Extracellular Vesicles in Regeneration and Rehabilitation Recovery after Stroke

Alice Gualerzi, Silvia Picciolini, Francesca Rodà, Marzia Bedoni, Alice Gualerzi, Silvia Picciolini, Francesca Rodà, Marzia Bedoni

Abstract

Patients that survive after a stroke event may present disabilities that can persist for a long time or permanently after it. If stroke prevention fails, the prompt and combinatorial intervention with pharmacological and rehabilitation therapy is pivotal for the optimal recovery of patients and the reduction of disabilities. In the present review, we summarize some key features of the complex events that occur in the brain during and after the stroke event, with a special focus on extracellular vesicles (EVs) and their role as both carriers of biomarkers and potential therapeutics. EVs have already demonstrated their ability to be used for diagnostic purposes for multiple brain disorders and could represent valuable tools to track the regenerative and inflammatory processes occurring in the injured brain after stroke. Last, but not least, the use of artificial or stem cell-derived EVs were proved to be effective in stimulating brain remodeling and ameliorating recovery after stroke. Still, effective biomarkers of recovery are needed to design robust trials for the validation of innovative therapeutic strategies, such as regenerative rehabilitation approaches.

Keywords: biomarkers; extracellular vesicles; precision medicine; recovery; regeneration; rehabilitation; stroke.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(a) Schematic representation of the cellular events occurring in the acute phase that follows a stroke event. Neurons, astrocytes, and microglia are the neural cells mostly involved in the response to injury. Astrocytes and microglia modify their metabolism and morphology towards an activated phenotype. Neurons in the ischemic core might undergo irreversible damage and liquefactive necrosis, while in the penumbra, salvageable neurons undergo acidophilic transformation and oxidative damage. (b) Concise summary of some of the main events occurring after stroke. Regenerative rehabilitation can significantly ameliorate stroke patient conditions leading to better therapeutic outcome and functional recovery. (c) Schematic illustration of the EV-mediated crosstalk occurring between neural and endothelial cells after stroke. Monocytes are recruited in the injured area. Rehabilitation and exercise stimulate EV release by skeletal muscle cells; muscle EVs that reach the brain tissue can favor recovery and resolution of inflammation. Created with BioRender.com.
Figure 2
Figure 2
Schematic representation of the 4 phases of the rehabilitation process involving (1) assessment, (2) goal setting, (3) intervention, and (4) reassessment [17]. The introduction of the rehabilomics approach could accelerate the identification of a personalized intervention (precision medicine) in order to overcome the “reassessment” step (shaded).

References

    1. Bonaventura A., Liberale L., Vecchié A., Casula M., Carbone F., Dallegri F., Montecucco F. Update on inflammatory biomarkers and treatments in ischemic stroke. Int. J. Mol. Sci. 2016;17:1967. doi: 10.3390/ijms17121967.
    1. Bull F., Goenka S., Lambert V., Pratt M. Disease Control Priorities, Third Edition (Volume 5): Cardiovascular, Respiratory, and Related Disorders. Volume 5. The World Bank Group; Washington, DC, USA: 2017. Physical Activity for the Prevention of Cardiometabolic Disease; pp. 79–99.
    1. Barthels D., Das H. Current advances in ischemic stroke research and therapies. Biochim. Biophys. Acta-Mol. Basis Dis. 2020;1866:165260. doi: 10.1016/j.bbadis.2018.09.012.
    1. Willett N.J., Boninger M.L., Miller L.J., Alvarez L., Aoyama T., Bedoni M., Brix K.A., Chisari C., Christ G., Dearth C.L., et al. Taking the Next Steps in Regenerative Rehabilitation: Establishment of a New Interdisciplinary Field. Arch. Phys. Med. Rehabil. 2020;101:917–923. doi: 10.1016/j.apmr.2020.01.007.
    1. Head P.L. Rehabilitation Considerations in Regenerative Medicine. Phys. Med. Rehabil. Clin. N. Am. 2016;27:1043–1054. doi: 10.1016/j.pmr.2016.07.002.
    1. Ito A., Kubo N., Liang N., Aoyama T., Kuroki H. Regenerative rehabilitation for stroke recovery by inducing synergistic effects of cell therapy and neurorehabilitation on motor function: A narrative review of pre-clinical studies. Int. J. Mol. Sci. 2020;21:3135. doi: 10.3390/ijms21093135.
    1. Rincon F., Mayer S.A. Intracerebral haemorrhage. Core Top. Neuroanaesth. Neurointensive Care. 2011;373:359–368. doi: 10.1017/CBO9780511977558.024.
    1. Tang K., Just J., Ankerlund R., Ryun K. Extracellular vesicles in acute stroke diagnostics. Biomedicines. 2020;8:248. doi: 10.3390/BIOMEDICINES8080248.
    1. Gualerzi A., Lombardi M., Verderio C. Microglia-oligodendrocyte intercellular communication: Role of extracellular vesicle lipids in functional signalling. Neural Regen. Res. 2021;16:1194. doi: 10.4103/1673-5374.300430.
    1. Krucoff M.O., Rahimpour S., Slutzky M.W., Edgerton V.R., Turner D.A. Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. Front. Neurosci. 2016;10:584. doi: 10.3389/fnins.2016.00584.
    1. Gandolfi M., Smania N., Vella A., Picelli A., Chirumbolo S. Assessed and Emerging Biomarkers in Stroke and Training-Mediated Stroke Recovery: State of the Art. Neural Plast. 2017;2017:1–15. doi: 10.1155/2017/1389475.
    1. Hawker G.A., Mian S., Kendzerska T., French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale SF. Arthritis Care Res. 2011;63:240–252. doi: 10.1002/acr.20543.
    1. Cunic D., Lacombe S., Mohajer K., Grant H., Wood G. Can the blaylock risk assessment screening score (BRASS) predict length of hospital stay and need for comprehensive discharge planning for patients following hip and knee replacement surgery? Predicting arthroplasty planning and stay using the BRASS. Can. J. Surg. 2014;57:391–397. doi: 10.1503/cjs.024113.
    1. Leung S.O.C., Chan C.C.H., Shah S. Development of a Chinese version of the Modified Barthel Index-Validity and reliabilty. Clin. Rehabil. 2007;21:912–922. doi: 10.1177/0269215507077286.
    1. Martocchia A., Indiano I., Tafaro L., Frugoni P., Amici A., Cacciafesta M., Marigliano V., Falaschi P. The evaluation of the presence of comorbidity by the Marigliano-Cacciafesta polypathology scale (MCPS) and the cumulative illness rating scale (CIRS) in elderly subjects with disability. Arch. Gerontol. Geriatr. 2009;49:150–152. doi: 10.1016/j.archger.2008.06.006.
    1. Taricco M., Aou C., Cecchi F., Fondazione I., Gnocchi C., Cassio A., Piacenza A., Lavezzi S., Ferrara A.O.U., Usl F.S., et al. ARTICOLO ORIGINALE PMIC 2020 Protocollo di valutazione riabilitativa di Minima della persona con Ictus Cerebrale Versione 2020. G. Ital. Med. Riabil. 2020;34:11–37.
    1. Langhorne P., Bernhardt J., Kwakkel G. Stroke rehabilitation. Lancet. 2011;377:1693–1702. doi: 10.1016/S0140-6736(11)60325-5.
    1. Carmichael S.T., Kathirvelu B., Schweppe C.A., Nie E.H. Molecular, cellular and functional events in axonal sprouting after stroke. Exp. Neurol. 2017;287:384–394. doi: 10.1016/j.expneurol.2016.02.007.
    1. Pierella C., Pirondini E., Kinany N., Coscia M., Giang C., Miehlbradt J., Magnin C., Nicolo P., Dalise S., Sgherri G., et al. A multimodal approach to capture post-stroke temporal dynamics of recovery. J. Neural Eng. 2020;17:045002. doi: 10.1088/1741-2552/ab9ada.
    1. Bernhardt J., Borschmann K., Boyd L., Carmichael S.T., Corbett D., Cramer S.C., Hoffmann T., Kwakkel G., Savitz S., Saposnik G., et al. Moving Rehabilitation Research Forward: Developing Consensus Statements for Rehabilitation and Recovery Research ∗. Neurorehabil. Neural Repair. 2017;31:694–698. doi: 10.1177/1545968317724290.
    1. Aprile I., Germanotta M., Cruciani A., Loreti S., Pecchioli C., Cecchi F., Montesano A., Galeri S., Diverio M., Falsini C., et al. Upper Limb Robotic Rehabilitation after Stroke: A Multicenter, Randomized Clinical Trial. J. Neurol. Phys. Ther. 2020;44:3–14. doi: 10.1097/NPT.0000000000000295.
    1. Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750.
    1. Ciccocioppo F., Lanuti P., Centonze D., Miscia S., Marchisio M. The Link Among Neurological Diseases: Extracellular Vesicles as a Possible Brain Injury Footprint. Neurosignals. 2019;27:25–39. doi: 10.33594/000000116.
    1. Lässer C. Exosomes in diagnostic and therapeutic applications: Biomarker, vaccine and RNA interference delivery vehicle. Expert Opin. Biol. Ther. 2015;15:103–117. doi: 10.1517/14712598.2015.977250.
    1. Shao H., Im H., Castro C.M., Breakefield X., Weissleder R., Lee H. New Technologies for Analysis of Extracellular Vesicles. Volume 118. American Chemical Society; Washington, DC, USA: 2018.
    1. Yáñez-Mó M., Siljander P.R.-M., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066.
    1. Koniusz S., Andrzejewska A., Muraca M., Srivastava A.K., Janowski M., Lukomska B. Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front. Cell. Neurosci. 2016;10:1–20. doi: 10.3389/fncel.2016.00109.
    1. Colombo M., Raposo G., Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326.
    1. Camussi G., Deregibus M.C., Bruno S., Cantaluppi V., Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78:838–848. doi: 10.1038/ki.2010.278.
    1. Budnik V., Ruiz-Cañada C., Wendler F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 2016;17:160–172. doi: 10.1038/nrn.2015.29.
    1. Graykowski D.R., Wang Y.-Z., Upadhyay A., Savas J.N. iScience The Dichotomous Role of Extracellular Vesicles in the Central Nervous System. iScience. 2020;23:101456. doi: 10.1016/j.isci.2020.101456.
    1. Picciolini S., Gualerzi A., Vanna R., Sguassero A., Gramatica F., Bedoni M., Masserini M., Morasso C. Detection and Characterization of Different Brain-Derived Subpopulations of Plasma Exosomes by Surface Plasmon Resonance Imaging. Anal. Chem. 2018;90:8873–8880. doi: 10.1021/acs.analchem.8b00941.
    1. Clayton A., Boilard E., Buzas E.I., Cheng L., Falcón-Perez J.M., Gardiner C., Gustafson D., Gualerzi A., Hendrix A., Hoffman A., et al. Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. J. Extracell. Vesicles. 2019;8:1647027. doi: 10.1080/20013078.2019.1647027.
    1. Coumans F.A.W., Brisson A.R., Buzas E.I., Dignat-George F., Drees E.E.E., El-Andaloussi S., Emanueli C., Gasecka A., Hendrix A., Hill A.F., et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 2017;120:1632–1648. doi: 10.1161/CIRCRESAHA.117.309417.
    1. Witwer K.W., Buzás E.I., Bemis L.T., Bora A., Lässer C., Lötvall J., Nolte-’t Hoen E.N., Piper M.G., Sivaraman S., Skog J., et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles. 2013;2:20360. doi: 10.3402/jev.v2i0.20360.
    1. Gualerzi A., Picciolini S., Carlomagno C., Rodà F., Bedoni M. Biophotonics for diagnostic detection of extracellular vesicles. Adv. Drug Deliv. Rev. 2021;174:229–249. doi: 10.1016/j.addr.2021.04.014.
    1. Zhang L., Gu C., Wen J., Liu G., Liu H., Li L. Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal. Bioanal. Chem. 2020;413:83–102. doi: 10.1007/s00216-020-03000-0.
    1. Nagelkerke A., Ojansivu M., van der Koog L., Whittaker T.E., Cunnane E.M., Silva A.M., Dekker N., Stevens M.M. Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Adv. Drug Deliv. Rev. 2021;175:113775. doi: 10.1016/j.addr.2021.04.013.
    1. Bavisotto C.C., Scalia F., Marino Gammazza A., Carlisi D., Bucchieri F., Conway de Macario E., Macario A., Cappello F., Campanella C. Extracellular Vesicle-Mediated Cell–Cell Communication in the Nervous System: Focus on Neurological Diseases. Int. J. Mol. Sci. 2019;20:434. doi: 10.3390/ijms20020434.
    1. Howitt J., Hill A.F. Exosomes in the pathology of neurodegenerative diseases. J. Biol. Chem. 2016;291:26589–26597. doi: 10.1074/jbc.R116.757955.
    1. Hill A.F. Extracellular Vesicles and Neurodegenerative Diseases. J. Neurosci. 2019;39:9269–9273. doi: 10.1523/JNEUROSCI.0147-18.2019.
    1. Paolicelli R.C., Bergamini G., Rajendran L. Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience. 2019;405:148–157. doi: 10.1016/j.neuroscience.2018.04.003.
    1. Lombardi M., Parolisi R., Scaroni F., Bonfanti E., Gualerzi A., Gabrielli M., de Rosbo N.K., Uccelli A., Giussani P., Viani P., et al. Detrimental and protective action of microglial extracellular vesicles on myelin lesions: Astrocyte involvement in remyelination failure. Acta Neuropathol. 2019;138:987–1012. doi: 10.1007/s00401-019-02049-1.
    1. Zhang Z.G., Chopp M. Exosomes in stroke pathogenesis and therapy. J. Clin. Investig. 2016;126:1190–1197. doi: 10.1172/JCI81133.
    1. Yang J., Cao L.-L., Wang X.-P., Guo W., Guo R.-B., Sun Y.-Q., Xue T.-F., Cai Z.-Y., Ji J., Cheng H., et al. Neuronal extracellular vesicle derived miR-98 prevents salvageable neurons from microglial phagocytosis in acute ischemic stroke. Cell Death Dis. 2021;12:23. doi: 10.1038/s41419-020-03310-2.
    1. Couch Y., Akbar N., Davis S., Fischer R., Dickens A.M., Neuhaus A.A., Burgess A.I., Rothwell P.M., Buchan A.M. Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation. Stroke. 2017;48:2292–2296. doi: 10.1161/STROKEAHA.117.017236.
    1. Brenna S., Altmeppen H.C., Mohammadi B., Rissiek B., Schlink F., Ludewig P., Krisp C., Schlüter H., Failla A.V., Schneider C., et al. Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake. J. Extracell. Vesicles. 2020;9:1809065. doi: 10.1080/20013078.2020.1809065.
    1. Raffaele S., Gelosa P., Bonfanti E., Lombardi M., Castiglioni L., Cimino M., Sironi L., Abbracchio M.P., Verderio C., Fumagalli M. Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. Mol. Ther. 2021;29:1439–1458. doi: 10.1016/j.ymthe.2020.12.009.
    1. Fröhlich D., Kuo W.P., Frühbeis C., Sun J.-J., Zehendner C.M., Luhmann H.J., Pinto S., Toedling J., Trotter J., Krämer-Albers E.-M. Multifaceted effects of oligodendroglial exosomes on neurons: Impact on neuronal firing rate, signal transduction and gene regulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369:20130510. doi: 10.1098/rstb.2013.0510.
    1. Khan H., Pan J.-J., Li Y., Zhang Z., Yang G.-Y. Native and Bioengineered Exosomes for Ischemic Stroke Therapy. Front. Cell Dev. Biol. 2021;9:450. doi: 10.3389/fcell.2021.619565.
    1. Makris K., Haliassos A., Chondrogianni M., Tsivgoulis G. Blood biomarkers in ischemic stroke: Potential role and challenges in clinical practice and research. Crit. Rev. Clin. Lab. Sci. 2018;55:294–328. doi: 10.1080/10408363.2018.1461190.
    1. Simak J., Gelderman M.P., Yu H., Wright V., Baird A.E. Circulating endothelial microparticles in acute ischemic stroke: A link to severity, lesion volume and outcome. J. Thromb. Haemost. 2006;4:1296–1302. doi: 10.1111/j.1538-7836.2006.01911.x.
    1. Chiva-Blanch G., Suades R., Crespo J., Peña E., Padró T., Jiménez-Xarrié E., Martí-Fàbregas J., Badimon L. Microparticle shedding from neural progenitor cells and vascular compartment cells is increased in ischemic stroke. PLoS ONE. 2016;11:e0148176. doi: 10.1371/journal.pone.0148176.
    1. Montaner J., Ramiro L., Simats A., Tiedt S., Makris K., Jickling G.C., Debette S., Sanchez J.C., Bustamante A. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat. Rev. Neurol. 2020;16:247–264. doi: 10.1038/s41582-020-0350-6.
    1. Zhou J., Chen L., Chen B., Huang S., Zeng C., Wu H., Chen C., Long F. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol. 2018;18:1–9. doi: 10.1186/s12883-018-1196-z.
    1. Ji Q., Ji Y., Peng J., Zhou X., Chen X., Zhao H., Xu T., Chen L., Xu Y. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS ONE. 2016;11:e0163645. doi: 10.1371/journal.pone.0163645.
    1. Kalani M.Y.S., Alsop E., Meechoovet B., Beecroft T., Agrawal K., Whitsett T.G., Huentelman M.J., Spetzler R.F., Nakaji P., Kim S., et al. Extracellular microRNAs in blood differentiate between ischaemic and haemorrhagic stroke subtypes. J. Extracell. Vesicles. 2020;9:1713540. doi: 10.1080/20013078.2020.1713540.
    1. Wijerathne H., Witek M.A., Jackson J.M., Brown V., Hupert M.L., Herrera K., Kramer C., Davidow A.E., Li Y., Baird A.E., et al. Affinity enrichment of extracellular vesicles from plasma reveals mRNA changes associated with acute ischemic stroke. Commun. Biol. 2020;3:1–11. doi: 10.1038/s42003-020-01336-y.
    1. Stinear C.M. Prediction of motor recovery after stroke: Advances in biomarkers. Lancet Neurol. 2017;16:826–836. doi: 10.1016/S1474-4422(17)30283-1.
    1. Stinear C.M., Smith M.-C., Byblow W.D. Prediction Tools for Stroke Rehabilitation. Stroke. 2019;50:3314–3322. doi: 10.1161/STROKEAHA.119.025696.
    1. Wagner A.K. Rehabilomics: A conceptual framework to drive biologics research. PM R. 2011;3:S28–S30. doi: 10.1016/j.pmrj.2011.04.013.
    1. Lasek-Bal A., Jędrzejowska-Szypułka H., Różycka J., Bal W., Holecki M., Duława J., Lewin-Kowalik J. Low concentration of BDNF in the acute phase of ischemic stroke as a factor in poor prognosis in terms of functional status of patients. Med. Sci. Monit. 2015;21:3900–3905. doi: 10.12659/MSM.895358.
    1. Himi N., Takahashi H., Okabe N., Nakamura E., Shiromoto T., Narita K., Koga T., Miyamoto O. Exercise in the Early Stage after Stroke Enhances Hippocampal Brain-Derived Neurotrophic Factor Expression and Memory Function Recovery. J. Stroke Cerebrovasc. Dis. 2016;25:2987–2994. doi: 10.1016/j.jstrokecerebrovasdis.2016.08.017.
    1. Holm M.M., Kaiser J., Schwab M.E. Extracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci. 2018;41:360–372. doi: 10.1016/j.tins.2018.03.006.
    1. Tian T., Zhang H.X., He C.P., Fan S., Zhu Y.L., Qi C., Huang N.P., Xiao Z.D., Lu Z.H., Tannous B.A., et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–149. doi: 10.1016/j.biomaterials.2017.10.012.
    1. Zhang H., Wu J., Wu J., Fan Q., Zhou J., Wu J., Liu S., Zang J., Ye J., Xiao M., et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J. Nanobiotechnol. 2019;17:29. doi: 10.1186/s12951-019-0461-7.
    1. Yang J., Zhang X., Chen X., Wang L., Yang G. Exosome Mediated Delivery of miR-124 Promotes Neurogenesis after Ischemia. Mol. Ther.-Nucleic Acids. 2017;7:278–287. doi: 10.1016/j.omtn.2017.04.010.
    1. Yang J., Wu S., Hou L., Zhu D., Yin S., Yang G., Wang Y. Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor mRNA and Protein via Exosomes on Cerebral Ischemia. Mol. Ther.-Nucleic Acids. 2020;21:512–522. doi: 10.1016/j.omtn.2020.06.013.
    1. Bruno S., Grange C., Deregibus M.C., Calogero R.A., Saviozzi S., Collino F., Morando L., Busca A., Falda M., Bussolati B., et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 2009;20:1053–1067. doi: 10.1681/ASN.2008070798.
    1. Li Y., Cheng Q., Hu G., Deng T., Wang Q., Zhou J., Su X. Extracellular vesicles in mesenchymal stromal cells: A novel therapeutic strategy for stroke (Review) Exp. Ther. Med. 2018;15:4067–4079. doi: 10.3892/etm.2018.5993.
    1. Xin H., Li Y., Liu Z., Wang X., Shang X., Cui Y., Zhang Z.G., Chopp M. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31:2737–2746. doi: 10.1002/stem.1409.
    1. Otero-Ortega L., Laso-García F., Del Carmen Gómez-De Frutos M., Rodríguez-Frutos B., Pascual-Guerra J., Fuentes B., Díez-Tejedor E., Gutiérrez-Fernández M. White matter repair after extracellular vesicles administration in an experimental animal model of subcortical stroke. Sci. Rep. 2017;7:1–11. doi: 10.1038/srep44433.
    1. Lin S.S., Zhu B., Guo Z.K., Huang G.Z., Wang Z., Chen J., Wei X.J., Li Q. Bone marrow mesenchymal stem cell-derived microvesicles protect rat pheochromocytoma PC12 cells from glutamate-induced injury via a PI3K/Akt dependent pathway. Neurochem. Res. 2014;39:922–931. doi: 10.1007/s11064-014-1288-0.
    1. Xin H., Li Y., Cui Y., Yang J.J., Zhang Z.G., Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 2013;33:1711–1715. doi: 10.1038/jcbfm.2013.152.
    1. Doeppner T.R., Herz J., Görgens A., Schlechter J., Ludwig A.-K., Radtke S., de Miroschedji K., Horn P.A., Giebel B., Hermann D.M. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl. Med. 2015;4:1131–1143. doi: 10.5966/sctm.2015-0078.
    1. Kang X., Zuo Z., Hong W., Tang H., Geng W. Progress of Research on Exosomes in the Protection Against Ischemic Brain Injury. Front. Neurosci. 2019;13 doi: 10.3389/fnins.2019.01149.
    1. Gregorius J., Wang C., Stambouli O., Hussner T., Qi Y., Tertel T., Börger V., Mohamud Yusuf A., Hagemann N., Yin D., et al. Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Res. Cardiol. 2021;116:40. doi: 10.1007/s00395-021-00881-9.
    1. Lee J.Y., Kim E., Choi S.M., Kim D.W., Kim K.P., Lee I., Kim H.S. Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci. Rep. 2016;6:33038. doi: 10.1038/srep33038.
    1. Webb R.L., Kaiser E.E., Jurgielewicz B.J., Spellicy S., Scoville S.L., Thompson T.A., Swetenburg R.L., Hess D.C., West F.D., Stice S.L. Human neural stem cell extracellular vesicles improve recovery in a porcine model of ischemic stroke. Stroke. 2018;49:1248–1256. doi: 10.1161/STROKEAHA.117.020353.
    1. Zhang Y., Qin Y., Chopp M., Li C., Kemper A., Liu X., Wang X., Zhang L., Zhang Z.G. Ischemic Cerebral Endothelial Cell–Derived Exosomes Promote Axonal Growth. Stroke. 2020;51:3701–3712. doi: 10.1161/STROKEAHA.120.031728.
    1. Zheng X., Zhang L., Kuang Y., Venkataramani V., Jin F., Hein K., Zafeiriou M.P., Lenz C., Moebius W., Kilic E., et al. Extracellular Vesicles Derived from Neural Progenitor Cells—A Preclinical Evaluation for Stroke Treatment in Mice. Transl. Stroke Res. 2021;12:185–203. doi: 10.1007/s12975-020-00814-z.
    1. Bang O.Y., Kim E.H. Mesenchymal Stem Cell-Derived Extracellular Vesicle Therapy for Stroke: Challenges and Progress. Front. Neurol. 2019;10:211. doi: 10.3389/fneur.2019.00211.
    1. Otero-Ortega L., Laso-García F., Gómez-de Frutos M., Fuentes B., Diekhorst L., Díez-Tejedor E., Gutiérrez-Fernández M. Role of Exosomes as a Treatment and Potential Biomarker for Stroke. Transl. Stroke Res. 2019;10:241–249. doi: 10.1007/s12975-018-0654-7.
    1. Zhang Z.G., Buller B., Chopp M. Exosomes—Beyond stem cells for restorative therapy in stroke and neurological injury. Nat. Rev. Neurol. 2019;15:193–203. doi: 10.1038/s41582-018-0126-4.
    1. Vechetti I.J., Valentino T., Mobley C.B., McCarthy J.J. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J. Physiol. 2021;599:845–861. doi: 10.1113/JP278929.
    1. Zhang Y.-X., Yuan M.-Z., Cheng L., Lin L.-Z., Du H.-W., Chen R.-H., Liu N. Treadmill exercise enhances therapeutic potency of transplanted bone mesenchymal stem cells in cerebral ischemic rats via anti-apoptotic effects. BMC Neurosci. 2015;16:56. doi: 10.1186/s12868-015-0196-9.

Source: PubMed

3
Abonnere