Immunomodulation of the NLRP3 Inflammasome in Atherosclerosis, Coronary Artery Disease, and Acute Myocardial Infarction

Max J M Silvis, Evelyne J Demkes, Aernoud T L Fiolet, Mirthe Dekker, Lena Bosch, Gerardus P J van Hout, Leo Timmers, Dominique P V de Kleijn, Max J M Silvis, Evelyne J Demkes, Aernoud T L Fiolet, Mirthe Dekker, Lena Bosch, Gerardus P J van Hout, Leo Timmers, Dominique P V de Kleijn

Abstract

Cardiovascular disease (CVD) remains the leading cause of mortality and morbidity worldwide. Atherosclerosis is responsible for the majority of cardiovascular disorders with inflammation as one of its driving processes. The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, responsible for the release of the pro-inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18), has been studied extensively and showed to play a pivotal role in the progression of atherosclerosis, coronary artery disease (CAD), and myocardial ischemia reperfusion (I/R) injury. Both the NLRP3 inflammasome and its downstream cytokines, IL-1ß and IL-18, could therefore be promising targets in cardiovascular disease. This review summarizes the role of the NLRP3 inflammasome in atherosclerosis, CAD, and myocardial I/R injury. Furthermore, the current therapeutic approaches targeting the NLRP3 inflammasome and its downstream signaling cascade in atherosclerosis, CAD, and myocardial I/R injury are discussed.

Trial registration: ClinicalTrials.gov NCT01906749 NCT03048825 NCT01950299.

Keywords: Atherosclerosis; Coronary artery disease; Interleukin-18; Interleukin-1β; Ischemia-reperfusion injury; Myocardial infarction; NLRP3 inflammasome.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
NLRP3 inflammasome components. The NLRP3 inflammasome consist of three components: NLRP3, ASC, and caspase-1. NLRP3 protein contains three domains: NACHT, a central nucleotide domain; LRR, C-terminal leucine-rich repeats; and PYD, pyrin domain. ASC contains two interaction domains: pyrin domain (PYD) and caspase-recruitment domain (CARD). Caspase-1 contains a CARD and catalytic domain. Figure was created with Biorender.com
Fig. 2
Fig. 2
Inflammasome activation in atherosclerosis requires two steps; priming and activation. PRRs, such as TLRs, get stimulated by PAMPS & DAMPS leading to upregulation of the inflammasome components. Signals present in the atherosclerotic lesions (cholesterol crystals and oxidized LDL, disturbed flow) lead to activation of the inflammasome (activation). The NLRP3 inflammasome activates caspase-1 that in turn is responsible for the activation of interleukin-1β (IL-1β) and interleukin-18 (IL-18). Figure was created with Biorender.com
Fig. 3
Fig. 3
Central illustration: the NLRP3 inflammasome plays a dual role in coronary artery disease. (1) Progression of atherosclerosis. (2) Myocardial ischemia/reperfusion injury. Figure was created with Biorender.com

References

    1. Benjamin, E. J., et al. (2019). Heart Disease and Stroke Statistics-2019 Update: a report from the american heart association., 139(10).
    1. World Health Organization. (2018). The top 10 causes of death. Retrieved from: .
    1. Knuuti, J., et al. (Aug. 2019). 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal, 1–71. 10.1093/eurheartj/ehz425.
    1. Piepoli MF, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice. European Heart Journal. 2016;37(29):2315–2381. doi: 10.1093/eurheartj/ehw106.
    1. Baigent, C., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 10.1016/S0140-6736(10)61350-5.
    1. Ketelhuth DFJ, et al. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the working group on atherosclerosis and vascular biology of the European society of cardiology. Cardiovascular Research. 2019;115(9):1385–1392. doi: 10.1093/cvr/cvz166.
    1. Ridker, P. M. (2016). Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. European Heart Journal. 10.1093/eurheartj/ehw024.
    1. Martinon F, Burns K, Tschopp J. The Inflammasome. Molecular Cell. 2002;10(2):417–426. doi: 10.1016/S1097-2765(02)00599-3.
    1. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews. Immunology. 2016;16(7):407–420. doi: 10.1038/nri.2016.58.
    1. Swanson, K. V., Deng, M., & Ting, J. P. Y. (2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology. 10.1038/s41577-019-0165-0.
    1. de Vasconcelos NM, Van Opdenbosch N, Lamkanfi M. Inflammasomes as polyvalent cell death platforms. Cellular and Molecular Life Sciences. 2016;73(11–12):2335–2347. doi: 10.1007/s00018-016-2204-3.
    1. Dinarello, C. A. (2009). Immunological and inflammatory functions of the Interleukin-1 family. Annual Review of Immunology. 10.1146/annurev.immunol.021908.132612.
    1. Shi J, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–665. doi: 10.1038/nature15514.
    1. Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Annals of the New York Academy of Sciences. 2014;1319(1):82–95. doi: 10.1111/nyas.12458.
    1. Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews. Cardiology. 2018;15(4):203–214. doi: 10.1038/nrcardio.2017.161.
    1. Toldo S, et al. Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovascular Research. 2015;105(2):203–212. doi: 10.1093/cvr/cvu259.
    1. Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis. 2017;267:127–138. doi: 10.1016/j.atherosclerosis.2017.10.027.
    1. Mauro AG, Bonaventura A, Mezzaroma E, Quader M, Toldo S. NLRP3 inflammasome in acute myocardial infarction. Journal of Cardiovascular Pharmacology. 2019;74(3):175–187. doi: 10.1097/FJC.0000000000000717.
    1. Kelley, N., Jeltema, D., Duan, Y., & He, Y. (2019). The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. International Journal of Molecular Sciences. 10.3390/ijms20133328.
    1. Karasawa T, Takahashi M. Role of NLRP3 inflammasomes in atherosclerosis. Journal of Atherosclerosis and Thrombosis. 2017;24(5):443–451. doi: 10.5551/jat.RV17001.
    1. Tabas, I., Williams, K. J., & Borén, J. (2007). Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 10.1161/CIRCULATIONAHA.106.676890.
    1. Lusis, A. J. (2000). Atherosclerosis. Nature. 10.1038/35025203.
    1. Hansson, G. K., Libby, P., & Tabas, I. (2015). Inflammation and plaque vulnerability. Journal of Internal Medicine. 10.1111/joim.12406.
    1. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362(6423):801–809. doi: 10.1038/362801a0.
    1. Getz, G. S., & Reardon, C. A. (2015). Use of mouse models in atherosclerosis research. Methods in Molecular Biology.
    1. Getz, G. S., & Reardon, C. A. (2016). ApoE knockout and knockin mice: the history of their contribution to the understanding of atherogenesis. Journal of Lipid Research. 10.1194/jlr.r067249.
    1. Kirii H, et al. Lack of interleukin-1β decreases the severity of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23(4):656–660. doi: 10.1161/01.ATV.0000064374.15232.C3.
    1. Mallat Z, et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circulation Research. 2001;89(7):E41–E45. doi: 10.1161/hh1901.098735.
    1. Duewell P, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–1361. doi: 10.1038/nature08938.
    1. Rajamäki K, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One. 2010;5(7):e11765. doi: 10.1371/journal.pone.0011765.
    1. Mallat, Z., et al. (2001). Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation. 10.1161/hc3901.096721.
    1. D. Gomez et al., “Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice,” Nature Medicine., 2018, doi: 10.1038/s41591-018-0124-5.
    1. Menu P, et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death & Disease. 2011;2(3):e137–e137. doi: 10.1038/cddis.2011.18.
    1. Gage J, Hasu M, Thabet M, Whitman SC. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. The Canadian Journal of Cardiology. 2012;28(2):222–229. doi: 10.1016/j.cjca.2011.10.013.
    1. Usui F, et al. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochemical and Biophysical Research Communications. 2012;425(2):162–168. doi: 10.1016/j.bbrc.2012.07.058.
    1. Rhoads JP, et al. Oxidized low-density lipoprotein immune complex priming of the Nlrp3 inflammasome involves TLR and FcγR cooperation and is dependent on CARD9. Journal of Immunology. 2017;198(5):2105–2114. doi: 10.4049/jimmunol.1601563.
    1. Grebe A, Hoss F, Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research. 2018;122(12):1722–1740. doi: 10.1161/CIRCRESAHA.118.311362.
    1. Xiao H, et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation. 2013;128(6):632–642. doi: 10.1161/CIRCULATIONAHA.113.002714.
    1. Folco, E. J., Sukhova, G. K., Quillard, T., & Libby, P. (2014). Moderate hypoxia potentiates interleukin-1â production in activated human macrophages. Circulation Research. 10.1161/CIRCRESAHA.115.304437.
    1. Rajamäki, K., et al. (2013). Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J. Biol. Chem. 10.1074/jbc.M112.426254.
    1. Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circulation Research. 2014;114(12):1867–1879. doi: 10.1161/CIRCRESAHA.114.302699.
    1. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. The New England Journal of Medicine. 1997;336(14):973–979. doi: 10.1056/NEJM199704033361401.
    1. Kaptoge, S., et al. (2010). C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 10.1016/S0140-6736(09)61717-7.
    1. Ridker, P. M., Rifai, N., Stampfer, M. J., & Hennekens, C. H. (2000). Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 10.1161/01.CIR.101.15.1767.
    1. S. Kaptoge et al., “Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis,” European Heart Journal., 2014, doi: 10.1093/eurheartj/eht367.
    1. Swerdlow, D. I., et al. (2012). The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 10.1016/S0140-6736(12)60110-X.
    1. Libby, P. (2017). Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. Journal of the American College of Cardiology. 10.1016/j.jacc.2017.09.028.
    1. Galea, J., Armstrong, J., Gadsdon, P., Holden, H., Francis, S. E., & Holt, C. M. (1996). Interleukin-1β in coronary arteries of patients with ischemic heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 10.1161/01.ATV.16.8.1000.
    1. Blankenberg S, et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation. 2002;106(1):24–30. doi: 10.1161/01.CIR.0000020546.30940.92.
    1. Zheng F, Xing S, Gong Z, Xing Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circulation. 2013;22(9):746–750. doi: 10.1016/j.hlc.2013.01.012.
    1. Satoh M, Tabuchi T, Itoh T, Nakamura M. NLRP3 inflammasome activation in coronary artery disease: results from prospective and randomized study of treatment with atorvastatin or rosuvastatin. Clinical Science. 2014;126(3):233–241. doi: 10.1042/CS20130043.
    1. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. Journal of the American College of Cardiology. 2013;61(4):404–410. doi: 10.1016/j.jacc.2012.10.027.
    1. Tardif, J.-C., et al. (2019). Efficacy and safety of low-dose colchicine after myocardial infarction. New England Journal of Medicine, NEJMoa1912388. 10.1056/NEJMoa1912388.
    1. Ridker, P. M., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. New England Journal of Medicine. 10.1056/NEJMoa1707914.
    1. Nidorf SM, et al. The effect of low-dose colchicine in patients with stable coronary artery disease: the LoDoCo2 trial rationale, design, and baseline characteristics. American Heart Journal. 2019;218(LDLc):46–56. doi: 10.1016/j.ahj.2019.09.011.
    1. , “Colchicine for acute coronary syndromes (COACS) NCT01906749,” NCT01906749.
    1. , “Colchicine and spironolactone in patients with Stemi/Synergy stent Registry (CLEAR-SYNERGY) NCT03048825,” NCT03048825.
    1. Abbate, A., et al. (2013). “Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. The American Journal of Cardiology, 111(10), 1394–1400. doi: 10.1016/j.amjcard.2013.01.287.
    1. Abbate A, et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] pilot study) American Journal of Cardiology. 2010;105(10):1371–1377.e1. doi: 10.1016/j.amjcard.2009.12.059.
    1. Leung YY, Yao Hui LL, Kraus VB. Colchicine—update on mechanisms of action and therapeutic uses. Seminars in Arthritis and Rheumatism. 2015;45(3):341–350. doi: 10.1016/j.semarthrit.2015.06.013.
    1. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–241. doi: 10.1038/nature04516.
    1. Martínez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 2018;269:262–271. doi: 10.1016/j.atherosclerosis.2017.12.027.
    1. Ridker PM, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS) European Heart Journal. 2018;39(38):3499–3507. doi: 10.1093/eurheartj/ehy310.
    1. Ridker, P. M., MacFadyen, J. G., Thuren, T., & Libby, P. (2019). Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. European Heart Journal, 1–11. 10.1093/eurheartj/ehz542.
    1. Ibanez B, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart Journal. 2018;39(2):119–177. doi: 10.1093/eurheartj/ehx393.
    1. Derek PD, Yellon M, Hausenloy DJ. Myocardial reperfusion injury [14] New England Journal of Medicine. 2007;357(23):2409.
    1. Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Nature Reviews. Cardiology. 2011;8(5):292–300. doi: 10.1038/nrcardio.2011.38.
    1. Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, Abbate A. The inflammasome in myocardial injury and cardiac remodeling. Antioxidants & Redox Signaling. 2015;22(13):1146–1161. doi: 10.1089/ars.2014.5989.
    1. Kawaguchi M, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123(6):594–604. doi: 10.1161/CIRCULATIONAHA.110.982777.
    1. Mezzaroma E, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proceedings of the National Academy of Sciences. 2011;108(49):19725–19730. doi: 10.1073/pnas.1108586108.
    1. Sandanger Ø, et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovascular Research. 2013;99(1):164–174. doi: 10.1093/cvr/cvt091.
    1. Juliana C, et al. Anti-inflammatory compounds parthenolide and bay 11-7082 are direct inhibitors of the Inflammasome. The Journal of Biological Chemistry. 2010;285(13):9792–9802. doi: 10.1074/jbc.M109.082305.
    1. Kim YS, et al. BAY 11-7082, a nuclear factor-κB inhibitor, reduces inflammation and apoptosis in a rat cardiac ischemia-reperfusion injury model. International Heart Journal. 2010;51(5):348–353. doi: 10.1536/ihj.51.348.
    1. Marchetti C, et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia–reperfusion in the mouse. Journal of Cardiovascular Pharmacology. 2014;63(4):316–322. doi: 10.1097/FJC.0000000000000053.
    1. Marchetti C, et al. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. Journal of Cardiovascular Pharmacology. 2015;66(1):1–8. doi: 10.1097/FJC.0000000000000247.
    1. Marchetti C, et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(7):E1530–E1539. doi: 10.1073/pnas.1716095115.
    1. Toldo S, et al. The NLRP3 inflammasome inhibitor, OLT1177 (dapansutrile), reduces infarct size and preserves contractile function after ischemia reperfusion injury in the mouse. Journal of Cardiovascular Pharmacology. 2019;73(4):215–222. doi: 10.1097/FJC.0000000000000658.
    1. Akodad M, et al. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. International Journal of Cardiology. 2017;240:347–353. doi: 10.1016/j.ijcard.2017.03.126.
    1. Bakhta O, et al. Cardioprotective role of colchicine against inflammatory injury in a rat model of acute myocardial infarction. Journal of Cardiovascular Pharmacology and Therapeutics. 2018;23(5):446–455. doi: 10.1177/1074248418763611.
    1. Fujisue K, et al. Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction. Circulation Journal. 2017;81(8):1174–1182. doi: 10.1253/circj.CJ-16-0949.
    1. Forrat, R., et al. (1996). Effect of colchicine on circulating and myocardial neutrophils and on infarct size in a canine model of ischemia and reperfusion. Journal of Cardiovascular Pharmacology. 10.1097/00005344-199606000-00016.
    1. van Hout GPJ, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. European Heart Journal. 2016;38(11):ehw247. doi: 10.1093/eurheartj/ehw247.
    1. Sandanger Ø, et al. NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochemical and Biophysical Research Communications. 2016;469(4):1012–1020. doi: 10.1016/j.bbrc.2015.12.051.
    1. Jong WMC, et al. Nlrp3 plays no role in acute cardiac infarction due to low cardiac expression. International Journal of Cardiology. 2014;177(1):41–43. doi: 10.1016/j.ijcard.2014.09.148.
    1. Zuurbier CJ. NLRP3 inflammasome in cardioprotective signaling. Journal of Cardiovascular Pharmacology. 2019;74(4):271–275. doi: 10.1097/FJC.0000000000000696.
    1. Zuurbier, C. J., et al. (2012). Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased IL-6/STAT3 signaling. PLoS One. 10.1371/journal.pone.0040643.
    1. , “Interleukin-1 (IL-1) blockade in acute myocardial infarction (VCU-ART3) (VCU-ART3) NCT01950299,” NCT01950299.

Source: PubMed

3
Abonnere