Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?

Bingwen Liu, Min Li, Zhiguang Zhou, Xuan Guan, Yufei Xiang, Bingwen Liu, Min Li, Zhiguang Zhou, Xuan Guan, Yufei Xiang

Abstract

The emergent outbreak of coronavirus disease 2019 (COVID-19) has caused a global pandemic. Acute respiratory distress syndrome (ARDS) and multiorgan dysfunction are among the leading causes of death in critically ill patients with COVID-19. The elevated inflammatory cytokines suggest that a cytokine storm, also known as cytokine release syndrome (CRS), may play a major role in the pathology of COVID-19. However, the efficacy of corticosteroids, commonly utilized antiinflammatory agents, to treat COVID-19-induced CRS is controversial. There is an urgent need for novel therapies to treat COVID-19-induced CRS. Here, we discuss the pathogenesis of severe acute respiratory syndrome (SARS)-induced CRS, compare the CRS in COVID-19 with that in SARS and Middle East respiratory syndrome (MERS), and summarize the existing therapies for CRS. We propose to utilize interleukin-6 (IL-6) blockade to manage COVID-19-induced CRS and discuss several factors that should be taken into consideration for its clinical application.

Keywords: Coronavirus disease 2019; Cytokine release syndrome; Interleukin-6; Tocilizumab.

Conflict of interest statement

Declaration of competing interest No potential conflicts of interest relevant to this review were reported.

Copyright © 2020 Elsevier Ltd. All rights reserved.

References

    1. WHO . 2020. Coronavirus Disease 2019 (COVID-19) Situation Report – 67.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273.
    1. Turner A.J., Hiscox J.A., Hooper N.M. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol. Sci. 2004;25:291–294.
    1. T. Novel Coronavirus Pneumonia Emergency Response Epidemiology Novel Coronavirus Pneumonia Emergency Response Epidemiology. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China] Zhonghua Liuxingbingxue Zazhi. 2020;41:145–151.
    1. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30079-5.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan. China: A Retrospective Cohort Study. Lancet. 2020;395:1054–1062.
    1. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C. [A pathological report of three COVID-19 cases by minimally invasive autopsies] Zhonghua Bing Li Xue Za Zhi. 2020;49 E009.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–422.
    1. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa248.
    1. Lee D.W., Gardner R., Porter D.L., Louis C.U., Ahmed N., Jensen M. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–195.
    1. Mahajan S., Decker C.E., Yang Z., Veis D., Mellins E.D., Faccio R. Plcgamma2/Tmem178 dependent pathway in myeloid cells modulates the pathogenesis of cytokine storm syndrome. J. Autoimmun. 2019;100:62–74.
    1. Neelapu S.S., Tummala S., Kebriaei P., Wierda W., Gutierrez C., Locke F.L. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018;15:47–62.
    1. Peiris J.S., Chu C.M., Cheng V.C., Chan K.S., Hung I.F., Poon L.L. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767–1772.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in wuhan, China. J. Am. Med. Assoc. 2020;323:1061–1069.
    1. Jin Y.H., Cai L., Cheng Z.S., Cheng H., Deng T., Fan Y.P. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version) Mil Med Res. 2020;7:4.
    1. Russell C.D., Millar J.E., Baillie J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473–475.
    1. Griffith J.F., Antonio G.E., Kumta S.M., Hui D.S., Wong J.K., Joynt G.M. Osteonecrosis of hip and knee in patients with severe acute respiratory syndrome treated with steroids. Radiology. 2005;235:168–175.
    1. Borthwick E.M., Hill C.J., Rabindranath K.S., Maxwell A.P., McAuley D.F., Blackwood B. High-volume haemofiltration for sepsis in adults. Cochrane Database Syst. Rev. 2017;1 CD008075.
    1. Zumla A., Hui D.S., Azhar E.I., Memish Z.A., Maeurer M. Reducing mortality from 2019-nCoV: host-directed therapies should be an option. Lancet. 2020;395:e35–e36.
    1. Liu Q., Zhou Y.H., Yang Z.Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol. 2016;13:3–10.
    1. Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19:181–193.
    1. Law H.K., Cheung C.Y., Ng H.Y., Sia S.F., Chan Y.O., Luk W. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005;106:2366–2374.
    1. Zhao J., Zhao J., Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J. Virol. 2010;84:9318–9325.
    1. Kim K.D., Zhao J., Auh S., Yang X., Du P., Tang H. Adaptive immune cells temper initial innate responses. Nat. Med. 2007;13:1248–1252.
    1. Wong R.S., Wu A., To K.F., Lee N., Lam C.W., Wong C.K. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ. 2003;326:1358–1362.
    1. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539.
    1. Nicholls J.M., Poon L.L., Lee K.C., Ng W.F., Lai S.T., Leung C.Y. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361:1773–1778.
    1. Zhang Y., Li J., Zhan Y., Wu L., Yu X., Zhang W. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect. Immun. 2004;72:4410–4415.
    1. Johnson D.E., O'Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248.
    1. Tanaka T., Narazaki M., Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016;8:959–970.
    1. Pathan N., Hemingway C.A., Alizadeh A.A., Stephens A.C., Boldrick J.C., Oragui E.E. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet. 2004;363:203–209.
    1. Chen C., Zhang X.R., Ju Z.Y., He W.F. [Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies] Zhonghua Shaoshang Zazhi. 2020;36 E005.
    1. Fang Y., Zhang H., Xu Y., Xie J., Pang P., Ji W. CT manifestations of two cases of 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020:200280.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Chen L., Liu H.G., Liu W., Liu J., Liu K., Shang J. [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia] Zhonghua Jiehe He Huxi Zazhi. 2020;43 E005.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513.
    1. Gao Y., Li T., Han M., Li X., Wu D., Xu Y. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020 doi: 10.1002/jmv.25770.
    1. DeDiego M.L., Nieto-Torres J.L., Regla-Nava J.A., Jimenez-Guardeno J.M., Fernandez-Delgado R., Fett C. Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J. Virol. 2014;88:913–924.
    1. Nieto-Torres J.L., DeDiego M.L., Verdia-Baguena C., Jimenez-Guardeno J.M., Regla-Nava J.A., Fernandez-Delgado R. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014;10 e1004077.
    1. Schoeman D., Fielding B.C. Coronavirus envelope protein: current knowledge. Virol. J. 2019;16:69.
    1. Le R.Q., Li L., Yuan W., Shord S.S., Nie L., Habtemariam B.A. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncol. 2018;23:943–947.
    1. Shimabukuro-Vornhagen A., Godel P., Subklewe M., Stemmler H.J., Schlosser H.A., Schlaak M. Cytokine release syndrome. J Immunother Cancer. 2018;6:56.
    1. Norelli M., Camisa B., Barbiera G., Falcone L., Purevdorj A., Genua M. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 2018;24:739–748.
    1. De Benedetti F., Brunner H.I., Ruperto N., Kenwright A., Wright S., Calvo I. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 2012;367:2385–2395.
    1. Kennedy G.A., Varelias A., Vuckovic S., Le Texier L., Gartlan K.H., Zhang P. Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol. 2014;15:1451–1459.
    1. Sheng F., Han M., Huang Z., Zhang L. Interleukin 6 receptor inhibitor tocilizumab suppresses cytokine expression, inflammasome activation and phagocytosis in a cell model of sepsis. Pharmazie. 2016;71:636–639.
    1. Burmester G.R., Rubbert-Roth A., Cantagrel A., Hall S., Leszczynski P., Feldman D. Efficacy and safety of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional DMARDs in patients with RA at week 97 (SUMMACTA) Ann. Rheum. Dis. 2016;75:68–74.
    1. Bennardo F., Buffone C., Giudice A. New therapeutic opportunities for COVID-19 patients with Tocilizumab: possible correlation of interleukin-6 receptor inhibitors with osteonecrosis of the jaws. Oral Oncol. 2020:104659.
    1. Henter J.I., Chow C.B., Leung C.W., Lau Y.L. Cytotoxic therapy for severe avian influenza A (H5N1) infection. Lancet. 2006;367:870–873.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034.
    1. The Management of COVID-19. the sixth ed. 2020.
    1. Noda-Nicolau N.M., Polettini J., da Silva M.G., Peltier M.R., Menon R. Polybacterial stimulation suggests discrete IL-6/IL-6R signaling in human fetal membranes: potential implications on IL-6 bioactivity. J. Reprod. Immunol. 2018;126:60–68.
    1. Liu Y., Yang Y., Zhang C., Huang F., Wang F., Yuan J. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020
    1. Wang Z., Yang B., Li Q., Wen L., Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in wuhan, China. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa272.
    1. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273.
    1. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 2020:105949.
    1. Sun D., Li H., Lu X.X., Xiao H., Ren J., Zhang F.R. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. 2020 doi: 10.1007/s12519-020-00354-4.
    1. Jiang Y., Xu J., Zhou C., Wu Z., Zhong S., Liu J. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am. J. Respir. Crit. Care Med. 2005;171:850–857.
    1. Huang K.J., Su I.J., Theron M., Wu Y.C., Lai S.K., Liu C.C. An interferon-gamma-related cytokine storm in SARS patients. J. Med. Virol. 2005;75:185–194.
    1. Chien J.Y., Hsueh P.R., Cheng W.C., Yu C.J., Yang P.C. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology. 2006;11:715–722.
    1. Mahallawi W.H., Khabour O.F., Zhang Q., Makhdoum H.M., Suliman B.A. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8–13.
    1. Kim E.S., Choe P.G., Park W.B., Oh H.S., Kim E.J., Nam E.Y. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J. Kor. Med. Sci. 2016;31:1717–1725.
    1. Minoia F., Davi S., Horne A., Bovis F., Demirkaya E., Akikusa J. Dissecting the heterogeneity of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. J. Rheumatol. 2015;42:994–1001.
    1. Rios-Fernandez R., Callejas-Rubio J.L., Garcia-Rodriguez S., Sancho J., Zubiaur M., Ortego-Centeno N. Tocilizumab as an adjuvant therapy for hemophagocytic lymphohistiocytosis associated with visceral leishmaniasis. Am. J. Therapeut. 2016;23:e1193–e1196.
    1. Kotch C., Barrett D., Teachey D.T. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expet Rev. Clin. Immunol. 2019;15:813–822.
    1. Chen F., Teachey D.T., Pequignot E., Frey N., Porter D., Maude S.L. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J. Immunol. Methods. 2016;434:1–8.
    1. Miettunen P.M., Narendran A., Jayanthan A., Behrens E.M., Cron R.Q. Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin-1 inhibition following conventional immunosuppressive therapy: case series with 12 patients. Rheumatology. 2011;50:417–419.
    1. Giavridis T., van der Stegen S.J.C., Eyquem J., Hamieh M., Piersigilli A., Sadelain M., CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018;24:731–738.
    1. Ocon A.J., Bhatt B.D., Miller C., Peredo R.A. Safe usage of anakinra and dexamethasone to treat refractory hemophagocytic lymphohistiocytosis secondary to acute disseminated histoplasmosis in a patient with HIV/AIDS. BMJ Case Rep. 2017:2017.
    1. Ruperto N., Brunner H.I., Quartier P., Constantin T., Wulffraat N., Horneff G. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 2012;367:2396–2406.
    1. Grom A.A., Ilowite N.T., Pascual V., Brunner H.I., Martini A., Lovell D. Rate and clinical presentation of macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis treated with canakinumab. Arthritis Rheum. 2016;68:218–228.
    1. Ilowite N.T., Prather K., Lokhnygina Y., Schanberg L.E., Elder M., Milojevic D. Randomized, double-blind, placebo-controlled trial of the efficacy and safety of rilonacept in the treatment of systemic juvenile idiopathic arthritis. Arthritis Rheum. 2014;66:2570–2579.
    1. Chellapandian D., Das R., Zelley K., Wiener S.J., Zhao H., Teachey D.T. Treatment of Epstein Barr virus-induced haemophagocytic lymphohistiocytosis with rituximab-containing chemo-immunotherapeutic regimens. Br. J. Haematol. 2013;162:376–382.
    1. Junga Z., Stitt R., Tracy C., Keith M. Novel use of rituximab in macrophage activation syndrome secondary to systemic lupus erythematosus. BMJ Case Rep. 2017:2017.
    1. Cutler C., Kim H.T., Bindra B., Sarantopoulos S., Ho V.T., Chen Y.B. Rituximab prophylaxis prevents corticosteroid-requiring chronic GVHD after allogeneic peripheral blood stem cell transplantation: results of a phase 2 trial. Blood. 2013;122:1510–1517.
    1. Keith M.P., Pitchford C., Bernstein W.B. Treatment of hemophagocytic lymphohistiocytosis with alemtuzumab in systemic lupus erythematosus. J. Clin. Rheumatol. 2012;18:134–137.
    1. Marsh R.A., Allen C.E., McClain K.L., Weinstein J.L., Kanter J., Skiles J. Salvage therapy of refractory hemophagocytic lymphohistiocytosis with alemtuzumab. Pediatr. Blood Canc. 2013;60:101–109.
    1. Bergsten E., Horne A., Arico M., Astigarraga I., Egeler R.M., Filipovich A.H. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood. 2017;130:2728–2738.
    1. Park H.B., Oh K., Garmaa N., Seo M.W., Byoun O.J., Lee H.Y. CP-690550, a Janus kinase inhibitor, suppresses CD4+ T-cell-mediated acute graft-versus-host disease by inhibiting the interferon-gamma pathway. Transplantation. 2010;90:825–835.
    1. Okiyama N., Furumoto Y., Villarroel V.A., Linton J.T., Tsai W.L., Gutermuth J. Reversal of CD8 T-cell-mediated mucocutaneous graft-versus-host-like disease by the JAK inhibitor tofacitinib. J. Invest. Dermatol. 2014;134:992–1000.
    1. Canna S.W., Girard C., Malle L., de Jesus A., Romberg N., Kelsen J. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J. Allergy Clin. Immunol. 2017;139:1698–1701.
    1. Al-Salama Z.T. Emapalumab: first global approval. Drugs. 2019;79:99–103.
    1. Henzan T., Nagafuji K., Tsukamoto H., Miyamoto T., Gondo H., Imashuku S. Success with infliximab in treating refractory hemophagocytic lymphohistiocytosis. Am. J. Hematol. 2006;81:59–61.
    1. Ozer E.K., Goktas M.T., Kilinc I., Toker A., Bariskaner H., Ugurluoglu C. Infliximab alleviates the mortality, mesenteric hypoperfusion, aortic dysfunction, and multiple organ damage in septic rats. Can. J. Physiol. Pharmacol. 2017;95:866–872.
    1. Yalniz F.F., Hefazi M., McCullough K., Litzow M.R., Hogan W.J., Wolf R. Safety and efficacy of infliximab therapy in the setting of steroid-refractory acute graft-versus-host disease. Biol. Blood Marrow Transplant. 2017;23:1478–1484.
    1. Flammiger A., Fiedler W., Bacher U., Bokemeyer C., Schneider M., Binder M. Critical imbalance of TNF-alpha and soluble TNF receptor 1 in a patient with macrophage activation syndrome: potential implications for diagnostics and treatment. Acta Haematol. 2012;128:69–72.
    1. Kitko C.L., Braun T., Couriel D.R., Choi S.W., Connelly J., Hoffmann S. Combination therapy for graft-versus-host disease prophylaxis with etanercept and extracorporeal photopheresis: results of a phase II clinical trial. Biol. Blood Marrow Transplant. 2016;22:862–868.
    1. Grupp S.A., Kalos M., Barrett D., Aplenc R., Porter D.L., Rheingold S.R. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 2013;368:1509–1518.
    1. Chen S., Liu G., Chen J., Hu A., Zhang L., Sun W. Ponatinib protects mice from lethal influenza infection by suppressing cytokine storm. Front. Immunol. 2019;10:1393.
    1. Rochwerg B., Oczkowski S.J., Siemieniuk R.A.C., Agoritsas T., Belley-Cote E., D'Aragon F. Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit. Care Med. 2018;46:1411–1420.
    1. Emmenegger U., Frey U., Reimers A., Fux C., Semela D., Cottagnoud P. Hyperferritinemia as indicator for intravenous immunoglobulin treatment in reactive macrophage activation syndromes. Am. J. Hematol. 2001;68:4–10.
    1. Henter J.I., Horne A., Arico M., Egeler R.M., Filipovich A.H., Imashuku S. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Canc. 2007;48:124–131.
    1. Aoyagi T., Sato Y., Toyama M., Oshima K., Kawakami K., Kaku M., Etoposide, Combination Corticosteroid. Therapy improves acute respiratory distress syndrome in mice. Shock. 2019;52:83–91.
    1. de Wilde A.H., Zevenhoven-Dobbe J.C., van der Meer Y., Thiel V., Narayanan K., Makino S. Cyclosporin A inhibits the replication of diverse coronaviruses. J. Gen. Virol. 2011;92:2542–2548.
    1. Bennett T.D., Fluchel M., Hersh A.O., Hayward K.N., Hersh A.L., Brogan T.V. Macrophage activation syndrome in children with systemic lupus erythematosus and children with juvenile idiopathic arthritis. Arthritis Rheum. 2012;64:4135–4142.
    1. Lorenz G., Schul L., Schraml F., Riedhammer K.M., Einwachter H., Verbeek M. Adult macrophage activation syndrome-haemophagocytic lymphohistiocytosis: ‘of plasma exchange and immunosuppressive escalation strategies’ - a single centre reflection. Lupus. 2020;29:324–333.
    1. Liu X., Zhang Y., Xu X., Du W., Su K., Zhu C. Evaluation of plasma exchange and continuous veno-venous hemofiltration for the treatment of severe avian influenza A (H7N9): a cohort study. Ther. Apher. Dial. 2015;19:178–184.
    1. Szakszon K., Csizy I., Szabo T. Early introduction of peritoneal dialysis may improve survival in severe sepsis. Pediatr. Emerg. Care. 2009;25:599–602.
    1. Wang Y.T., Fu J.J., Li X.L., Li Y.R., Li C.F., Zhou C.Y. Effects of hemodialysis and hemoperfusion on inflammatory factors and nuclear transcription factors in peripheral blood cell of multiple organ dysfunction syndrome. Eur. Rev. Med. Pharmacol. Sci. 2016;20:745–750.
    1. Greil C., Roether F., La Rosee P., Grimbacher B., Duerschmied D., Warnatz K. Rescue of cytokine storm due to HLH by hemoadsorption in a CTLA4-deficient patient. J. Clin. Immunol. 2017;37:273–276.
    1. Hamid U., Krasnodembskaya A., Fitzgerald M., Shyamsundar M., Kissenpfennig A., Scott C. Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS. Thorax. 2017;72:971–980.
    1. Lauder S.N., Taylor P.R., Clark S.R., Evans R.L., Hindley J.P., Smart K. Paracetamol reduces influenza-induced immunopathology in a mouse model of infection without compromising virus clearance or the generation of protective immunity. Thorax. 2011;66:368–374.
    1. Zheng G., Huang L., Tong H., Shu Q., Hu Y., Ge M. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir. Res. 2014;15:39.
    1. Wilson J.G., Liu K.D., Zhuo H., Caballero L., McMillan M., Fang X. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3:24–32.
    1. Mahlaoui N., Ouachee-Chardin M., de Saint Basile G., Neven B., Picard C., Blanche S. Immunotherapy of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins: a single-center retrospective report of 38 patients. Pediatrics. 2007;120:e622–e628.
    1. Kruger P., Bailey M., Bellomo R., Cooper D.J., Harward M., Higgins A. A multicenter randomized trial of atorvastatin therapy in intensive care patients with severe sepsis. Am. J. Respir. Crit. Care Med. 2013;187:743–750.
    1. Yasuda H., Leelahavanichkul A., Tsunoda S., Dear J.W., Takahashi Y., Ito S. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am. J. Physiol. Ren. Physiol. 2008;294:F1050–F1058.
    1. Yang M., Cao L., Xie M., Yu Y., Kang R., Yang L. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem. Pharmacol. 2013;86:410–418.
    1. Teijaro J.R., Walsh K.B., Cahalan S., Fremgen D.M., Roberts E., Scott F. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146:980–991.
    1. Cheng Q., Ma S., Lin D., Mei Y., Gong H., Lei L. The S1P1 receptor-selective agonist CYM-5442 reduces the severity of acute GVHD by inhibiting macrophage recruitment. Cell. Mol. Immunol. 2015;12:681–691.

Source: PubMed

3
Abonnere