Prenatal quantification of human foetal lung and liver elasticities between 24 and 39 weeks of gestation using 2D shear wave elastography

Camille Nallet, Lionel Pazart, Claire Cochet, Chrystelle Vidal, Jean-Patrick Metz, Emmanuelle Jacquet, Guillaume Gorincour, Nicolas Mottet, Camille Nallet, Lionel Pazart, Claire Cochet, Chrystelle Vidal, Jean-Patrick Metz, Emmanuelle Jacquet, Guillaume Gorincour, Nicolas Mottet

Abstract

Objectives: To quantify and model normal foetal lung and liver elasticities between 24 and 39 weeks of gestation (WG) using two-dimensional shear wave elastography (2D-SWE). To assess the impact of the distance between the probe and the target organ on the estimation of elasticity values.

Methods: Measurements of normal foetal lungs and liver elasticity were prospectively repeated monthly between 24 and 39 WG in 72 foetuses using 2D-SWE. Elasticity was quantified in the proximal lung and in the region inside the hepatic portal sinus. The distance between the probe and the target organ was recorded. Trajectories representing foetal lung and liver maturation from at least 3 measurements over time were modelled.

Results: The average elasticity for the lung and liver was significantly different from 24 WG to 36 WG (p < 0.01). Liver elasticity increased during gestation (3.86 kPa at 24 WG versus 4.45 kPa at 39 WG). From 24 WG to 32 WG, lung elasticity gradually increased (4.12kPa at 24 WG, 4.91kPa at 28 WG, 5.03kPa at 32 WG, p < 0.002). After 32 WG, lung elasticity decreased to 4.54kPa at 36 WG and 3.94kPa at 39 WG. The dispersion of the average elasticity values was greater for the lung than for the liver (p < 0.0001). Variation in the elasticity values was less important for the liver than for the lung. The values were considered valid and repeatable except for a probe-lung distance above 8cm.

Conclusion: Foetal lung and liver elasticities evolve differently through gestation. This could reflect the tissue maturation of both organs during gestation.

Trial registration: clinicaltrials.gov identifier: NCT03834805 KEY POINTS: • Prenatal quantification of foetal lung elasticity using 2D shear wave elastography could be a new prenatal parameter for exploring foetal lung maturity. • Liver elasticity increased progressively from 24 weeks of gestation (WG) to 39 WG, while lung elasticity increased first between 24 and 32 WG and then decreased after 32 WG. • The values of elasticity are considered valid and repeatable except for a probe-lung distance above 8cm.

Keywords: Dispersion; Elasticity; Foetal liver; Foetal lung; Shear wave elastography.

Conflict of interest statement

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Elasticity measurement of the proximal foetal lung with 2D-SWE in the region behind the plane passing through the atria after obtaining a B-mode image of a four-chamber view of the foetal heart. The colour box represents the elastogram (blue), and the yellow circle represents the region of interest (1 cm) where the elasticity measurement is acquired. The RMI (Reliability Measurement Index) value (0.5) is expressed below the obtained mean elasticity measurement of 2.7 kPa
Fig. 2
Fig. 2
Elasticity measurement of the foetal liver in the region inside the hepatic portal sinus (segment V) with 2D-SWE after obtaining a B-mode image of abdominal circumference
Fig. 3
Fig. 3
Average, maximum and minimum elasticity values for foetal lung and liver according to gestational age
Fig. 4
Fig. 4
Dispersion of the average elasticity values for foetal lung and liver according to gestational age

References

    1. Balestrini JL, Niklason LE. Extracellular matrix as a driver for lung regeneration. Ann Biomed Eng. 2015;43:568–576. doi: 10.1007/s10439-014-1167-5.
    1. Suki B, Stamenovic D, Hubmayr R. Lung Parenchymal Mechanics. Compr Physiol. 2011;1:1317–1351. doi: 10.1002/cphy.c100033.
    1. Torday JS, Sanchez-Esteban J, Rubin LP. Paracrine mediators of mechanotransduction in lung development. Am J Med Sci. 1998;316:205–208.
    1. Fung YC. Does the surface tension make the lung inherently unstable? Circ Res. 1975;37:497–502. doi: 10.1161/01.RES.37.4.497.
    1. Gennisson J-L, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94:487–495. doi: 10.1016/j.diii.2013.01.022.
    1. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51:396–409. doi: 10.1109/TUFFC.2004.1295425.
    1. Carlson LC, Feltovich H, Palmeri ML, Dahl JJ, Munoz del Rio A, Hall TJ. Estimation of shear wave speed in the human uterine cervix. Ultrasound Obstet Gynecol. 2014;43:452–458. doi: 10.1002/uog.12555.
    1. Alison M, Biran V, Tanase A, et al. Quantitative shear-wave elastography of the liver in preterm neonates with intra-uterine growth restriction. PLoS One. 2015;10:e0143220. doi: 10.1371/journal.pone.0143220.
    1. Abeysekera JM, Ma M, Pesteie M, et al. SWAVE imaging of placental elasticity and viscosity: proof of concept. Ultrasound Med Biol. 2017;43:1112–1124. doi: 10.1016/j.ultrasmedbio.2017.01.014.
    1. Alici Davutoglu E, Ariöz Habibi H, Ozel A, Yuksel MA, Adaletli I, Madazlı R. The role of shear wave elastography in the assessment of placenta previa-accreta. J Matern Fetal Neonatal Med. 2017;31(12):1660–1662. doi: 10.1080/14767058.2017.1322059.
    1. Arioz Habibi H, Alici Davutoglu E, Kandemirli SG, et al. In vivo assessment of placental elasticity in intrauterine growth restriction by shear-wave elastography. Eur J Radiol. 2017;97:16–20. doi: 10.1016/j.ejrad.2017.10.007.
    1. Quarello E, Lacoste R, Mancini J, Melot-Dusseau S, Gorincour G. ShearWave elastography of fetal lungs in pregnant baboons. Diagn Interv Imaging. 2016;97:605–610. doi: 10.1016/j.diii.2015.11.019.
    1. Quarello E, Lacoste R, Mancini J, Melot-Dusseau S, Gorincour G. Feasibility and reproducibility of ShearWave(TM) elastography of fetal baboon organs. Prenat Diagn. 2015;35(11):1112–1116. doi: 10.1002/pd.4655.
    1. Mottet N, Cochet C, Vidal C, et al. Feasibility of two-dimensional ultrasound shear wave elastography of human fetal lungs and liver: a pilot study. Diagn Interv Imaging. 2020;101:69–78. doi: 10.1016/j.diii.2019.08.002.
    1. Beck APA, Araujo Júnior E, Leslie ATFS, Camano L, Moron AF. Assessment of fetal lung maturity by ultrasound: objective study using gray-scale histogram. J Matern Fetal Neonatal Med. 2015;28:617–622. doi: 10.3109/14767058.2014.927862.
    1. Gorincour G, Bach-Segura P, Ferry-Juquin M, et al. Lung signal on fetal MRI: normal values and usefulness for congenital diaphragmatic hernia. J Radiol. 2009;90:53–58. doi: 10.1016/S0221-0363(09)70078-2.
    1. Moshiri M, Mannelli L, Richardson ML, Bhargava P, Dubinsky TJ. Fetal lung maturity assessment with MRI fetal lung-to-liver signal-intensity ratio. AJR Am J Roentgenol. 2013;201:1386–1390. doi: 10.2214/AJR.12.9679.
    1. Palacio M, Bonet-Carne E, Cobo T, et al. Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study. Am J Obstet Gynecol. 2017;217:196.e1–196.e14. doi: 10.1016/j.ajog.2017.03.016.
    1. Donda K, Vijayakanthi N, Dapaah-Siakwan F, Bhatt P, Rastogi D, Rastogi S. Trends in epidemiology and outcomes of respiratory distress syndrome in the United States. Pediatr Pulmonol. 2019;54:405–414. doi: 10.1002/ppul.24241.
    1. Foncea CG, Popescu A, Lupusoru R, et al. Comparative study between pSWE and 2D-SWE techniques integrated in the same ultrasound machine, with Transient Elastography as the reference method. Med Ultrason. 2020;22:13–19. doi: 10.11152/mu-2179.
    1. Kim DW, Suh CH, Kim KW, Pyo J, Park C, Jung SC. Technical performance of two-dimensional shear wave elastography for measuring liver stiffness: a systematic review and meta-analysis. Korean J Radiol. 2019;20:880–893. doi: 10.3348/kjr.2018.0812.
    1. Carlsen JF, Pedersen MR, Ewertsen C, et al. A comparative study of strain and shear-wave elastography in an elasticity phantom. AJR Am J Roentgenol. 2015;204:W236–W242. doi: 10.2214/AJR.14.13076.
    1. Carstensen EL, Parker KJ, Lerner RM. Elastography in the management of liver disease. Ultrasound Med Biol. 2008;34:1535–1546. doi: 10.1016/j.ultrasmedbio.2008.03.002.
    1. Barry CT, Mills B, Hah Z, et al. Shear wave dispersion measures liver steatosis. Ultrasound Med Biol. 2012;38(2):175–182. doi: 10.1016/j.ultrasmedbio.2011.10.019.
    1. Silva PDA, Uscategui RAR, Santos VJC, et al. Acoustic radiation force impulse (ARFI) elastography to asses maternal and foetal structures in pregnant ewes. Reprod Domest Anim. 2019;54:498–505. doi: 10.1111/rda.13384.
    1. Issaoui M, Debost-Legrand A, Skerl K, et al. Shear wave elastography safety in fetus: A quantitative health risk assessment. Diagn Interv Imaging. 2018;99(9):519–524. doi: 10.1016/j.diii.2018.04.013.
    1. Sugitani M, Fujita Y, Yumoto Y, et al. A new method for measurement of placental elasticity: acoustic radiation force impulse imaging. Placenta. 2013;34:1009–1013. doi: 10.1016/j.placenta.2013.08.014.
    1. Issaoui M, Miloro P, Balandraud X, et al. Temperature elevation in an instrumented phantom insonated by B-mode imaging, pulse Doppler and shear wave elastography. Ultrasound Med Biol. 2020;46:3317–3326. doi: 10.1016/j.ultrasmedbio.2020.08.021.
    1. Massó P, Melchor J, Rus G, Molina FS. A preliminary study on the safety of elastography during pregnancy: Hypoacusia, anthropometry, and Apgar score in newborns. Diagnostics (Basel) 18. 2020;10(11):967. doi: 10.3390/diagnostics10110967.
    1. Massó P, Rus G, Molina F. On the safety of elastography in fetal medicine: a preliminary study of hypoacusia. Ultrasound Obstet Gynecol. 2017;50(5):660–661. doi: 10.1002/uog.17429.
    1. Aubry S, Risson J-R, Kastler A, et al. Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skelet Radiol. 2013;42:1143–1150. doi: 10.1007/s00256-013-1649-9.
    1. Shin HJ, Kim M-J, Kim HY, Roh YH, Lee M-J. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: A phantom study. Eur Radiol. 2016;26:3361–3367. doi: 10.1007/s00330-016-4212-y.
    1. Zhao H, Song P, Urban MW, et al. Bias observed in time-of-flight shear wave speed measurements using radiation force of a focused ultrasound beam. Ultrasound Med Biol. 2011;37:1884–1892. doi: 10.1016/j.ultrasmedbio.2011.07.012.
    1. Dhyani M, Xiang F, Li Q, et al. Ultrasound shear wave elastography: Variations of liver fibrosis assessment as a function of depth, force and distance from central axis of the transducer with a comparison of different systems. Ultrasound Med Biol. 2018;44:2209–2222. doi: 10.1016/j.ultrasmedbio.2018.07.003.
    1. Bouchet P, Gennisson J-L, Podda A, Alilet M, Carrié M, Aubry S. Artifacts and technical restrictions in 2D shear wave elastography. Ultraschall Med. 2020;41:267–277. doi: 10.1055/a-0805-1099.

Source: PubMed

3
Abonnere