Synovial fluid biomarkers associated with osteoarthritis severity reflect macrophage and neutrophil related inflammation

Collin A Haraden, Janet L Huebner, Ming-Feng Hsueh, Yi-Ju Li, Virginia Byers Kraus, Collin A Haraden, Janet L Huebner, Ming-Feng Hsueh, Yi-Ju Li, Virginia Byers Kraus

Abstract

Background: To identify a synovial fluid (SF) biomarker profile characteristic of individuals with an inflammatory osteoarthritis (OA) endotype.

Methods: A total of 48 knees (of 25 participants) were characterized for an extensive array of SF biomarkers quantified by Rules Based Medicine using the high-sensitivity multiplex immunoassay, Myriad Human InflammationMAP® 1.0, which included 47 different cytokines, chemokines, and growth factors related to inflammation. Multivariable regression with generalized estimating equations (GEE) and false discovery rate (FDR) correction was used to assess associations of SF RBM biomarkers with etarfolatide imaging scores reflecting synovial inflammation; radiographic knee OA severity (based on Kellgren-Lawrence (KL) grade, joint space narrowing, and osteophyte scores); knee joint symptoms; and SF biomarkers associated with activated macrophages and knee OA progression including CD14 and CD163 (shed by activated macrophages) and elastase (shed by activated neutrophils).

Results: Significant associations of SF biomarkers meeting FDR < 0.05 included soluble (s)VCAM-1 and MMP-3 with synovial inflammation (FDR-adjusted p = 0.025 and 1.06 × 10-7); sVCAM-1, sICAM-1, TIMP-1, and VEGF with radiographic OA severity (p = 1.85 × 10-5 to 3.97 × 10-4); and VEGF, MMP-3, TIMP-1, sICAM-1, sVCAM-1, and MCP-1 with OA symptoms (p = 2.72 × 10-5 to 0.050). All these SF biomarkers were highly correlated with macrophage markers CD163 and CD14 in SF (r = 0.43 to 0.90, FDR < 0.05); all but MCP-1 were also highly correlated with neutrophil elastase in SF (r = 0.62 to 0.89, FDR < 0.05).

Conclusions: A subset of six SF biomarkers was related to synovial inflammation in OA, as well as radiographic and symptom severity. These six OA-related SF biomarkers were specifically linked to indicators of activated macrophages and neutrophils. These results attest to an inflammatory OA endotype that may serve as the basis for therapeutic targeting of a subset of individuals at high risk for knee OA progression.

Trial registration: Written informed consent was received from participants prior to inclusion in the study; the study was registered at ClinicalTrials.gov ( NCT01237405 ) on November 9, 2010, prior to enrollment of the first participant.

Keywords: Biomarker; Inflammation; Joint pain; Knee; Macrophage; Neutrophil; Osteoarthritis; Radiograph; Severity.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
STRING plot showing functional biomarker interrelationships. Depicted relationships represent biomarkers with significant associations with OA inflammation, radiographic OA, and OA symptoms analyzed using the STRING v10.5 database. The colors of the spheres correspond to the biological processes in which a particular biomarker is involved. Sphere color key: leukocyte migration (red), extracellular matrix organization (blue), and inflammatory response (green). Joining string color key (corresponding to origin of data used for STRING database): curated databases (blue), experimentally determined (pink), textmining (yellow), and co-expression (black). Abbreviations: CD, cluster of differentiation 14; CD163, cluster of differentiation 163; CCL2 (also referred to as MCP-1 or monocyte chemoattractant protein 1), C-C chemokine motif 2 vascular cell adhesion molecule 1; ELANE, neutrophil elastase; ICAM-1, intracellular adhesion molecule 1; MMP-3, matrix metalloproteinase-3; TIMP-1, tissue inhibitor of metallopeptidase inhibitor 1; VEGF, vascular endothelial growth factor
Fig. 2
Fig. 2
Inflammatory OA endotype based on synovial fluid biomarkers. This plot conceptualizes our data in the context of the current understanding of inflammation in OA. Abbreviations: OA, osteoarthritis; DAMPs, disease-associated molecular patterns; VCAM-1, vascular cell adhesion molecule 1; MMP-3, matrix metalloproteinase-3; ICAM-1, intracellular adhesion molecule 1; TLR, toll-like receptor; TIMP-1, tissue inhibitor of metallopeptidase inhibitor 1; VEGF, vascular endothelial growth factor; MCP-1, monocyte chemoattractant protein 1; KL, Kellgren-Lawrence; JSN, joint space narrowing; OST, osteophyte; NHANES, national health and nutrition examination survey measure of OA symptoms (pain, aching, stiffness)

References

    1. Walther M, Harms H, Krenn V, Radke S, Faehndrich T-P, Gohlke F. Correlation of power Doppler sonography with vascularity of the synovial tissue of the knee joint in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 2001;44(2):331–338. doi: 10.1002/1529-0131(200102)44:2<331::AID-ANR50>;2-0.
    1. Abraham AM, Goff I, Pearce MS, Francis RM, Birrell F. Reliability and validity of ultrasound imaging of features of knee osteoarthritis in the community. BMC Musculoskelet Disord. 2011;12:70. doi: 10.1186/1471-2474-12-70.
    1. Loeuille D, Chary-Valckenaere I, Champigneulle J, Rat A-C, Toussaint F, Pinzano-Watrin A, et al. Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum. 2005;52(11):3492–3501. doi: 10.1002/art.21373.
    1. Østergaard M, Stoltenberg M, Løvgreen-Nielsen P, Volck B, Jensen Claus H, Lorenzen I. Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis. Comparison with the macroscopic and microscopic appearance of the synovium. Arthritis Rheum. 2005;40(10):1856–1867. doi: 10.1002/art.1780401020.
    1. Yusuf E, Kortekaas MC, Watt I, Huizinga TWJ, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis. 2011;70(1):60. doi: 10.1136/ard.2010.131904.
    1. Atukorala I, Kwoh CK, Guermazi A, Roemer FW, Boudreau RM, Hannon MJ, et al. Synovitis in knee osteoarthritis: a precursor of disease? Ann Rheum Dis. 2016;75(2):390. doi: 10.1136/annrheumdis-2014-205894.
    1. Kraus VB, McDaniel G, Huebner JL, Stabler TV, Pieper CF, Shipes SW, et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthr Cartil. 2016;24(9):1613–1621. doi: 10.1016/j.joca.2016.04.010.
    1. Hsueh MF, Lu Y, Wellman SS, Bolognesi MP, Kraus VB. Functional folate receptor cell-associated inflammatory cytokines predict the progression of knee osteoarthritis. Osteoarthr Cartil. 2018;26:S121–S1S2. doi: 10.1016/j.joca.2018.02.266.
    1. Blom AB, van Lent PLEM, Holthuysen AEM, van der Kraan PM, Roth J, van Rooijen N, et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil. 2004;12(8):627–635. doi: 10.1016/j.joca.2004.03.003.
    1. Huang W-C, Sala-Newby GB, Susana A, Johnson JL, Newby AC. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB. PLoS One. 2012;7(8):e42507. doi: 10.1371/journal.pone.0042507.
    1. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 2010;62(4):726. doi: 10.1124/pr.110.002733.
    1. Muley MM, Krustev E, Reid AR, McDougall JJ. Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. J Neuroinflammation. 2017;14(1):168. doi: 10.1186/s12974-017-0944-0.
    1. Zhou J, Perelman JM, Kolosov VP, Zhou X. Neutrophil elastase induces MUC5AC secretion via protease-activated receptor 2. Mol Cell Biochem. 2013;377(1):75–85. doi: 10.1007/s11010-013-1572-3.
    1. Russell FA, McDougall JJ. Proteinase activated receptor (PAR) involvement in mediating arthritis pain and inflammation. Inflamm Res. 2009;58(3):119–126. doi: 10.1007/s00011-009-8087-0.
    1. Huesa C, Ortiz AC, Dunning L, McGavin L, Bennett L, McIntosh K, et al. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology. Annals of the Rheumatic Diseases. 2016.
    1. Daghestani HN, Pieper CF, Kraus VB. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol. 2015;67(4):956–965. doi: 10.1002/art.39006.
    1. Huebner JL, Haraden C, Li YJ, Kraus VB. Biomarkers of macrophage-associated inflammatory pathways are associated with OA symptoms and radiographic disease. Osteoarthr Cartil. 2018;26:S42. doi: 10.1016/j.joca.2018.02.099.
    1. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502. doi: 10.1136/ard.16.4.494.
    1. Davis MA, Ettinger WH, Neuhaus JM. Obesity and osteoarthritis of the knee: evidence from the National Health and Nutrition Examination Survey (NHANES I) Semin Arthritis Rheum. 1990;20(3 Suppl 1):34–41. doi: 10.1016/0049-0172(90)90045-H.
    1. Charles HC, Kraus VB, Ainslie M. Hellio Le Graverand-Gastineau MP. Optimization of the fixed-flexion knee radiograph. Osteoarthr Cartil. 2007;15(11):1221–1224. doi: 10.1016/j.joca.2007.05.012.
    1. McDaniel G, Renner JB, Sloane R, Kraus VB. Association of knee and ankle osteoarthritis with physical performance. Osteoarthr Cartil. 2011;19(6):634–638. doi: 10.1016/j.joca.2011.01.016.
    1. Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage. 2007. pp. A1–56.
    1. Kraus V.B., Stabler T.V., Kong S.Y., Varju G., McDaniel G. Measurement of synovial fluid volume using urea. Osteoarthritis and Cartilage. 2007;15(10):1217–1220. doi: 10.1016/j.joca.2007.03.017.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
    1. Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: part 1--correlation within subjects. BMJ. 1995;310(6977):446. doi: 10.1136/bmj.310.6977.446.
    1. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–DD52. doi: 10.1093/nar/gku1003.
    1. Pufe T, Petersen W, Tillmann B, Mentlein R. The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum. 2001;44(5):1082–1088. doi: 10.1002/1529-0131(200105)44:5<1082::AID-ANR188>;2-X.
    1. Pfander D, Körtje D, Zimmermann R, Weseloh G, Kirsch T, Gesslein M, et al. Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann Rheum Dis. 2001;60(11):1070. doi: 10.1136/ard.60.11.1070.
    1. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625. doi: 10.1038/nrrheum.2010.159.
    1. Ramos TN, Bullard DC, Barnum SR. ICAM-1: isoforms and phenotypes. J Immunol. 2014;192(10):4469–4474. doi: 10.4049/jimmunol.1400135.
    1. Schett G, Kiechl S, Bonora E, Zwerina J, Mayr A, Axmann R, et al. Vascular cell adhesion molecule 1 as a predictor of severe osteoarthritis of the hip and knee joints. Arthritis Rheum. 2009;60(8):2381–2389. doi: 10.1002/art.24757.
    1. Miotla Zarebska J, Chanalaris A, Driscoll C, Burleigh A, Miller RE, Malfait AM, et al. CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy. Osteoarthr Cartil. 2017;25(3):406–412. doi: 10.1016/j.joca.2016.10.008.
    1. Huang H, Tohme S, Al-Khafaji Ahmed B, Tai S, Loughran P, Chen L, et al. Damage-associated molecular pattern–activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology. 2015;62(2):600–614. doi: 10.1002/hep.27841.
    1. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Therapeutic Adv Musculoskeletal Dis. 2013;5(2):77–94. doi: 10.1177/1759720X12467868.
    1. Oertli B, Beck-Schimmer B, Fan X, Wüthrich RP. Mechanisms of hyaluronan-induced up-regulation of ICAM-1 and VCAM-1 expression by murine kidney tubular epithelial cells: hyaluronan triggers cell adhesion molecule expression through a mechanism involving activation of nuclear factor-κB and activating protein-1. J Immunol. 1998;161(7):3431.
    1. Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal. 2011;15(6):1607–1638. doi: 10.1089/ars.2010.3522.
    1. Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23. doi: 10.1017/S1462399411001943.
    1. Petri Björn, Sanz Maria-Jesús. Neutrophil chemotaxis. Cell and Tissue Research. 2018;371(3):425–436. doi: 10.1007/s00441-017-2776-8.
    1. Zhang W, Likhodii S, Aref-Eshghi E, Zhang Y, Harper PE, Randell E, et al. Relationship between blood plasma and synovial fluid metabolite concentrations in patients with osteoarthritis. J Rheumatol. 2015;42(5):859. doi: 10.3899/jrheum.141252.
    1. Foell D, Wittkowski H, Roth J. Mechanisms of disease: a 'DAMP' view of inflammatory arthritis. Nat Clin Pract Rheumatol. 2007;3:382. doi: 10.1038/ncprheum0531.
    1. Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol. 2008;214(2):161–178. doi: 10.1002/path.2284.
    1. Shen P, Jiao Z, Zheng JS, Xu WF, Zhang SY, Qin A, et al. Injecting vascular endothelial growth factor into the temporomandibular joint induces osteoarthritis in mice. Sci Rep. 2015;5:16244. doi: 10.1038/srep16244.
    1. Nagao M, Hamilton JL, Kc R, Berendsen AD, Duan X, Cheong CW, et al. Vascular endothelial growth factor in cartilage development and osteoarthritis. Sci Rep. 2017;7(1):13027. doi: 10.1038/s41598-017-13417-w.
    1. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996;87(8):3336.
    1. Haywood L, McWilliams DF, Pearson CI, Gill SE, Ganesan A, Wilson D, et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 2003;48(8):2173–2177. doi: 10.1002/art.11094.
    1. Neogi T, Guermazi A, Roemer F, Nevitt Michael C, Scholz J, Arendt-Nielsen L, et al. Association of Joint Inflammation with pain sensitization in knee osteoarthritis: the multicenter Osteoarthritis Study. Arthritis Rheumatol. 2015;68(3):654–661. doi: 10.1002/art.39488.
    1. Hashimoto S, Creighton-Achermann L, Takahashi K, Amiel D, Coutts RD, Lotz M. Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil. 2002;10(3):180–187. doi: 10.1053/joca.2001.0505.
    1. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflamm. 2014;2014.
    1. Hamilton John L, Nagao Masashi, Levine Brett R, Chen Di, Olsen Bjorn R, Im Hee-Jeong. Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. Journal of Bone and Mineral Research. 2016;31(5):911–924. doi: 10.1002/jbmr.2828.
    1. Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017;19(1):18. doi: 10.1186/s13075-017-1229-9.
    1. Yuan Q, Sun L, Li JJ, An CH. Elevated VEGF levels contribute to the pathogenesis of osteoarthritis. BMC Musculoskelet Disord. 2014;15:437. doi: 10.1186/1471-2474-15-437.

Source: PubMed

3
Abonnere