Obesity-Related Differences between Women and Men in Brain Structure and Goal-Directed Behavior

Annette Horstmann, Franziska P Busse, David Mathar, Karsten Müller, Jöran Lepsien, Haiko Schlögl, Stefan Kabisch, Jürgen Kratzsch, Jane Neumann, Michael Stumvoll, Arno Villringer, Burkhard Pleger, Annette Horstmann, Franziska P Busse, David Mathar, Karsten Müller, Jöran Lepsien, Haiko Schlögl, Stefan Kabisch, Jürgen Kratzsch, Jane Neumann, Michael Stumvoll, Arno Villringer, Burkhard Pleger

Abstract

Gender differences in the regulation of body-weight are well documented. Here, we assessed obesity-related influences of gender on brain structure as well as performance in the Iowa Gambling Task. This task requires evaluation of both immediate rewards and long-term outcomes and thus mirrors the trade-off between immediate reward from eating and the long-term effect of overeating on body-weight. In women, but not in men, we show that the preference for salient immediate rewards in the face of negative long-term consequences is higher in obese than in lean subjects. In addition, we report structural differences in the left dorsal striatum (i.e., putamen) and right dorsolateral prefrontal cortex for women only. Functionally, both regions are known to play complimentary roles in habitual and goal-directed control of behavior in motivational contexts. For women as well as men, gray matter volume correlates positively with measures of obesity in regions coding the value and saliency of food (i.e., nucleus accumbens, orbitofrontal cortex) as well as in the hypothalamus (i.e., the brain's central homeostatic center). These differences between lean and obese subjects in hedonic and homeostatic control systems may reflect a bias in eating behavior toward energy-intake exceeding the actual homeostatic demand. Although we cannot infer from our results the etiology of the observed structural differences, our results resemble neural and behavioral differences well known from other forms of addiction, however, with marked differences between women and men. These findings are important for designing gender-appropriate treatments of obesity and possibly its recognition as a form of addiction.

Keywords: Iowa gambling task; brain structure; gender difference; obesity; reward system; voxel-based morphometry.

Figures

Figure 1
Figure 1
Distribution of body mass index [in kg/m2 (A)] and age [in years (B)] for female and male participants.
Figure 2
Figure 2
Obesity is associated with structural alterations of the brain's gray matter structure. Results are shown in detail for the whole group (n = 122), including both men and women. Top row: coronal slices, numbers indicate slice location in MNI coordinates. The position of the slices in relation to the whole brain is indicated visually on the right (blue lines). Middle row: sagittal slices, conventions as above. Bottom row: axial slices, conventions as above.
Figure 3
Figure 3
The association of obesity with profound, gender-dependent structural alterations within brain regions involved in reward processing, cognitive, and homeostatic control. The volume of posterior medial orbitofrontal cortex (OFC), nucleus accumbens (NAcc), and hypothalamus increases significantly with BMI (first panel, warm colors) in both genders. For women, an additional association between gray matter volume and BMI can be observed in the left putamen (second panel: warm colors and scatterplot). Leptin, a more direct measure of the degree of obesity, is also associated with gender-dependent changes in brain structure. The association between BMI and GMV in the left putamen overlaps with the association between the concentration of central leptin and GMV in the putamen, an effect, which we only find in women (third panel: red). Women show additional alterations in the NAcc bilaterally and the fornix (third panel, red); men show alterations of brain structure in the NAcc bilaterally and the hypothalamus (third panel, blue). We found a significant negative association between central leptin and GMV restricted to women in the right lateral prefrontal cortex (lower panel). All GMV values are mean standardized and corrected for age, total gray and white matter.
Figure 4
Figure 4
Differences in lean and obese women in their ability to adjust choice behavior to match long-term goals. (A) Preference for deck B over all trials correlates with BMI within the group of women. Gray line: linear regression. (B) Difference between lean and obese women in choice behavior during learning. Lean women learn to gradually select fewer cards from deck B. In contrast, obese women continue to select cards from deck B. Each block consists of five trials. (C) No difference between lean and obese men in choice behavior is observable during learning. Each block consists of five trials.

References

    1. Alexander G. E., DeLong M. R., Strick P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381
    1. Ashburner J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–11310.1016/j.neuroimage.2007.07.007
    1. Batterham R. L., ffytche D. H., Rosenthal J. M., Zelaya F. O., Barker G. J., Withers D. J., Williams S. C. (2007). PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature 450, 106–10910.1038/nature06212
    1. Beasley J. M., Ange B. A., Anderson C. A., Miller Iii E. R., Holbrook J. T., Appel L. J. (2009). Characteristics associated with fasting appetite hormones (obestatin, ghrelin, and leptin). Obesity (Silver Spring) 17, 349–35410.1038/oby.2008.627
    1. Bechara A., Damasio A. R., Damasio H., Anderson S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 7–1510.1016/0010-0277(94)90018-3
    1. Brogan A., Hevey D., O'Callaghan G., Yoder R., O'Shea D. (2011). Impaired decision making among morbidly obese adults. J. Psychosom. Res. 70, 189–196
    1. Carroll J. F., Kaiser K. A., Franks S. F., Deere C., Caffrey J. L. (2007). Influence of BMI and gender on postprandial hormone responses. Obesity (Silver Spring) 15, 2974–298310.1038/oby.2007.355
    1. Considine R. V., Sinha M. K., Heiman M. L., Kriauciunas A., Stephens T. W., Nyce M. R., Ohannesian J. P., Marco C. C., McKee L. J., Bauer T. L. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295
    1. Cornier M. A., Salzberg A. K., Endly D. C., Bessesen D. H., Tregellas J. R. (2010). Sex-based differences in the behavioral and neuronal responses to food. Physiol. Behav. 99, 538–543
    1. Daw N. D., Niv Y., Dayan P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711
    1. Dileone R. J. (2009). The influence of leptin on the dopamine system and implications for ingestive behavior. Int. J. Obes. 33, S25–S29
    1. Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., May A. (2004). Changes in grey matter induced by training newly honed juggling skills show up as a transient feature on a brain-imaging scan. Nature 427, 311–31210.1038/427311a
    1. Draganski B., Kherif F., Klöppel S., Cook P. A., Alexander D. C., Parker G. J., Deichmann R., Ashburner J., Frackowiak R. S. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J. Neurosci. 28, 7143–715210.1523/JNEUROSCI.1486-08.2008
    1. Edelsbrunner M. E., Herzog H., Holzer P. (2009). Evidence from knockout mice that peptide YY and neuropeptide Y enforce murine locomotion, exploration and ingestive behaviour in a circadian cycle- and gender-dependent manner. Behav. Brain Res. 203, 97–107
    1. Farooqi I. S., Bullmore E., Keogh J., Gillard J., O'Rahilly S., Fletcher P. C. (2007). Leptin regulates striatal regions and human eating behavior. Science 317, 1355.
    1. Frank M. J. (2009). Slave to the striatal habit (commentary on Tricomi et al.). Eur. J. Neurosci. 29, 2223–2224
    1. Frank M. J., Claus E. D. (2006). Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol. Rev. 113, 300–326
    1. Fulton S., Pissios P., Manchon R. P., Stiles L., Frank L., Pothos E. N., Maratos-Flier E., Flier J. S. (2006). Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51, 811–82210.1016/j.neuron.2006.09.006
    1. Greene G. W., Schembre S. M., White A. A., Hoerr S. L., Lohse B., Shoff S., Horacek T., Riebe D., Patterson J., Phillips B. W., Kattelmann K. K., Blissmer B. (2011). Identifying clusters of college students at elevated health risk based on eating and exercise behaviors and psychosocial determinants of body weight. J. Am. Diet. Assoc. 111, 394–400
    1. Hayasaka S., Phan K. L., Liberzon I., Worsley K. J., Nichols T. E. (2004). Nonstationary cluster-size inference with random field and permutation methods. Neuroimage 22, 676–68710.1016/j.neuroimage.2004.01.041
    1. Hommel J. D., Trinko R., Sears R. M., Georgescu D., Liu Z. W., Gao X. B., Thurmon J. J., Marinelli M., DiLeone R. J. (2006). Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–81010.1016/j.neuron.2006.08.023
    1. Horstmann A., Frisch S., Jentzsch R. T., Müller K., Villringer A., Schroeter M. L. (2010). Resuscitating the heart but losing the brain: brain atrophy in the aftermath of cardiac arrest. Neurology 74, 306–31210.1212/WNL.0b013e3181cbcd6f
    1. Jimura K., Locke H. S., Braver T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proc. Natl. Acad. Sci. U.S.A. 107, 8871–8876
    1. Koob G. F., Volkow N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–23810.1038/npp.2009.110
    1. Malik S., McGlone F., Bedrossian D., Dagher A. (2008). Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 7, 400–40910.1016/j.cmet.2008.03.007
    1. Marshall J. A., Grunwald G. K., Donahoo W. T., Scarbro S., Shetterly S. M. (2000). Percent body fat and lean mass explain the gender difference in leptin: analysis and interpretation of leptin in Hispanic and non-Hispanic white adults. Obes. Res. 8, 543–552
    1. Miller E. K., Cohen J. D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202
    1. Mueller K., Anwander A., Möller H. E., Horstmann A., Lepsien J., Busse F., Mohammadi S., Schroeter M. L., Stumvoll M., Villringer A., Pleger B. (2011). Sex-dependent influences of obesity on cerebral white matter investigated by diffusion-tensor imaging. PLoS ONE 6, e18544.10.1371/journal.pone.0018544
    1. Nederkoorn C., Smulders F. T., Havermans R. C., Roefs A., Jansen A. (2006). Impulsivity in obese women. Appetite 47, 253–25610.1016/j.appet.2006.05.008
    1. Pannacciulli N., Del Parigi A., Chen K., Le D. S., Reiman E. M., Tataranni P. A. (2006). Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage 31, 1419–142510.1016/j.neuroimage.2006.01.047
    1. Pannacciulli N., Le D. S., Chen K., Reiman E. M., Krakoff J. (2007). Relationships between plasma leptin concentrations and human brain structure: a voxel-based morphometric study. Neurosci. Lett. 412, 248–253
    1. Parigi A. D., Chen K., Gautier J. F., Salbe A. D., Pratley R. E., Ravussin E., Reiman E. M., Tataranni P. A. (2002). Sex differences in the human brain's response to hunger and satiation. Am. J. Clin. Nutr. 75 1017–1022
    1. Park K. G., Park K. S., Kim M. J., Kim H. S., Suh Y. S., Ahn J. D., Park K. K., Chang Y. C., Lee I. K. (2004). Relationship between serum adiponectin and leptin concentrations and body fat distribution. Diabetes Res. Clin. Pract. 63, 135–142
    1. Philpot K. B., Dallvechia-Adams S., Smith Y., Kuhar M. J. (2005). A cocaine-and-amphetamine-regulated-transcript peptide projection from the lateral hypothalamus to the ventral tegmental area. Neuroscience 135, 915–92510.1016/j.neuroscience.2005.06.064
    1. Plassmann H., O'Doherty J. P., Rangel A. (2010). Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. J. Neurosci. 30, 10799–1080810.1523/JNEUROSCI.0788-10.2010
    1. Provencher V., Drapeau V., Tremblay A., Després J. P., Lemieux S. (2003). Eating behaviors and indexes of body composition in men and women from the Québec family study. Obes. Res. 11, 783–792
    1. Raji C. A., Ho A. J., Parikshak N. N., Becker J. T., Lopez O. L., Kuller L. H., Hua X., Leow A. D., Toga A. W., Thompson P. M. (2010). Brain structure and obesity. Hum. Brain Mapp. 31, 353–364
    1. Rolls B. J., Fedoroff I. C., Guthrie J. F. (1991). Gender differences in eating behavior and body weight regulation. Health Psychol. 10, 133–14210.1037/0278-6133.10.2.133
    1. Rothemund Y., Preuschhof C., Bohner G., Bauknecht H. C., Klingebiel R., Flor H., Klapp B. F. (2007). Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 37, 410–42110.1016/j.neuroimage.2007.05.008
    1. Schäfer A., Vaitl D., Schienle A. (2010). Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder. Neuroimage 50, 639–64310.1016/j.neuroimage.2009.12.063
    1. Scholz J., Klein M. C., Behrens T. E., Johansen-Berg H. (2009). Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371
    1. Schwartz M. W., Peskind E., Raskind M., Boyko E. J., Porte D. (1996). Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat. Med. 2, 589–593
    1. Sluming V., Barrick T., Howard M., Cezayirli E., Mayes A., Roberts N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. Neuroimage 17, 1613–162210.1006/nimg.2002.1288
    1. Smeets P. A., de Graaf C., Stafleu A., van Osch M. J., Nievelstein R. A., van der Grond J. (2006). Effect of satiety on brain activation during chocolate tasting in men and women. Am. J. Clin. Nutr. 83, 1297–1305
    1. Stanek K. M., Grieve S. M., Brickman A. M., Korgaonkar M. S., Paul R. H., Cohen R. A., Gunstad J. J. (2011). Obesity is associated with reduced white matter integrity in otherwise healthy adults. Obesity (Silver Spring) 19, 500–50410.1038/oby.2010.312
    1. Taki Y., Kinomura S., Sato K., Inoue K., Goto R., Okada K., Uchida S., Kawashima R., Fukuda H. (2008). Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity (Silver Spring) 16, 119–12410.1038/oby.2007.4
    1. Taubert M., Draganski B., Anwander A., Müller K., Horstmann A., Villringer A., Ragert P. (2010). Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J. Neurosci. 30, 11670–1167710.1523/JNEUROSCI.2567-10.2010
    1. Tricomi E., Balleine B. W., O'Doherty J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. Eur. J. Neurosci. 29, 2225–223210.1523/JNEUROSCI.3789-08.2009
    1. Uher R., Treasure J., Heining M., Brammer M. J., Campbell I. C. (2006). Cerebral processing of food-related stimuli: effects of fasting and gender. Behav. Brain Res. 169, 111–119
    1. Volkow N. D., Wise R. A. (2005). How can drug addiction help us understand obesity? Nat. Neurosci. 8, 555–560
    1. Walther K., Birdsill A. C., Glisky E. L., Ryan L. (2010). Structural brain differences and cognitive functioning related to body mass index in older females. Hum. Brain Mapp. 31, 1052–106410.1002/hbm.20916
    1. Wang G. J., Volkow N. D., Telang F., Jayne M., Ma Y., Pradhan K., Zhu W., Wong C. T., Thanos P. K., Geliebter A., Biegon A., Fowler J. S. (2009). Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation. Proc. Natl. Acad. Sci. U.S.A. 106, 1249–1254
    1. Wang J., Korczykowski M., Rao H., Fan Y., Pluta J., Gur R. C., McEwen B. S., Detre J. A. (2007). Gender difference in neural response to psychological stress. Soc. Cogn. Affect. Neurosci. 2, 227–239
    1. Weller R. E., Cook E. W., Avsar K. B., Cox J. E. (2008). Obese women show greater delay discounting than healthy-weight women. Appetite 51, 563–56910.1016/j.appet.2008.04.010
    1. World Health Organization. (2010). WHO Global Infobase. Geneva: World Health Organization
    1. Yin H. H., Knowlton B. J. (2006). The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476

Source: PubMed

3
Abonnere