative design trials: a novel and efficient method to assess the efficacy of community-level dengue interventions. Am J Epidemiol. 2018;187(9):2021–2028. doi: 10.1093/aje/kwy099.
    1. Carnegie NB, Wang R, De Gruttola V. Estimation of the overall treatment effect in the presence of interference in cluster-randomized trials of infectious diseases prevention. Epidemiol Method. 2016;5(1):57–68. doi: 10.1515/em-2015-0016.
    1. Clapham HE, Rodriguez-Barraquer I, Azman AS, Althouse BM, Salje H, Gibbons RV, Rothman AL, Jarman RG, Nisalak A, Thaisomboonsuk B, Kalayanarooj S, Nimmannitya S, Vaughn DW, Green S, Yoon IK, Cummings DAT. Dengue Virus (DENV) Neutralizing antibody kinetics in children after symptomatic primary and postprimary DENV infection. J Infect Dis. 2016;213(9):1428–1435. doi: 10.1093/infdis/jiv759.
    1. Salje H, Cummings DAT, Rodriguez-Barraquer I, Katzelnick LC, Lessler J, Klungthong C, Thaisomboonsuk B, Nisalak A, Weg A, Ellison D, Macareo L, Yoon IK, Jarman R, Thomas S, Rothman AL, Endy T, Cauchemez S. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature. 2018;557(7707):719–723. doi: 10.1038/s41586-018-0157-4.
    1. Doucoure S, Drame PM. Salivary biomarkers in the control of mosquito-borne diseases. Insects. 2015;6(4):961–976. doi: 10.3390/insects6040961.
    1. Londono-Renteria BL, et al. Serosurvey of human antibodies recognizing Aedes aegypti D7 salivary proteins in Colombia. Front. public Heal. 2018;6(111).

Source: PubMed

3
Abonnere